
<script>
var zips={
 type: 'FeatureCollection',
 features: [
 {type:'Feature',
 properties:{Name:'70501',population:30867},
 geometry:{
 type:'Point',
 coordinates:[- 92.00959,30.2334]
 }},
 …
]
};
</script>

Figure 3. GeoJSON object to hold zip code data.

<div id='map'></div>

<script>
mapboxgl.accessToken = 'token from mapbox.com';
var map = new mapboxgl.Map({
 container: 'map',
 style: 'mapbox://styles/mapbox/streets-v9',
 center: [-92.02, 30.22], // starting position
 zoom: 7 // starting zoom level
});
</script>

Figure 1. HTML and JavaScript for displaying a map.

Geospatial Web Portal for Regional Evacuation Planning

Chee-Hung Henry Chu
Informatics Research Institute

University of Louisiana at Lafayette
Lafayette, Louisiana, USA
Email: chu@louisiana.edu

Ramesh Kolluru
School of Computing and Informatics
University of Louisiana at Lafayette

Lafayette, Louisiana, USA
Email: kolluru@louisiana.edu

Abstract— Evacuation of a regional population is often
necessary when a disaster, such as wildfire or coastal flooding,
is in the forecast. We build a map-based web portal for the
planning of an evacuation of a region. A user marks a polygon
on the map to indicate the extent of the region that will be
evacuated. The population affected and the home value that
will be impacted is calculated. The system then assigns local
communities to different shelters. The evacuation plan for each
local community in the region is then displayed. Underpinning
the web portal is a data structure organized geographically by
the U.S. postal service zip code that contains the population
and a home value index. The implementation uses the Mapbox
GL JS library.

Keywords- Evacuation planning; geospatial web portal.

I. INTRODUCTION
When a major disaster due to a natural event or other

causes or an emergency is imminent, it is useful to have an
approximate estimate of the preliminary damage assessment
and to have an evacuation plan [1-4]. In this paper, we
present a web tool that assist in these two tasks.

There are different platforms to develop map-based web
portals. Google Maps allow a user to display maps as images
[5]. It supports JavaScript (JS) code to interact with users.
Mapbox is similarly a geospatial platform. Mapbox GL is a
set of libraries for different deployment platforms [6].
Mapbox GL JS is the library for Web applications. A
JavaScript library for spatial analysis that works with
Mapbox GL JS on the browser is turf.js [7]. These
technology, when coupled with traditional map creation
considerations, can bring cartography to a variety of devices
[8]

A map is displayed using the Mapbox platform as an
HTML file [3]. Figure 1 shows the HyperText Markup
Language (HTML) code segment and the JavaScript code to
display a map (Figure 2).

Our example tool operates at the level of local
communities. We use the U.S. postal service zip code as the
basic geographic unit. There are 508 zip codes in Louisiana
that have inhabitants (vs. zip codes that are business or post
office box addresses). We have the location (latitude,
longitude) and population of each zip code. In Mapbox GL
JS, data are organized using the GeoJSON format [9]. The
set of all zip codes are collected in a FeatureCollection
(Figure 3), which is an object using the JavaScript Object
Notation (JSON). The features in the collection is collected

as an array keyed by ‘features’. Each zip code is represented
as a point with the coordinates, and with “Name” and
“Population” as properties. The FeatureCollection is
displayed as an added layer of each zip code as a circle
(Figure 4).

Figure 2. Map displayed based on code in Figure 1.

69Copyright (c) IARIA, 2019. ISBN: 978-1-61208-687-3

GEOProcessing 2019 : The Eleventh International Conference on Advanced Geographic Information Systems, Applications, and Services

// plot zip points
map.on('load', function() {
 map.addLayer({
 id: 'zips',
 type: 'symbol',
 source: {
 type: 'geojson',
 data: zips
 },
 layout: {
 'icon-image': 'circle-11'
 },
 paint: {}
 });
});

Figure 4. JavaScript code to display the zip code nodes as a new
layer.

The rest of the paper is organized as follows. In Section
II, we describe the sources of the data sets that we use. In
Section III, we describe the implementation as a client
(browser)-side tool using the JavaScript programming
language. In Section IV, we describe the implementation as a
web application, using processing at the server and client
sides for better performance. We draw our conclusions in
Section V.

II. DATA SOURCES
In this example tool, we would like to know for a given

area, what is the population and what is the estimated home
value. The population data for each zip code are available
from the Census Bureau [10] and other web sites [11].

Getting the home value of a zip code is more challenging,
unless one has access to, e.g., the tax assessor’s data. We use
the Zillow Home Value Index (ZHVI) [12], which as a home
value index is an approximation to the median home value in
a locality. To obtain the total of home values, we need to
estimate the number of homes in a zip code. Since on
average there are 2.8 persons in a U.S. household, we
estimate the number of homes to be occupied by an average
household of 2.8 persons, so that the total value V is given by

V = Z × P Ph (1)

where Z is the ZHVI for a zip code area, P is the total
population in the zip code area, and Ph is the average
household size, set to 2.8 in our examples.

In order to determine the evacuation plan, we need a
number of shelters. We set the number of shelters to 3 and
locate them in Houston, Little Rock, and Jackson,
corresponding to the west, north, and east. Considering the
capacity of shelters, Houston and Jackson would have larger
ones than Little Rock. We note that in practice, planning
requires more local analysis for more precise decisions.
Thus, decisions about choice of shelters as well as
assignment of shelters form the basis of network analyses.

III. IMPLEMENTATION OF CLIENT-SIDE ONLY TOOL

A. Impacted Population and Home Value Estimate
We use the Mapbox GL JS tool to enable the user to

draw a polygon (Figure 5). A function updateArea() is called

when the drawn object is created, deleted, or updated. When
a polygon is created, the operations we want to do are:

1. determine the enclosed area;
2. determine which of the zip codes are included;
3. determine the population of the included zip

codes;
4. determine the home values of the included zip

codes.
The function updateArea() calculates these and reports them
to the web page.

The @turf/turf library makes these spatial analysis steps
simpler. Step (1) is accomplished by the turf.area(data) call,
where data is the drawn FeatureCollection object. To
perform Step (2), we use the turf.pointsWithinPolygon()
function, which takes a FeatureCollection (the zip codes in
our example) and a polygon. It returns a FeatureCollection
containing all of the points that the polygon contains. The
calculations for steps (3) and (4) are straightforward.

An example output is shown in Figure 6. Only the
enclosed zip codes are displayed. The information for (1),
(3), and (4) are shown inside a box on the lower left of the
browser.

var draw = new MapboxDraw({
 displayControlsDefault: false,
 controls: {
 polygon: true, // draw polygon
 trash: true
 }
});

map.addControl(draw); // tool control panel
map.on('draw.create', updateArea);

Figure 5. JavaScript code to add the drawing tool to mark a polygon.

Figure 6. Map showing the zip codes within the drawn polygon (shaded).

70Copyright (c) IARIA, 2019. ISBN: 978-1-61208-687-3

GEOProcessing 2019 : The Eleventh International Conference on Advanced Geographic Information Systems, Applications, and Services

B. Evacuation Planning
Given a set of zip code points, each with a population

that should be evacuated. Given another set of shelter points,
each with a capacity for handing evacuees. The distance
between the zip code points and the shelter points and the
roadway capacity between them together form the cost of
transporting the evacuees to a shelter. As such, the problem
can be set up as a classic transportation problem and an
optimal solution using linear programming is possible. It,
however, requires computational resources when the number
of zip codes is large for a client-side implementation.

We might consider a heuristic solution because of the
relatively similar costs due to the proximity of many of the
zip codes to each other, to accommodate the limited
computational resources in a client-side tool implementation.
For instance, we could use a nearest neighbor approach to
assign a shelter to a zip code. This is too simplistic, however,
since the more capacious shelters in Houston are further
away than Jackson for many zip codes.

We propose a compromise solution between ease of
calculation and realistic performance. We map the bounding
boxes of the shelters and the impacted zip codes. We would
like to “embed” the shelters inside the polygon and then use
the nearest assignment method. For each shelter, after using
bilinear scaling to map it to the bounding box of the
impacted zip codes, we use a scale factor to bring it to the
interior of the bounding box. The more capacious the shelter
is, the smaller the scale factor we assign, so that the shelter
will be closer to the center of the zip code bounding box.

The turf library functions bbox() and nearest()
respectively perform the bounding box and nearest point
calculations.

An example is shown in Figure 7, where the enclosed zip
code points are color coded, depending on which shelter it is
assigned to. Two other examples (Figure 8 and Figure 9)
with different shapes and at different locations are shown to
illustrate that the shelter assignments are reasonably robust.
In these examples, nodes marked in gold are assigned to the
shelter in the west (“Houston”); those in dark blue are
assigned to the shelter in the north (“Little Rock”); and the

rest are assigned to the northeast (“Jackson”).

IV. WEB APPLICATION IMPLEMENTATION
The foregoing discussion assumes the portal does all of the
processing on the client-side, using the rich functionalities
enabled by the @turf.turf library. An advantage of having a
client-side web page is that there is minimal communication
between the browser and the server. The disadvantage is
that all the data have to be loaded, whether they are needed
or not. As an example, the data associated with all 508 zip
codes in the State of Louisiana have to be pre-loaded,
resulting in an HTML file that is 73K bytes. A more serious
challenge to client-side processing is that some more
sophisticated shelter assignment algorithms may not be able
to be ported to the client-side. An example is an algorithm
that requires linear programming optimization.

We refactored our application to a web application that
uses the node.js framework. We divide the data, the
presentation, and logic control in the model-view-controller

Figure 9. The zip codes in the southeastern corner of the state.

Figure 7. Map showing the zip codes color coded to indicate which
shelter the population should head to.

Figure 8. The zip codes in the northwestern corner of the state.

71Copyright (c) IARIA, 2019. ISBN: 978-1-61208-687-3

GEOProcessing 2019 : The Eleventh International Conference on Advanced Geographic Information Systems, Applications, and Services

pattern. The zip code (population, home value, location)
data and the shelter data are stored on the server side. The
map display and the polygon drawing interface are shown
on the browser to interact with the user. Once the user has
drawn the polygon on the map, the polygon data are sent to
the server as a geoJSON “featureCollection” object. The
server app contains the logic to find enclosed area, the zip
codes enclosed, etc., i.e. the steps referenced in the
updateArea() function as mentioned in III.A. The output is
then generated as a map drawing HTML file and sent to the
browser for the user.

The key challenge is to send the polygon data from the
client to the server. Because MapBoxDraw() returns a
geoJSON object containing the polygon coordinates, a
straightforward way to send it to the server is to use an
XMLHttpRequest(), as shown in Figure 10. Upon creation
of a polygon, updateArea() is executed and the polygon
geoJSON is sent to the server. The difference between the
implementation here and the one in Section III is that
updateArea() now does not do any further processing. On
the server side, the app receives the JSON data as the
request body (Figure 12); other processing steps are similar
to the discussion in III.A by using the @turf.turf node.js
module (Figure 11).

V. CONCLUSIONS
Web-based map tools open the geospatial information

display and manipulation door to more data scientists. We

demonstrate an example tool that determines the estimates of
population affected, impacted home values, and assigned
shelter locations based on a user marking the potential
disaster area. We further refactor the HTML and client side
JavaScript code to a JavaScript node.js server side app.

Ongoing work includes taking into account the impacted
public facilities, the road capacity and fuel availability on the
evacuation paths, size and locations of temporary
populations such as tourists and temporary workers.

ACKNOWLEDGMENT
The authors gratefully acknowledge their colleague Dr.

Michael Dunaway, Director of the National Incident
Management Systems and Advanced Technologies Institute,
for valuable discussions on disaster management. They
further thank the anonymous reviewers whose comments
help us to improve the manuscript.

REFERENCES

[1] S. M. Rahat Rahman, M. S. Mamun, M. A. Basit, and M. M.
Rahman, “Evacuation plan for the solution to disaster
management for the coastal region of Bangladesh: A review,”
International Conference on Engineering Research,
Innovation and Education, 2017, Sylhet, Bangladesh, 6 pages.

[2] R. Alsnih and P. Stopher, “A review of the procedures
associated with devising emergency evacuation plans,”
Transportation Research Record, vol. 1865, no. 1, pp. 89-97,
2004.

[3] G. Ayfadopoulou, I. Stamos, E. Mitsakis, and J.M.S. Grau,
“Dynamic traffic assignment based evacuation planning for
CBD areas,” Procedia – Social Behavioral Sciences, vol. 48,
pp. 1078-1087, 2012.

[4] G. Li, L. Zhang, and Z. Wang, “Optimization and planning of
emergency evacuation routes considering traffic control,”
Scientific World Journal, 15 pages, 2014.

[5] Google Maps Platform, https://cloud.google.com/maps-
platform/maps/ [Accessed: January 2019]

[6] Application programming interface specifications of the
Mapbox GL JS library, https://www.mapbox.com/mapbox-gl-
js/api/ [Accessed: January 2019]

[7] Turf.js: A JavaScript library for spatial and statistical analysis,
https://www.mapbox.com/help/analysis-with-turf/ [Accessed:
January 2019]

[8] I. Muelenhaus, Web Cartography: Map Design for Interactive
and Mobile Devices, CRC Press, Boca Raton, Fla., 2014.

[9] The GeoJSON format for geospatial data interchange,
https://tools.ietf.org/html/rfc7946 [Accessed: January 2019]

[10] ZIP code tabulation areas,
https://www.census.gov/geo/reference/zctas.html [Accessed:
January 2019]

[11] United States population by ZIP code,
https://www.kaggle.com/census/us-population-by-zip-code
[Accessed: January 2019]

[12] Zillow home value index: Methodology,
https://www.zillow.com/research/zhvi-methodology-6032/
[Created: January 2014; Accessed: November 2018]

function updateArea() {
 var polygon = draw.getAll();
 // send to server
 var xhttp = new XMLHttpRequest();
 xhttp.open('POST', {{{url}}} , true);
 xhttp.setRequestHeader('Content-Type',
'application/json');
 xhttp.send(JSON.stringify(polygon));

 return;
}

Figure 10. JavaScript code to send the drawn polygon data to the
server from the client-side.

// holds polygon data from browser
var polygon={};

app.post('/', jsonParser, function(req,res){
 polygon = req.body;
 res.send('received data');
});

Figure 11. JavaScript code in the server app that receives the polygon
geoJSON data and holds the data as a geoJSON (“polygon”) to be
passed to other routes.

72Copyright (c) IARIA, 2019. ISBN: 978-1-61208-687-3

GEOProcessing 2019 : The Eleventh International Conference on Advanced Geographic Information Systems, Applications, and Services

