
Taming Near Repeat Calculation for Crime Analysis via Cohesive Subgraph Computing

Zhaoming Yin

Open Data Processing Platform Team,
Alibaba Cloud

Hangzhou, Zhejiang, China
Email: stplaydog@gmail.com

Xuan Shi

Department of Geosciences
University of Arkansas

Fayetteville, Washington County, USA
Email: xuanshi@uark.edu

Abstract—Near Repeat (NR) is a well-known phenomenon in
crime analysis, assuming that crime events exhibit correlations
within a given time and space frame. Traditional NR calculation
would generate two event pairs if two events happened within
a given space and time limit. When the number of events is
significant, however, NR calculation is time consuming and how
these pairs are organized has not yet been explored. In this paper,
we designed a new approach to calculate clusters of NR events
efficiently. To begin with, R-tree is utilized to index crime events.
A single event is represented by a vertex, whereas edges are
constructed by range-querying the vertex in R-tree; this way, a
graph is formed. Cohesive subgraph approaches are applied to
identify the event chains. k-clique, k-truss, k-core plus Density-
based Spatial Clustering of Applications with Noise (DBSCAN)
algorithms are implemented in sequence to their varied range
of abilities to find cohesive subgraphs. Real-world crime data
in Chicago, New York, and Washington DC are utilized to
conduct experiments. The experiments confirmed that near repeat
has a substantial effect on real big crime data by conducting
Map-reduce empowered Knox tests. The performances of 4
different algorithms are validated, with the quality gauged by
the distribution of the number of cohesive subgraphs and their
clustering coefficients. The proposed framework is the first to
process the real crime data of million records and is the first to
detect NR events with a size of more than 2.

Keywords–Near-Repeat; Graph Analysis.

I. INTRODUCTION

In criminal research, it was found that when a crime
incident takes place at a given geographical location, its neigh-
boring areas would have a higher possibility of experiencing
follow-up incidents in a short period [16] [19] [25]. When the
first incident occurs at a specific time, the follow-up incident
at the same location and close to the initial time is a repeat.
The incidents that occur near the space and time of the initiator
are called near-repeat. Such repeat and near-repeat phenomena
have been found from burglaries and gun violence studies,
and have important implications to dispatch police force in
crime mitigation activities [16] [21] [25]. To prove the near-
repeat effect, the classic way is to use the Knox test method
[16] [19] [22]. The general idea of Knox test is to calculate
the pairwise distance (in terms of space and time) between
different crime events, and place the event pair into different
bins of a table; the residual value of each specific entry of
the table is calculated to indicate how random these pairs are
organized into the range. The issue with this method is that its
time complexity is O(n2) (n is the number of crime events).
When dealing with big real-world data, it will take days, if not
months, to finish the computing task.

When near-repeat research only considers the space-time
interaction among every two incidents, a complete space-time
event chain is more appropriate to differentiate such a scenario
of separate space-time pairs [21]. For example, when three
shooting events (A and B), (B and C), (A and C) comply with
the near-repeat definition, a three-event chain can be identified.
In this case, it would be more meaningful to identify the
correlation between multiple incidents rather than just two.
Event chain analysis improves our understanding of the role
of space and time among series of shooting events, or other
types of crime events. The significant existence of paired
shooting events does not mean the meaningful presence of
multiple shooting event chains in the same space-time context.
Otherwise, all initiators or follow-up shooting events should be
close to each other and form a spatial cluster in a city.

Enumerating event chains in a brute-force way would be
extremely difficult because the time complexity grows expo-
nentially. Nevertheless, we can abstract the problems of near-
repeat event chain detection by dividing it into two separate
issues: 1) detecting near repeat pairs efficiently; 2) clustering
or chaining near repeat pairs with high speed.

To begin with, the most efficient way to avoid unnecessary
pairwise computation of each crime event is to use an index to
organize events, such that one only needs to query its spatial-
temporal adjacent events to generate event pairs, and R-tree
[12] is the right choice. Once all event pairs are detected, they
can be represented as a graph.

Furthermore, detecting a chain of near-repeat events can
be modeled as a cohesive subgraph enumeration problem [9].
Ideally, all events should have connections between each other
within a cohesive subgraph, and such a subgraph is a k-clique
(k is the number of vertices in the subgraph) [15]; Neverthe-
less, in the real world, the graph is massive, and approximation
methods are more efficient than exact algorithms [18]. Rather
than asking all vertices in a subgraph to have a connection
between each other, a k-core [5] only asks that each vertex
in the subgraph has k degrees, and this restriction is relaxed.
A variant of Density-based Spatial Clustering of Applications
with Noise (DBSCAN) algorithm [6] can be applied to detect
clusters of spatial-temporal data. The DBSCAN algorithm is
fast with a complexity of O(V log(V)). One of the alternative
versions requires that each edge in the subgraph should be in
k − 2 triangles; this is called k-truss [9]. In recent years, lots
of advances had been made in the area of truss decomposition,
regarding speed [23], a variance of graph [14], and data
streaming [13], which make the k-truss algorithm a preferred

1Copyright (c) IARIA, 2020. ISBN: 978-1-61208-762-7

GEOProcessing 2020 : The Twelfth International Conference on Advanced Geographic Information Systems, Applications, and Services

alternative to the k-clique method. All three alternatives to the
k-clique algorithm have polynomial complexity.

Organization. In this paper, we will discuss a frame-
work to incorporate the methods of indexing crime events,
computing event pairs, and detecting near-repeat event chains
applying k-clique, k-core, DBSCAN, and k-truss algorithms
separately. Section 2 formally defines the near repeat chain
detection problem, gives the necessary notations, and describes
the framework of our near repeat chain detection methods;
Section 3 reports the experimental results using real-world
data; the Conclusion is derived in the last section of this paper.

II. EVENT CHAIN CALCULATION THROUGH GRAPH
ANALYTICS

A. Using graph to represent Crime Events

Suppose we use a vertex v to represent an event that
occurred in location (x, y) and at time t. Moreover, if two
vertices v1 and v2 representing different events occurred within
a given time and space constraint, an undirected edge (v1, v2)
will be used to connect them. If there are V number of
events and E number of event pairs, the resulting vertices
and edges form a graph G (In this article, we assume that
there is only one undirected edge between any two vertices).
If there exists a set of events with n number of events,
each event is paired with every other n − 1 event. We call
this set of events an event chain. A subgraph g in G can
represent this event chain such that each vertex in the g will
have edges connecting every other vertex in g. Figure 2(a)
shows an example of 8 crime events and 13 event pairs. In
the figure, subgraph induced from vertices {1, 2, 3} shows an
example of a 3-event chain which is a triangle, Furthermore,
subgraph induced from vertices {0, 1, 3, 4} shows an example
of a 4-event chain, which is a 4-clique. Press ENTER or type
command to continue The degree of a vertex v is defined as the
number of edges connecting v. Take Figure 2(a) for example,
the degree for vertex 1 is 5, and the degree for vertex 5 is
2. The definition of k-clique [7] is, each vertex in k-clique
has degree of exactly k − 1; Figure 2(b) shows a 4-clique
subgraph. Similarly, k-core [5] is the subgraph in which each
of its vertices has a degree of no less than k. Figure 2(c) shows
a 3-core subgraph, k-DBSCAN [6] is also a degree based
cohesive subgraph, the method leverages k-degree vertices to
greedily expand clusters(we will discuss the detail later), and
Figure 2(a) itself is the subgraph induced by 3-DBSCAN. As
for an edge e in G, the number of triangles it belongs to is
called the support. For instance, the support for edge (1, 2)
is 3, and the support for edge (2, 7) is 1. k-truss [23] is the
subgraph with each of its edges having support no less than
k − 2; Figure 2(d) shows a 3-truss induced from the original
graph. The clustering coefficient [24] evaluates the tightness
of the connection in a cohesive subgraph. If we use coe(g)
to denote a graph’s clustering coefficient, empirically we have
coe(gk−clique) ≥ coe(gk−truss) ≥ coe(gk−core) [23].

B. Near Repeat Event Chain Detection Algorithm

1) Algorithm description: Given a set of crime events, we
can represent each event using a coordinate x, y, and a time
t of crime type p. We would transform the coordinate using
UTM format [8]. The process of finding near repeat crime
event chain can be formulated as the following two steps:

• Create a graph based on the spatial-temporal coordi-
nates of a specific crime type; Since computing all
pairs of events is expensive, we will build an R-tree
[12] using 3-dimensional coordinates x, y, and t. A
vertex forms edges with its neighbors by specifying
some query criteria in R-tree.

• Based on the graph created at step 1, compute
the cohesive subgraphs such as k-clique, k-core, k-
DBSCAN, or k-truss. Optimization methods might be
applied; for instance, we can divide the graph into
small graphs, if multiple connected components are
detected [10].

The algorithm is described in Figure 1. The complexity of
the algorithm could be divided into two steps. Suppose we
have V events, and E event pairs. The complexity for the
first graph generation process is dependent on data, and can
not guarantee a worst-case complexity, but its lower bound
is O(V). The complexity of computing k-clique is NP-Hard
[7], k-core is O(E) [5], k-DBSCAN is O(V log(V)) [11], and
k-truss is O(E1.5) [23].

2) k-clique enumeration Revisited: The maximum clique
problem is a widely researched area, and there are lots of
papers on this topic since the general algorithmic framework
for clique enumeration algorithm is different from the other
three algorithms, we will not spend too much effort on this
theme.

3) k-core Computation Revisited: Figure 3 displays the
skeleton of the k-core algorithm. Vertices are sorted by their
degrees in ascending order, and the criteria of k start from 3.
Vertices with degree less than k and their adjacent edges are
removed from the graph G and the neighbor vertices of these
removed vertices (we use nb(v) to denote neighbors of v) will
update their degrees accordingly. Once there is no such vertex
to be removed, the remaining graph will be placed in the k-
core class Tk, and k will be incremented, and the removing
procedure will start again. The procedure continues until there
is no vertex to be removed.

4) k-DBSCAN Computation Revisited: k-DBSCAN is a
density-based clustering algorithm. In this paper, we translate
the k-DBSCAN algorithm into the equivalence of the cohesive

Input: Set of crime events C, range criteria (rx, ry , rt)
Output: Set of near repeat event chains, T

1 Initialize R-tree R ;
2 for v in C do
3 R.insert(v) ;
4 end
5 for v in C do
6 (x, y, t) = coordinate of v ;
7 S = R.retrieve([x± rx, y ± ry , t± rt]) ;
8 for u in S do
9 add edge (u, v) to G ;

10 end
11 end
12 T = cohesive subgraph algo(G) ;
13 return T ;

Figure 1. Near repeat event chain calculation.

2Copyright (c) IARIA, 2020. ISBN: 978-1-61208-762-7

GEOProcessing 2020 : The Twelfth International Conference on Advanced Geographic Information Systems, Applications, and Services

(a) Origin (b) 4-clique (c) 3-core (d) 3-truss

Figure 2. Example using graph to represent crime event pairs/chains.

subgraph algorithm. The algorithm is as Figure 4 shows. The
algorithm finds a vertex v with deg(v) ≥ k from k = 3, then
expand it (as Figure 5 shows), every expansion will result in
the vertices in the expansion being marked as visited. If there
is no vertex to be expanded, we will remove all the vertices
that are not visited from G. The procedure continues until there
is no vertex to be removed.

5) k-truss Decomposition Revisited: Truss decomposition
is firstly introduced in paper [9] to detect possible subgroups
within a social network. It is pretty useful in community
detection. New and efficient algorithms are introduced to
compute truss efficiently [23]. The idea of the algorithm is
to compute the support for each edge first. For each edge,
the O(d) complexity algorithm for triangle enumeration will
be applied, d is the larger degree of the two vertices forming
an edge. In this paper, we will use Compressed Sparse Row
(CSR) [17] to store the edge array. The skeleton of the k-truss
algorithm is shown in Figure 6. Then the edges are sorted

Input: Graph G
Output: k-core (k ≥ 3) T

1 k = 3, Tk = ∅ ;
2 Compute deg(v) for v ∈ G ;
3 Sort all the vertices in ascending order by degree and

place them in U ;
4 while ∃v in U such that deg(v) < k do
5 W = nb(v) ;
6 for w in W do
7 deg(w)−− ;
8 deg(w)−− ;
9 Reorder w in U according to its new degree;

10 end
11 Remove v and its adjacent edges from G ;
12 Remove v from U ;
13 end
14 if Not all v in U are removed then
15 T [k] = G ;
16 k ++ ;
17 goto step 4 ;
18 end
19 return T ;

Figure 3. k-core computation.

Input: Graph G
Output: k-DBSCAN (k ≥ 3), T

1 k = 3, Tk = ∅ ;
2 compute deg(v) for v ∈ G ;
3 Sort all the vertices in descending order by degree and

place them in U ;
4 while ∃v such that deg(v) ≥ k and
visited(v) == false do

5 expand(G, v, k) ;
6 end
7 while ∃v such that visited(v) == false do
8 Remove v and its adjacent edges from G ;
9 Remove v from U ;

10 end
11 if Not all v in U are removed then
12 T [k] = G ;
13 k ++ ;
14 set all v in U as unvisited ;
15 goto step 4 ;
16 end
17 return T ;

Figure 4. k-DBSCAN computation.

Input: Graph G, vertex v, k
1 W = nb(v) ;
2 for w in W do
3 if visited(w) == false then
4 visited(w) = true ;
5 if deg(w) ≥ k then
6 expand(w) ;
7 end
8 end
9 end

Figure 5. Expand procedure.

3Copyright (c) IARIA, 2020. ISBN: 978-1-61208-762-7

GEOProcessing 2020 : The Twelfth International Conference on Advanced Geographic Information Systems, Applications, and Services

in the ascending order by their support. To compute the k-
truss, every edge with support less than k − 2, along with
its incident vertices, will be removed. Moreover, the incident
edges will update their support and their position in the edge
array following similar methods k-core computation. Followed
by the removal of all edges that do not form a k-truss, the
remaining graph consists of k-trusses. Furthermore, the value
of k will be incremented, followed by the same edge removing
steps until there are no edges left in the graph. In the algorithm,
because the range of supports is already known, sorting can
be done with O(E) complexity using bucket sort.

III. EXPERIMENTS

A. Data Sets
The data used in this research contains the real crime data

onto New York (NYC), Washington DC (DC), and Chicago
(CHI) retrieved from data.gov [1] [2] [3]. The general infor-
mation about the data is displayed in TABLE II. In the table,
the granularity of time is in a day(s), and the granularity of
space is in meters. #t means the number of crime types, #d
means the number of duplicated events. #events are the number
of events after combining duplications. We have removed the
data that is not conformed to the right format (for instance, data
that does not fall into the range in TABLE II), and combined
the duplicated entries (for example, a crime of the same type
happens at the same time of the same location, see TABLE II
#d). In general, all three data sets have crime numbers of a
million scale.

Since there are numerous crime types of DC and CHI
data (see TABLE II #t), we only choose the crime types
of burglary (BUR), robbery (ROB) and theft (TFT) for de-
tailed discussion. We selected the spatial-temporal range limit

Input: Graph G
Output: k-truss (k ≥ 3), T

1 k = 3, Tk = ∅ ;
2 compute sup(e) for e ∈ G ;
3 Sort all the edges in ascending order of their support

and place them in U ;
4 while ∃e in U such that sup(e) ≤ (k − 2) do
5 e = (u, v) with the lowest support ;
6 W = nb(u) ∩ nb(v) ;
7 for w in W do
8 sup(u,w)−− ;
9 sup(v, w)−− ;

10 Reorder (u, w) and (v, w) according to their
new support;

11 end
12 Remove e from G ;
13 Remove e from U ;
14 end
15 if Not all e in U are removed then
16 T [k] = G ;
17 k ++ ;
18 goto step 4 ;
19 end
20 return T ;

Figure 6. k-truss computation.

rx = ry = 100(meters) with rt = 10(days), and the feature
of graphs generated applying this criteria have the property as
TABLE I shows. In the table, #V is the number of vertices,
#E is the number of edges, #CC is the number of connected
components(we do not count the isolated vertices as CC),
d avg and d var are the mean and variance of the diameters
of connected components; c avg and c var are the mean and
variance of clustering coefficient of connected components.
We use Floyd Warshal [10] algorithm to calculate the all-
pairs shortest path of each clique, and use this information
to infer the diameter of each clique. As for the clustering
coefficient [24], we use it to evaluate how densely these graphs
are organized. In general, burglary and robbery are sparse near
repeat events in comparison to theft concerning the number of
vertices #V , which is also indicated by a more substantial
number of edges and connected components #CCand#E.
The diameter and clustering coefficient feature also indicates
that theft has large clusters, and these clusters are dense.
Inferred from the table, the graphs in all data obey small-world
property because the diameters of the graphs are small [24].

TABLE I. GENERAL INFORMATION OF GRAPHS.

#V #E #CC d avg d var c avg c var

NY

BUR 187k 112k 24k 1.25 0.64 0.12 0.064
ROB 198k 152k 27k 1.34 1.38 0.13 0.068
TFT 421k 1.5m 55k 1.77 6.66 0.20 0.089

DC

BUR 156k 54k 13k 1.26 0.80 0.10 0.054
ROB 54k 32k 6k 1.40 1.30 0.138 0.069
TFT 344k 1.1m 33k 1.75 7.78 0.17 0.080

CHI

BUR 197k 118k 29k 1.29 0.56 0.12 0.060
ROB 124k 68k 14k 1.34 0.96 0.11 0.058
TFT 650k 3.4m 89k 1.84 7.95 0.19 0.081

B. Knox test with Map-reduce
Firstly, we prove the existence of a near-repeat effect in a

real big data set by conducting a Knox test on the data set.
We implement the Knox test using the Map-reduce framework
on Amazon AWS EMR and store the input/output on S3. The
program is written in python and runs with Hadoop streaming
[26] mode. For New York and Chicago theft data set, we used
a cluster of 16 nodes, and for all the other data sets, we used
a cluster of 4 nodes (for a budget reason).

The computational time is recorded and is shown on
TABLE III. To the best of our knowledge, the previous Knox
test research on crime data is orders of magnitudes smaller than
our data. Since the complexity of the Knox test is O(n2), it is
not practical to compare the timing of these results against the
previous experiments. Hence in this paper, we claim that our
method can finish the Knox test within a reasonable time from
less than an hour to approximately 10 hours using big real-
world data, which is not possible with the previous methods.

To construct the Knox test table [22], we have set the
distance step as 100 meters and the time step as 14 days.
The Knox test result is shown in Figure 7 using a heatmap.
In the figure, we do not show the result of distance larger
than 10× 100 = 1000 meters and time difference larger than

4Copyright (c) IARIA, 2020. ISBN: 978-1-61208-762-7

GEOProcessing 2020 : The Twelfth International Conference on Advanced Geographic Information Systems, Applications, and Services

TABLE II. GENERAL INFORMATION OF DATA.

name earliest latest min x max x min y max y #events #t #d

NY 2006/06/04 2015/12/31 134239 1067186 121080 7220451 1123221 7 29k

DC 1978/01/01 2015/12/31 4840550 18915876 777144 8480189 2130867 43 89k

CHI 2001/01/01 2015/12/31 1092706 1205119 1813894 1951610 3102758 35 54k

4×14 = 56 days. It is evident from the heatmap that all three
crime types in three cities exhibit near repeat effects because
the upper left corner entries of each Knox test matrices have
residual values that are significantly larger than other entries.

TABLE III. COMPUTATIONAL TIME (IN SECONDS) FOR KNOX TEST
USING MAPREDUCE.

City BUR ROB TFT

NY 13320 (4 nodes) 13980 (4 nodes) 13560 (16 nodes)
DC 9240 (4 nodes) 1440 (4 nodes) 34320 (4 nodes)
CHI 14340 (4 nodes) 6000 (4 nodes) 24060 (16 nodes)

C. Near-repeat chain detection
We implement the k-core, k-DBSCAN and k-truss al-

gorithm using C++, and GCC compiler with the c++-11
features enabled; Furthermore, the code is freely available on
GitHub with the package name OPTKIT. To build the spatial-
temporal index with an R-tree package, we use the open-
source implementation of [12]. As for the k-clique, and the
graph properties, we use the boost graph library (BGL) [20].
The experiment was run on an AWS machine [4], with an
m4.4xlarge Redhat instance. The instance has 16 cores, and
each has a 2.4 GHz Intel Xeon E5-2676 v3 (Haswell) processor
and 64 Gbs of memory, the disk size is 160 Gbs of EBS
storage; the operating system is RHEL-7.2. Computational
time is recorded by analyzing the log result using the glog
library.

1) Computational Time: The computational time is divided
into seven parts, including the time to 1) load the data, which
includes parsing and reading spatial-temporal coordinates of
CSV format. 2) build R-tree and edges based on querying the
R-tree. 3) separate edges based on the connected component
computation using BGL. 4-6) implement the k-truss, k-core,
and k-DBSCAN algorithms. 7) calculate k-cliques.

The computational time results is an excerpt on TABLE IV,
in the table, the load is the time for loading spatial-temporal
information in CSV format. The R-tree is the time for building
the R-tree index. The edges is the time to build edges based
on R-tree, CC is the time to calculate connected components,
the truss is the time to calculate k-truss, the core is the time
to calculate k-core, the dbscan is the time to calculate k-
DBSCAN. BGL is the time for the k-clique calculation using
the boost graph library. No matter the size of the data, the
dominant computational time is spent on the cohesive subgraph
calculation. It is observed that when the graph is small and
less dense, it takes less time to utilize BGL to compute graph
properties. In case the graph size is expanding fast, with larger
clusters, it takes a considerable amount of time to get the
k-clique result. Consequently, the advantage of approximate
cohesive subgraph computation will be distinct. It seems our

TABLE IV. RESULTS FOR COMPUTATIONAL TIME.

load R-tree edges CC truss core dbscan BGL

NY

BUR 0.54 0.50 0.15 0.11 6.15 1.53 4.30 2.14
ROB 0.62 0.51 0.21 0.13 7.05 1.97 4.16 2.00
TFT 1.24 1.10 1.06 0.80 10.55 4.05 4.71 302.79

DC

BUR 0.47 0.43 0.17 0.05 4.97 0.91 1.59 0.83
ROB 0.15 0.13 0.05 0.03 0.86 0.28 0.32 0.44
TFT 1.07 0.96 0.59 0.44 7.87 1.87 2.37 87.31

CHI

BUR 0.62 0.54 0.21 0.12 10.08 1.65 2.6 1.67
ROB 0.39 0.33 0.13 0.07 6.09 1.06 2.11 0.97
TFT 1.10 1.69 4.33 2.76 21.20 7.82 10.93 487.92

TABLE V. NUMBER OF K-CLIQUE DETECTED.

3 4 5 6 7 8 9 ≥ 10

NY

BUR 4117 935 304 87 33 11 5 16
ROB 4867 1364 491 195 88 46 24 40

DC

BUR 1770 432 133 56 26 11 6 4
ROB 1073 314 118 45 20 12 8 8

CHI

BUR 4941 1039 223 41 10 5 1 0
ROB 2338 600 207 66 34 12 2 4

TABLE VI. NUMBER OF K-CORES DETECTED.

3 4 5 6 7 8 9 ≥ 10

NY

BUR 1336 1295 803 307 163 60 35 94
ROB 1732 1944 1144 624 351 233 177 321
TFT 5227 7467 5787 4452 3124 2272 1824 8661

DC

BUR 641 664 306 193 114 66 52 34
ROB 415 496 285 159 87 42 33 68
TFT 2980 4090 2934 2415 1490 1153 951 6855

CHI

BUR 2092 1729 649 195 40 33 13 0
ROB 481 315 153 105 62 6 18 0
TFT 11223 12904 8549 6081 4329 3047 2234 15028

5Copyright (c) IARIA, 2020. ISBN: 978-1-61208-762-7

GEOProcessing 2020 : The Twelfth International Conference on Advanced Geographic Information Systems, Applications, and Services

(a) NY BUR (b) DC BUR (c) CHI BUR

(d) NY ROB (e) DC ROB (f) CHI ROB

(g) NY TFT (h) DC TFT (i) CHI TFT

Figure 7. Knox test results. A 4× 10 colored matrices represent each test, the row step is 14 days, and the column step is 100 meters. The residual value of
that range plots the color of the entry.

TABLE VII. NNUMBER OF K-DBSCAN DETECTED.

3 4 5 6 7 8 9 ≥ 10

NY

BUR 782 509 211 101 41 24 47 0
ROB 1 1068 707 389 243 148 110 224
TFT 1 3894 3391 2744 1967 1473 1187 5193

DC

BUR 1 362 194 124 77 45 31 29
ROB 415 496 285 159 87 42 33 68
TFT 2980 4090 2934 2415 1490 1153 951 6855

CHI

BUR 6 944 396 112 24 20 7 0
ROB 481 315 153 105 62 6 18 0
TFT 57 6071 4676 3547 2630 1859 1400 8608

TABLE VIII. NUMBER OF K-TRUSS DETECTED.

3 4 5 6 7 8 9 ≥ 10

NY

BUR 4988 1217 401 120 48 16 8 69
ROB 6153 1885 738 340 166 87 48 109
TFT 20091 9628 5448 3420 2217 1538 1153 4412

DC

BUR 2178 600 206 94 43 17 8 6
ROB 1359 436 168 77 36 18 12 11
TFT 10564 5025 2871 1922 1349 1037 796 4180

CHI

BUR 5851 1227 253 51 12 5 1 0
ROB 2886 811 290 101 40 16 5 4
TFT 32345 14418 7815 4912 3299 2410 1885 9683

implementation is slower in the small graph case. Nevertheless,
in general, the less cohesive the requirement of the results, the
less time it takes to compute the result.

2) Results comparison: TABLES VI, VII, VIII, V show the
distribution of the number of the cohesive subgraphs. Figure 8
shows the clustering coefficient of the cohesive subgraphs
detected using different methods on different data. We exclude
the results of k-clique because the clustering coefficient is
always 1. Although there are some variations of the results,
we can, in general, conclude that k-truss is better than the
k-DBSCAN, which is better than the k-core method. It is
also worth noting that in many results when it comes to
the cohesive subgraphs of large k (approximately k > 10),
subgraphs detected by the k-DBSCAN and k-core algorithm
have very stable clustering coefficients, which might indicate
some specific and stable graph patterns detected by these
algorithms when k is large.

IV. CONCLUSION

In this paper, we have designed a Mapreduce based Knox
test algorithm to help to prove the existence of a near-repeat
effect on big data. We explore to identify efficient algorithms to
derive near-repeat event chains. By representing crime events
into a graph enabled by R-tree indexing, the near repeat crime
chains can be derived through cohesive subgraph analysis. Four
different cohesive subgraph analysis methods are implemented
using AWS resources and compared concerning time and
quality. The proposed solution has never been applied in the
prior works on crime analysis and will have a broader impact
on this research front in the future. However, there are still
potential improvements to be made.

To begin with, we should perform the Knox test using

6Copyright (c) IARIA, 2020. ISBN: 978-1-61208-762-7

GEOProcessing 2020 : The Twelfth International Conference on Advanced Geographic Information Systems, Applications, and Services

(a) NY BUR (b) DC BUR (c) CHI BUR

(d) NY ROB (e) DC ROB (f) CHI ROB

(g) NY TFT (h) DC TFT (i) CHI TFT

Figure 8. The clustering coefficient of cohesive subgraphs detected on different data (the x-axis is k, and the y-axis is the cluster coefficient value).

7Copyright (c) IARIA, 2020. ISBN: 978-1-61208-762-7

GEOProcessing 2020 : The Twelfth International Conference on Advanced Geographic Information Systems, Applications, and Services

event chain numbers such that we will be able to know
whether the near-repeat effect also exists in the crime clusters.
Meanwhile, we have noticed that there are the sheer amount
of duplicated events in the real-world data, while the tightness
of relationships between each event pair is not the same. How
to handle these conditions in the sense of weighted vertex and
edges is a challenging theoretical problem. Besides, when it
comes to the larger amount of data, for example, to handle
the online crime events, the data size will be much larger
than what we process now. Hence, a parallel event chain
detection algorithm is also needed. Since the crime events are
adding each day, how to dynamically detecting event chains
incrementally becomes an issue theoretically and practically.
Last but not least, the near-repeat effect is not only existed
in crime analysis but also existed in many areas such as
transportation, how to utilize our method in other areas is a
fascinating open problem.

REFERENCES

[1] “City of Chicago Data Portal,” [retrieved: 02/2020]. [Online].
Available: https:// data.cityofchicago.org/ Public-Safety/Crimes-2001-
to-present /ijzp-q8t2/data

[2] “District of Columbia Open Data,” [retrieved: 02/2020]. [Online]. Avail-
able: http:// opendata.dc.gov/ datasets?q=crime&sort by=relevance

[3] “Historical New York City Crime Data,” [retrieved: 02/2020]. [Online].
Available: http:// www.nyc.gov/html/nypd/html/ analysis and planning/
historical nyc crime data.shtml

[4] E. Amazon, “Amazon web services,” Available in: http://aws. amazon.
com/es/ec2/(November 2012), 2015.

[5] V. Batagelj and M. Zaversnik, “An o (m) algorithm for cores decom-
position of networks,” arXiv preprint cs/0310049, 2003.

[6] D. Birant and A. Kut, “St-dbscan: An algorithm for clustering spatial–
temporal data,” Data & Knowledge Engineering, vol. 60, no. 1, pp.
208–221, 2007.

[7] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo, “The
maximum clique problem,” in Handbook of combinatorial optimization.
Springer, 1999, pp. 1–74.

[8] M. F. Buchroithner and R. Pfahlbusch, “Geodetic grids in authoritative
maps–new findings about the origin of the utm grid,” Cartography and
Geographic Information Science, pp. 1–15, 2016.

[9] J. Cohen, “Trusses: Cohesive subgraphs for social network analysis,”
National Security Agency Technical Report, p. 16, 2008.

[10] T. H. Cormen, Introduction to algorithms. MIT press, 2009.
[11] J. Gan and Y. Tao, “Dbscan revisited: Mis-claim, un-fixability, and ap-

proximation,” in Proceedings of the 2015 ACM SIGMOD international
conference on management of data, 2015, pp. 519–530.

[12] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in Proceedings of the 1984 ACM SIGMOD international conference on
Management of data, 1984, pp. 47–57.

[13] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying k-
truss community in large and dynamic graphs,” in Proceedings of the
2014 ACM SIGMOD international conference on Management of data.
ACM, 2014, pp. 1311–1322.

[14] X. Huang, W. Lu, and L. V. Lakshmanan, “Truss decomposition of
probabilistic graphs: Semantics and algorithms,” in Proceedings of the
2016 International Conference on Management of Data, 2016, pp. 77–
90.

[15] J. Konc and D. Janezic, “An improved branch and bound algorithm for
the maximum clique problem,” MATCH Communications in Mathemat-
ical and in Computer Chemistry, vol. 58, no. 3, p. 5, 2007.

[16] J. H. Ratcliffe and G. F. Rengert, “Near-repeat patterns in philadelphia
shootings,” Security Journal, vol. 21, no. 1-2, pp. 58–76, 2008.

[17] Y. Saad and K. SPARS, “A basic tool kit for sparse matrix computa-
tions,” RIACS, NA SA Ames Research Center, TR90-20, Moffet Field,
CA, 1990.

[18] N. Satish et al., “Navigating the maze of graph analytics frameworks
using massive graph datasets,” in Proceedings of the 2014 ACM
SIGMOD international conference on Management of data, 2014, pp.
979–990.

[19] M. B. Short, M. R. Dorsogna, P. Brantingham, and G. E. Tita, “Mea-
suring and modeling repeat and near-repeat burglary effects,” Journal
of Quantitative Criminology, vol. 25, no. 3, pp. 325–339, 2009.

[20] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, Boost Graph Library: User
Guide and Reference Manual, The. Pearson Education, 2001.

[21] M. Townsley, “Near repeat burglary chains: describing the physical and
network properties of a network of close burglary pairs,” in Crime Hot
Spots: behavioral, computation, and mathematical models symposium,
vol. 1, no. 31, 2007, p. 2007.

[22] M. Townsley, R. Homel, and J. Chaseling, “Infectious burglaries. a test
of the near repeat hypothesis,” British Journal of Criminology, vol. 43,
no. 3, pp. 615–633, 2003.

[23] J. Wang and J. Cheng, “Truss decomposition in massive networks,”
Proceedings of the VLDB Endowment, vol. 5, no. 9, pp. 812–823, 2012.

[24] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-
worldnetworks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.

[25] W. Wells, L. Wu, and X. Ye, “Patterns of near-repeat gun assaults
in houston,” Journal of Research in Crime and Delinquency, p.
0022427810397946, 2011.

[26] T. White, “Hadoop: The definitive guide,” Oreilly Media Inc Graven-
stein Highway North, vol. 215, no. 11, pp. 1 – 4, 2010.

8Copyright (c) IARIA, 2020. ISBN: 978-1-61208-762-7

GEOProcessing 2020 : The Twelfth International Conference on Advanced Geographic Information Systems, Applications, and Services

