
A Universal Large-Scale Trajectory Indexing for Cloud-Based Moving Object

Applications

Omar Alqahtani
Department of Computer Science and Engineering

University of Colorado Denver
Denver, USA

e-mail: omar.alqahtani@ucdenver.edu

Tom Altman
Department of Computer Science and Engineering

University of Colorado Denver
Denver, USA

e-mail: tom.altman@ucdenver.edu

Abstract—The tremendous upsurge in low-cost geospatial chipsets
brings out huge volumes of moving object trajectories, which
catalyze a wide range of trajectory-driven applications (e.g.,
sustainable cities, smart transportation, green routing, intelli-
gent homeland security, etc.). Consequently, there has been an
emergence of more divergent queries and increased processing
complexity. Instead of developing a query-specific approach for
limited applications, we propose a Universal Moving Object
Index, a flexible index that is capable of fine-tuning based
on the application needs, without any structural modification.
Also, we introduce a Light-Weight Hybrid Index for heavily-
loaded memory. Besides the ability to support trajectory-driven
applications universally, both approaches are designed to be easily
adopted by cloud-compatible MapReduce platforms. An extensive
empirical study is conducted to validate our approaches and to
highlight some critical challenges.

Keywords–big data; moving objects; distribution algorithms;
spatial indexing; Apache Spark.

I. INTRODUCTION

The evolution of Global Positioning System (GPS) with the
growth of embedded systems and electronic gadgets generate
massive numbers of moving object trajectories. Most of our
daily devices (e.g., smartphones, wearable devices, navigation
systems, tablets, etc.) are capable of recording our movements.
Also, the rise in modern transportation services (e.g., rideshar-
ing, electric-bike renting, car sharing, etc.) has increased the
number of these trajectories. Moving object trajectories are
used in many applications over a wide range of domains.
Transportation services and smart navigation heavily depend
on both historical and near-future trajectories, e.g., analyzing a
hotspot area and routing based on specific preferences, such as
green routing. Historical trajectory is also playing a significant
role in planning smart cities by analyzing many trajectory-
driven factors related to environmental or economic issues.

Consequently, advanced techniques and large-scale com-
puting platforms have become a necessity to cope with stor-
ing and processing vast volumes of big spatial data [1].
MapReduce is an exemplary solution that provides an effective
distributed computation framework used by many large-scale
data processing platforms, such as Apache Spark [2]. Spark
is a general-purpose in-memory computing platform, which
is supported by most of the cloud computing systems (e.g.,
Amazon AWS, Google Cloud Engine, IBM Cloud, Microsoft
Azure, Cloudera, etc.).

However, the diversity of applications and the adoption
of distributed computation platforms raises new challenges

in trajectory processing. One of the natural characteristics of
trajectory, and spatial data in general, is spatial skewness,
which leads to an imbalance in distribution and computation.
Although imbalance distribution can be unfolded by using
one of the state-of-the-art indexes, which offer a balanced
distribution [3]–[5], the skewness will arise again in the inter-
mediate result of a multistage query. Another skewness form
is computation skewness, which occurs because the selective
queries are most often related to self-skewed space or trajec-
tory. In most cases, computation skewness affects performance
by reducing cluster utilization, i.e., creating hotspots within
each cluster. Moreover, a space-splitting distribution works fine
for simple space-based queries. However, the communication
cost for object-based or sophisticated (multistage) space-based
queries represents a performance bottleneck. One of the critical
challenges is how to take advantage of the spatial and object
localities.

To overcome the aforementioned challenges, we propose
a Universal Moving Object index (UMOi) for in-memory
processing of large-scale historical trajectories. UMOi is a
universal approach that is capable of leveraging two dif-
ferent thoughts of trajectory partitioning (i.e., space-based
and object-based partitioning) to preserve spatial and object
localities together. The goal of UMOi is to satisfy various
query types by providing a variable locality mechanism, which
boosts UMOi ’s flexibility to be suitable for a wide range
of applications. This advantage makes it more appealing for
cloud platforms. Also, we introduce a Light-Weight Hybrid
index (LWHi), which focuses on object-locality more than
spatial-locality during partitioning. LWHi provides an ideal
computation distribution and guarantees a full trajectory-
preservation without losing the advantages of spatial pruning.
LWHi provides a significant performance in heavily-loaded
memory situations, i.e., the main memory is saturated with
data, which helps reduce the overall cloud cost. The main
contributions of this paper are as follows:
• We introduce UMOi that is able to control both spatial

and object localities.
• We also introduce LWHi, which guarantees a full

trajectory-preservation.
• We formalize and analyze different queries, including

continuous spatial queries, and select a representative
query for each query type. Next, we develop efficient
algorithms for query processing.

• We evaluate our work by conducting extensive per-

42Copyright (c) IARIA, 2019. ISBN: 978-1-61208-687-3

GEOProcessing 2019 : The Eleventh International Conference on Advanced Geographic Information Systems, Applications, and Services

formance experiments comparing varies space-based
indexing schemes and reveal the implications of com-
putation skewness, intermediate results skewness, and
communication.

The rest of the paper is organized as follows: the related
work is highlighted in Section II. The structure of the proposed
algorithms is discussed in Section III. The query processing
approaches are detailed in Section IV. An extensive experi-
mental study is presented in Section V, and a conclusion in
Section VI.

II. RELATED WORK

The development and improvement of computing platforms
and the demands of new applications create opportunities to
adopt new techniques and methods for managing and process-
ing moving object trajectories. From the computing platforms
perspective, we classify the prior work into three groups:
centralized systems, parallel databases, and MapReduce-based
systems. However, we first review some of the access methods
and index structures used in most of the related work.

A. Access Methods
R-tree [3] and its variants (e.g., R*-tree [6], R+-tree [7],

etc.) are among the most popular access methods which work
in a hierarchical manner to group objects in a minimum
bounding rectangle. Other types of indexes focus on space-
splitting instead of grouping the objects, such as simple grid,
k-d-tree [4] and its variants (e.g., k-d-B-Tree [8] and Quad tree
[9]). Many versions of the previous structures were adapted for
moving object trajectories, which can be grouped into aug-
mented multi-dimensional indexes and multi-version structure
indexes. Augmented multi-dimensional indexes can be built
using any of the previous indexes, mostly R-trees, with aug-
mentation on the temporal dimension, e.g., spatiotemporal R-
tree and Trajectory-Bundle tree (TB-tree) [5]. Spatiotemporal
R-tree keeps segments of a trajectory close to each other, while
TB-tree ensures that the leaf node only contains segments
belong to the same trajectory, i.e., the whole trajectory can
be retrieved by linking those leaf nodes together. On the other
hand, multi-version indexes, such as Historical R-tree (HR-
tree) [10], use, mostly, R-trees to index each timestamp frame.
Then, the resulting R-trees are also indexed by using a 1-d
index, such as a B-tree. Unchanged nodes from time frame to
time frame do not need to be indexed again. Instead, they will
be linked to the next R-tree.

B. Centralized Systems and Parallel Database
Reference [11] uses centralized architecture to process a

top-k query on activity trajectories, where the points of the
trajectory represent some events such as tweeting or posting
on Facebook. They use a simple grid to partition the space and
some auxiliary indexes to process the events and trajectories.
Also, [12] implements a parallel spatial-temporal database
to manage both network transportation and trajectory and
to support spatiotemporal SQL queries. They use a space-
based index that partitions the data based on a space-splitting
technique. Any trajectory that crosses a partition boundary is
going to be split into sub-trajectories, while any sector of
the transportation network that crosses a partition boundary
is going to be replicated in all of the crossed partitions.

C. MapReduce-Based Contributions
SpatialHadoop [13] is an extension of Hadoop designed to

support spatial data (Point, Line, and Polygon) by including
global and local spatial indexes to speed up spatial query
processing as range query, k-Nearest Neighbors (k-NN), spatial
join, and geometry query [14]. MD-HBase [15] is an extension
of HBase; a non-relational Key-Value database that runs on
top of Hadoop, which only focuses on spatial point types. The
main idea of MD-HBase is to use any multidimensional index
and then linearize it to a single dimensional index via the Z-
order space-filling technique. Hadoop-GIS [16] extends Hive,
a warehouse Hadoop-based database, to process spatial data
by using a grid-based global index and an on-demand local
index. [17] only focuses on processing the nearest neighbor
queries by using a Voronoi-based index. However, none of the
previous systems support trajectories directly. PRADASE [18]
concentrates on processing trajectories, however, it only covers
range queries and trajectory-based queries. It partitions space
and time by using a multilevel grid hash index as a global
index where no segment cross the partition boundary. Another
index is used to hash all segments on all the partitions be-
longing to a single trajectory to speed up the object retrieving
query. Nevertheless, all Hadoop-based contributions inherit the
continuous disk access drawback.

GeoSpark [19] is implemented on-top of Spark, and it is
identical to SpatialHadoop in terms of indexing and querying.
LoctionSpark [20] reduces the impacts of query skewness and
network communication overhead. It tracks query frequencies
to reveal cluster hotspots and cracks them by re-partitioning.
Network communication overhead is reduced by embedded
bloom filter technique in the global index, which helps avoid
unnecessary communication. SpatialLocation [21] is aimed
to process the spatial join through the Spark broadcasting
technique and grid index. However, the trajectories are not
directly supported by the previous contributions. [22] imple-
ments trajectory searching query by using an R-tree as a local
and global index. Also, [23] processes top-k similarity query
(a trajectory-based query) by using a Voronoi-based index for
spatial dimension, where each cell is statically indexed on
temporal dimension. Any trajectory that crosses a partition
boundary is going to be split, and all segments belong to a
trajectory are traced with Trajectory Track Table. SharkDB
[24] indexes trajectory only based on time frames in a column-
oriented architecture to process range query and k-NN.

Generally, most of the prior work focused on static spatial
data (Point, Polygon, and Line), which does not fit moving
object trajectories. On the other hand, the works focusing on
trajectory rely on spatial or temporal distribution, i.e., data dis-
tribution depends on partitioning space and time dimensions.
Most often, the resulting distribution would partially preserve
spatial and object localities.

Locality represents a key performance, and it might affect
the whole system attainments. The nature of a trajectory (i.e.,
as consecutive time-stamped spatial points) creates contra-
dictory domains, which can be seen in spatial locality and
object locality. As a result, some of the previous contributions
optimize their systems to contain this contradiction by focusing
on spatial locality and spatial queries (e.g., range query, k-NN,
etc.) with an object-based auxiliary index, or by narrowing it
down to a particular operator and building an ad-hoc index
for that purpose only. To the best of our knowledge, there is

43Copyright (c) IARIA, 2019. ISBN: 978-1-61208-687-3

GEOProcessing 2019 : The Eleventh International Conference on Advanced Geographic Information Systems, Applications, and Services

Figure 1. Space-based partitioning.

no work that has been conducted on a distributed computation
that would balance the losses and gains of both localities and
cover a large variety of queries.

III. TRAJECTORY INDEXING OVERVIEW

In this section, we present our proposed approaches for
historical trajectories processing. Before that, we will overview
the traditional Space-Based Index (SPI), since it is intensively
used by the related works and represents the baseline in our
experiments. Based on [25], three phases: Partitioning, Global
Index, and Local Index are the most general steps used, but
with some differences. In the partitioning phase, a master node
partitions the space based on flat or hierarchical indexes. Each
partition is assigned to a worker node. When a segment crosses
more than one partition, it is divided into several segments
as illustrated in Figure 1. As shown, Seg<tp1, tp2> will be
placed in partition 2. However, Seg<tp2, tp3> needs to be
split into two segments where Seg<tp2, tp2.1> is assigned to
partition 2 and Seg<tp2.1, tp3> is assigned to partition 4.

The global index is also built by the master node based
on the partitions that are distributed over the worker nodes.
The idea is to speed up query execution by only targeting
the partitions that contain the required trajectories instead of
searching the whole data. A local index is built and managed
by each worker node for each partition to speed up the process
of refinements. Similar to the global index, flat or hierarchical
indexes might be used for the local index. Some related work,
such as [19], use a cost-based model to see if building a local
index is worth it.

There are some drawbacks related to space-based par-
titioning, which increases the performance by pruning the
searching space on some types of queries on centralized
systems. However, applying the same methodology on a dis-
tributed system would result in pruning the searching space,
but it would reduce the cluster utilization (i.e., some cluster
nodes will be idle), especially when using coarse-grained
partitioning. Moreover, since the partitioning is only based
on the spatial and temporal dimensions, processing advanced
multistage queries (e.g., continuous geo-fencing query) will
increase network communication overhead. For example, con-
sider the Continuous Range Query (CRQ) in Figure 2, which
we formally define in Section IV-B. It consists of three range
queries. The final result should contain all trajectories passing
all three ranges. Assuming each cluster node has one partition,
P1 , P2 , and P7 will be idle. The rest will return Trajectory
ids (Tids) of any segment crossing any of the three ranges
to the master node. The master node needs to process them
to find the trajectories pass all the ranges. Processing such
a query results in higher communication, or even worse if it
exceeds the master memory limit. Another side effect is the

Figure 2. Continuous range query with three shaded regions.

reduction in cluster utilization, where some cluster nodes sit
idle. This can be improved by using batch queries technique.
However, that results in more complicated queries and needs
more refinement processing steps to get the final answer, which
negatively influences the response time.

A. LWHi Index
LWHi is a light-weight, efficient trajectory index which

fuses object-based distribution with spatial index to get the
most benefit of them and reduces the impacts of their draw-
backs if they were deployed alone. The key performance
of LWHi is to focus on moving objects instead of spatial
properties in the partitioning phase, as illustrated in Figure 3,
which forces each trajectory to be located on a single partition.
It distributes trajectories based on the Tids. So, T1 and T3 are
settled in partition 1, and T2 and T4 are settled in partition 2.
As a result, LWHi ensures full trajectory-preservation which
results in increasing the moving object’s locality while still
keeping the advantage of pruning the searching space by
employing a local spatial index.

Building LWHi Index: It starts by reading the trajectory
dataset as segments of trajectories, where each segment carries
its own Segment id (Sid) and Tid . Next, LWHi launches a
GroupBy transformation, which will get all the worker nodes
engaged, to group all the segments of one trajectory to reside
on one partition. The grouping is based on a hash function
on the Tids, which is implemented using a Spark Partitioner.
The Partitioner is responsible for returning the Partition Id
through a modular hashing when a Tid and the required
number of partitions are given. At this point, all the trajectories
are distributed among the clusters through the partitions of
the Spark RDD. After that, by launching a MapPartitions
transformation, each worker node will create a local spatial
index, using a Sort-Tile-Recursive packed R-tree (STR-tree)
[26], for its own partitions.

Figure 3. Partitioning and local index of LWHi.

44Copyright (c) IARIA, 2019. ISBN: 978-1-61208-687-3

GEOProcessing 2019 : The Eleventh International Conference on Advanced Geographic Information Systems, Applications, and Services

Figure 4. Partitioning phase in UMOi with pd = 2 and tpn = 6.

B. UMOi Index
The idea of UMOi is to have a flexible index which merges

space-based and object-based partitioning techniques together.
It is capable of balancing both spatial and object localities
by providing a locality preservation mechanism, which gives
the flexibility to satisfy different applications’ demands. The
required preservation degree (pd) can be given as an input.
The range of pd is < 1, 2, · · · , tpn >, where tpn is the target
partitions number (i.e., the required number of partitions to
be distributed on the cluster). Consider the trajectory set in
Figure 4 with pd = 2 and tpn = 6. UMOi will start by
splitting the global space into three spatial groups because
tpn ÷ pd gives the required number of spatial groups. Then,
each group will be hashed into two partitions to generate the
required six partitions as given. The result is a combination
of spatial and object partitioning which cannot provide spatial
locality like SPI, or object locality like LWHi, but it can instead
provide a balance of both localities simultaneously with a pivot
that can be adjusted without changing the index structure.

Both SPI and LWHi are special cases of UMOi. When
pd is set to the maximum value (i.e., pd = tpn), UMOi
does not have a space-split step. This is because the required
number of spatial groups is tpn÷ pd = 1, which is the global
space itself. So, UMOi continues in building the index in the
same manner as LWHi. On the other hand, when pd = 1,
UMOi needs to split the space into tpn spatial groups. Those
groups represent the final partitions, just like SPI. As a result,
UMOi is capable of universally supporting trajectory-driven
applications that depend on space-based or trajectory-based
queries by adjusting pd.

Building UMOi Index: the partitioning phase in UMOi
consists of two steps: space splitting and hashing. Given a
trajectory dataset T on space S, UMOi starts by generating
ST ⊂ T as a sample set which can fit the master node’s
memory. Then, on the master node, it builds a binary skeleton
tree (sk-tree) on ST . This new sk-tree is similar to a k-d-B-tree
in the way it is constructed, but it is only used to represent the
required sub-regions (i.e., the required groups). Even though
it would be sufficient to stop building the sk-tree after having
tpn− pd leaf nodes, UMOi continues until we have tpn leaf

nodes. We will discuss the reason for this later. After that,
UMOi merges the regions of pd leaf nodes to form one group.
Next, each segment ∈ T is inserted in the sk-tree to be tagged
by the correct leaf’s code. In case of having a segment that does
not fit in a leaf’s region, the segment is split into two segments
and then reinserted again. Each segment’s tag, denoted as
Seg Tag , contains on the leaf’s code and its Tid . Finishing
partitioning phase, UMOi constructs a Partitioner, where it is
used through GroupBy transformation to place each segment
to its target partition. Partitioner is essential in distribution and
query processing. Given a Seg Tag , Partitioner first locates
the proper spatial group. Then, using a hashing function on
Tid based on pd and a particular group, it returns the required
Partition Id .

UMOi continues building the sk-tree to the end, i.e.,
without stopping at tpn − pp leaf nodes, for two reasons.
UMOi essentially is used as a proof-of-concept and needs to
be dynamic for changing pd without reconstructing the sk-tree.
More importantly, during the experimental process, it is critical
to have a consistent space-split among SPI and UMOis, where
UMOis refer to different UMOi versions based on the pd
values. The different statistical readings of the empirical study
require consistency to isolate the impact of the dissimilarity in
space-splitting, so they only show the influences of different
pd values.

Tracking trajectory has been addressed in the literature,
such as [18] [23] [27]. UMOi follows the same notion by
building a Trajectory Tracking Table (TTT) as a hash table.
Each entry in TTT consists of a Tid , as a key, and a list
of Partition Ids. It is mainly used when there is a need
to retrieve a trajectory (i.e., Lookup query). After tagging
the segments, UMOi can build TTT by launching a Job to
locally reduce segments on their Tid for each partition and
to combine it with the corresponding Partition Id . Then, the
result is globally reduced on Tid to create a list of different
Partition Ids for each trajectory.

IV. QUERY PROCESSING

In this section, we first discuss different query types. After
that, we explain how LWHi and UMOi process different
queries.

Our focus is on a query that is formed to ask about
the interaction or the relationship between a trajectory and a
defined place in the space or between a trajectory and other

45Copyright (c) IARIA, 2019. ISBN: 978-1-61208-687-3

GEOProcessing 2019 : The Eleventh International Conference on Advanced Geographic Information Systems, Applications, and Services

trajectories. We can classify the query into two categories:
space-based query and trajectory-based query, as seen in Table
I. For simplicity, we do not include temporal queries at this
early stage because we only need to focus on space and object
(with their related quires, localities, and partitioning) without
increasing complexity by adding time.

Space-based query can be classified into: Simple, Contin-
uous and Constraint query. Simple spatial query emphasizes
the interaction or relationship between a trajectory and a
defined spatial type such as region, point or line. The best
example of a simple spatial query is the range query, which
has been discussed in most previous studies. Continuous spatial
query represents a sequence of simple queries. It comes as
a result of the nature of a trajectory and the demands of
modern applications by requiring queries that identify certain
trajectories based on their movements. For example, agencies
might be interested to know who might have been in three sus-
pected areas which can be directly addressed by a continuous
range query, as seen in Figure 2. Another example involving
continuous spatial query would be a query that is used to
understand traffic flow by showing long-distance commuters,
short-distance commuters, and visitors in one query. The third
group in space-based query, called constraint query, represents
the spatial queries that are constrained by a defined function
(e.g., Euclidean distance, Counting, Maximum, etc.), such as
k-NN or top-k.

The second category, trajectory-based query, concentrates
on the interaction and relationship between and among tra-
jectories. We divide this group, based on the nature of the
queries, into three types: Similarity, Aggregation and Lookup
queries as seen in Table I. The first query type, similarity query,
depends on a well-defined similarity function, which is mostly
used in trajectory data mining, as in [28]–[30]. Aggregation
query employs aggregation functions to provide statistical
information about trajectories (e.g., longest trajectory) or their
different properties (e.g., average speed). Lookup query is the
simplest, but it is still an essential query that basically retrieves
a particular trajectory by giving its Tid .

In our framework, we concentrate on both space-based and
trajectory-based queries to reveal the compliance level of the
proposed approaches in different scenarios. A representative
query is selected from each query type, except similarity and
constraint, since they are structurally similar to the other types.
The selected queries are as follows: Range Query, Continuous
Range Query, Longest Trajectory, and Lookup Query. Next,
we discuss each selected query and how it is processed by
UMOi and LWHi.

A. Range Query
Given a range query RQ =< Pbl ,Pur >, where Pbl is the

bottom left point of the spatial range and Pur is the upper right
point, UMOi first determines the involved Partition Ids. It
traverses the sk-tree to find the required groups that spatially
overlap with RQ space and then returns all the engaged
groups’ partitions. Next, a Spark Job is initialized that targets
only the required partitions (Spark RDD partitions) based on
a given hash set of Partition Ids. During the Job execution,
the engaged worker node traverses a partition’s local index tree
(STR-tree) based on RQ space. SPI follows the same steps,
with a minor difference when traversing sk-tree. It returns
the engaged Partition Ids directly, since it does not have

Algorithm 1: UMOi : Processing k -CRQ
Input: k -CRQ
Output: RDD < Tid >

1 Pid[k]{} ← φ
2 for i← 1 to k do
3 Pid[i]← SK -Tree.traverse(RQi .space)

4 Transformation MapPartitions(k -CRQ , P id)
5 R[k][]← φ
6 for i← 1 to k do
7 if i ∈ Pid[i] then
8 R[i]← STR-Tree.intersect(RQi .space)

/* It returns all T ids intersect
with RQi space */

9 return R as list of 2-tuple < i, T id >

/* By now, all participated worker nodes
finished MapPartitions and returned R
lists will be collected in
RDD < RQ_id ,Tid > */

10 Transformation GroupBy(RDD < RQ id ,Tid >)
11 return Tid as Key

/* The result is formed as a
PairRDD < Tid , [RQ_ids] > */

12 Transformation Filter(k,PairRDD < Tid , [RQ ids] >)
/* Eliminate duplication [RQ_ids] */

13 Set U ← [RQ ids]
14 if U .size = k then
15 return True
16 else
17 return False

18 return RDD < Tid >

the groups and their hashed partitions concept. Alternatively,
LWHi starts a Spark Job directly on all Partition Ids. Each
worker node traverses its partitions’ STR-trees based on the
given RQ space. The result of all the approaches comes as a
new RDD, which only contains the segments covered by RQ .

B. Continuous Range Query
When receiving a k -CRQ =< RQ1 ,RQ2 , · · · ,RQk > on

a trajectory set T , the algorithm needs to return any Traj ∈ T
s.t. Trajspace ∩ RQspace ∀ RQ ∈ CRQ . From Algorithm 1,
UMOi traverses the sk-tree for each RQi , where 1 ≤ i ≤ k,
to determine the required Partition Ids. It returns: an overall
set and an array of sets. The overall set contains all the
Partition Ids required for all RQs of CRQ . It is used
when initializing the Spark Job. The second returned item,
an array of sets, contains the required Partition Ids as an
individual set for each RQi . It is used to refine unnecessary
STR-tree traversal, as shown in line 7. In line 4, UMOi
identifies any trajectory that intersects with any RQ by using a
transformation MapPartitions, which is running in parallel by
the worker nodes on the given RDD partitions, known as map
phase. An array of lists is used by each engaged worker node
for each RDD partition to collect the Tids intersect with a RQ
and the corresponding RQ id . The results, coming as lists of
2-tuple of RQ id and Tid , are then reduced in a new RDD,
known as the reduce phase. The new RDD, called RDDmap,
includes any trajectory overlap with at least one RQi . Next, we
group all the elements in RDDmap by the Tids, as shown in

46Copyright (c) IARIA, 2019. ISBN: 978-1-61208-687-3

GEOProcessing 2019 : The Eleventh International Conference on Advanced Geographic Information Systems, Applications, and Services

Algorithm 2: LWHi : Processing k -CRQ
Input: k -CRQ
Output: RDD < Tid >

1 Transformation MapPartitions(k -CRQ)
2 L[]← φ
3 R[k]{ } ← φ
4 for i← 1 to k do
5 R[i]← STR-Tree.intersect(RQi .space)

/* It returns all T ids intersect
with RQi space */

6 foreach T id ∈ R[1] do
7 Flag ← True
8 for i← 2 to k do
9 if T id /∈ R[i] then

10 Flag ← False
11 Break

12 if Flag = True then
13 L← push(T id)

14 return L

/* The result is formed as a RDD < Tid >
from returned Ls */

15 return RDD < Tid >

line 10. After that, it filters any Tid that does not intersect with
all RQ ∈ CRQ . SPI, again, follows the same steps exactly
except in the sk-tree as mentioned before.

Algorithm 2 shows how LWHi processes k -CRQ . The
master node runs a transformation MapPartitions directly on
all the worker nodes for all partitions. Through MapParti-
tons, each worker node traverses its local STR-tree, for every
RQ ∈ CRQ . The result is an array of hash sets that contains
overlapped Tids, as shown in line 5. It uses a hash set to
eliminate duplication among trajectories of a particular RQi

and to speed up the searching in the next step. Then, to find
all Tids that overlap with k -CRQ , each Tid from the first
set (i.e., Tids ∩RQ1 .space) is checked for whether it belongs
to the other sets. If it does not belong to at least one set, the
process on this Tid is stopped and cannot be included in the
final result. The returned lists are then formed in an RDD.

In LWHi, all intermediate processing is carried out in
parallel by the worker nodes locally, without the need to
process them globally by launching another Job and causing a
costly shuffle. This is because LWHi guarantees full trajectory
preservation. On the other hand, UMOi and SPI need to
conduct a global refinement on the intermediate results (i.e.,
GroupBy and Filter in Algorithm 1, lines 10 and 12) which
affects the overall performance in many respects, such as com-
munication, cluster utilization, and GC scan. The communica-
tion between nodes is obviously going to increase, especially
during GroupBy. Also, the distribution of RDD partitions after
executing GroupBy transformation is skewed because of the
keys’ original places (Tids), which were collected based on
k -CRQ . The degree varies based on the number of involved
partitions in solving k -CRQ , so SPI would have the worst
case. The intermediate result skewness affects any further
computations (e.g., Filter, Count, etc.) and, therefore, reduces
the cluster utilization. In some cases, the skewness with the
previous consecutive computation on certain worker nodes
could cause cumulative stress and a GC’s full scan at the end.

Algorithm 3: UMOi : Processing LTQ

Input: LTQ
Output: TidLT

1 Transformation MapPartitions(LTQ)
2 D{ , } ← φ /* Dictionary */
3 forall T id ∈ Parition do
4 T idLength ← Compute.Length(T id)
5 if D contains T id then
6 D ← push(T id,OldValue + T idlength)
7 else
8 D ← push(T id, T idlength)

9 return D as a list of 2-tuple

/* Result is pairRDD < Tid ,Tidlength > */
10 Define Sum(Tidlength1 ,Tidlength2)
11 return T idlength1 + T idlength2

12 Transformation Aggregate(pairRDD < Tid ,Tidlength >)
13 apply(Sum) /* Apply Sum function on

elements have the same key T id */
14

15 return Max(pairRDD < Tid ,Tidlength >)

Algorithm 4: LWHi : Processing LTQ

Input: LTQ
Output: TidLT

1 Transformation MapPartitions(LTQ)
2 D{ , } ← φ /* Dictionary */
3 forall T id ∈ Parition do
4 T idLength ← Compute.Length(T id)
5 if D contains T id then
6 D ← push(T id,OldValue + T idlength)
7 else
8 D ← push(T id, T idlength)

9 return D as a list of 2-tuple

/* Result is pairRDD < Tid ,Tidlength > */
10 return Max(pairRDD < Tid ,Tidlength >)

However, the overall influence fluctuates based on the different
pd values, which reflect the trajectory’s preservation degree.

C. Longest Trajectory Query
This query belongs to the aggregation query type, which

depends on a well-defined aggregation function. Given a
longest trajectory query LTQ on T , it needs a Tid s.t.
Tidlength ≥ ∀ Tidlength ∈ T . Algorithm 3 shows how UMOi
processes LTQ . It first executes a local reduction, lines 1–8,
and then global reduction by using Aggregation transformation,
line 11. Aggregation transformation reduces the elements of
pairRDD on their Tid keys by using an aggregation function,
as in line 9, and causes a data shuffle. The element with the
maximum value is then returned as the longest trajectory. The
same steps are used in SPI. LWHi, as shown in Algorithm 4,
does not require a global reduction since the whole trajectory
resides in one partition.

Aggregation transformation actually does a local aggre-
gation on partitions and then a global aggregation on the
results. However, in our case, we need to compute the length
of different sub-trajectories, and our partitions are built in a
way that is hard for a passed function to deal with. So, we
implement the first part in both algorithms to compute the

47Copyright (c) IARIA, 2019. ISBN: 978-1-61208-687-3

GEOProcessing 2019 : The Eleventh International Conference on Advanced Geographic Information Systems, Applications, and Services

Figure 5. Trajectory dataset.

length of the trajectory and process the local aggregation at
the same time.

D. Lookup Query
UMOi uses TTT to identify the required partitions. Then,

it uses a MapPartitions transformation to retrieve segments
of the given Tid . The same procedure is followed in SPI.
In LWHi, identifying the required partition is fairly simple. It
uses the same hash function used by the Partitioner to find the
required Partition Id . Then, similar to UMOi, it retrieves the
segments of the given Tid from the required partition.

V. EXPERIMENTAL STUDY

In this section, we discuss the evaluation of our proposed
approaches LWHi and UMOi and compare them with SPI. We
present an assessment for trajectory skewness and its impact on
spatial and object localities. From the performance perspective,
we conduct extensive experiments to evaluate different query
types.

A. Experiment Setting
Our implementation uses Apache Spark 2.2.0 with Java 1.8.

We adopt Java ParallelOldGC as a garbage collector and Kryo
for serialization. The experiments are conducted on AWS EMR
5.9.0. We use six m3.xlarge instances, where each instance
provides 4 vCPU (Intel Xeon E5-2670) and 15 GB of RAM
with high network performance. From Spark perspective, the
master node (driver) is using one instance with 8 threads
(cores) and 10.22 GB. The worker nodes (executors) are using
5 instances, each of which is using 6 threads (cores) and
10.22 GB. Thus, the total worker threads are 30, and they
are distributed over 5 instances.

From the data side, we use the well-known moving object
generator [31]. The trajectory set consists of more than 119
million trajectory segments (140,000 trajectories) over San
Francisco, as seen in Figure 5. Since we are only focusing
on in-memory computation, the data is always cached to the
main memory during experiments.

Figure 6. Trajectories settling frequency.

Figure 7. Running time for range query.

(a) 0.1% Selectivity (b) 0.3% Selectivity

(c) 1% Selectivity (d) 10% Selectivity

Figure 8. Engaged partitions for a particular range query with different
spatial selectivity.

B. Skewness
We are more interested in analyzing the effects of eradi-

cating the skewness rather than the skewness itself. Figure 6
shows trajectory occupancy on 60 partitions, i.e., the frequency

48Copyright (c) IARIA, 2019. ISBN: 978-1-61208-687-3

GEOProcessing 2019 : The Eleventh International Conference on Advanced Geographic Information Systems, Applications, and Services

(a) 0.3% Spatial Selectivity

(b) 10% Spatial Selectivity

Figure 9. Running time for continuous range query.

of required partitions to hold a particular trajectory, and also
reflects the trajectory preservation for each method. UMOi.x
means UMOi with pd = x. We do not include LWHi, since
it only shows that all trajectories need one partition. The
big impact is on SPI, where most trajectories need from 5
to 20 partitions. With increasing pd in UMOi, the required
partitions numbers decrease which means more trajectory
preservation. However, the decrease slows down after UMOi.3.
The influences of trajectory segmentation on each query type
are discussed further in the next section.

C. Construction of the Indexes
The average time to construct UMOi is 223.6 seconds,

while it only takes 75.1 seconds for LWHi and 205 seconds
for SPI. It is expected that UMOi takes longer since it needs to
conduct space-based and object-based distributions. However,
UMOi merges both distributions into one Spark Job, just like
SPI, and this is why the difference is not significant.

D. Performance Evaluation
We test LWHi and UMOi and compare them with SPI on

the following quires: Range Query, Continuous Range Query,
Longest Trajectory (aggregation query), and Lookup Query.
We set tpn to 60 and pd to 3, 6, 10, and 15.

Starting with range query, Figure 7 shows the average
running time of 100 random range queries. The running times
of all methods increase with larger spatial selectivity. LWHi
is better than all other algorithms, while UMOi.3 outperforms
SPI by a factor 1.4x on average. UMOi.6 and UMOi.10
outperform SPI only by a factor of 1.6x and 1.7x, respectively.
Figure 8 shows the required partitions for only one range query,
where each involved partition is uniquely colored, and the

Figure 10. Engaged partitions for a particular CRQ with different k values.

(a) Longest Query (b) Lookup Query

Figure 11. Running time for longest and lookup queries.

size of the colored partition reflects the amount of processed
segments. The best case is when we have a significant number
of engaged partitions, each of which participates equally
while processing the same amount of segments. One of the
performance factors is the GC’s full-scan, which might be
triggered when a big chunk of processed segments is settled on
one node. Another observation is that increasing pd value does
not necessarily mean more involved partitions, as we see in
Figure 8a and 8b, where UMOi.3 has more involved partitions
than UMOi.6.

For continuous range query, we run 100 random queries
with k = 2, 3, 4, 5, and 6, and we use two spatial selectivity
(0.3% and 10%) as seen in Figure 9. In general, LWHi shows
a significant speedup, especially with small spatial selectivity,
and that is so because it only needs one Spark Job to execute
the query locally, without any communication overhead. With
small selectivity, LWHi outperforms SPI by a factor of 33x on
average, and by a factor of 4.3x with 10% selectivity. UMOis
(UMOi.3, UMOi.6, etc.) gain a speedup range from 1.5x to
2.1x. Figure 10 gives an important glance at many factors
during a particular k -CRQ’s execution with different k values.
The length of the bars represents the sub-trajectories after the
first Spark Job, which is responsible for the local computation.
They also reveal the remaining amount of global execution.
If we take only one k -CRQ , we can see the difference in
communication needed by the GroupBy Job. In 2 -CRQ and
3 -CRQ , UMOi.6 needs less global reduction than UMOi.10
because of the query location. The second Job performance

49Copyright (c) IARIA, 2019. ISBN: 978-1-61208-687-3

GEOProcessing 2019 : The Eleventh International Conference on Advanced Geographic Information Systems, Applications, and Services

depends on the location, size, and number of the partitions
resulting from the first Job, which are uniquely colored in
Figure 10. In this case, UMOis have better situations than SPI
which leads to more parallelism with a reasonable partition
size. More importantly, with fewer resulting partitions, a
cluster tends to constrain computation on fewer nodes, which
affects cluster utilization and causes a GC’s full-scan.

Figure 11a shows the average running time to find the
longest trajectory. LWHi outperforms SPI by a factor 6.2x.
The speedup factors for UMOis range from 2.1x to 2.9x
compared to SPI. It also shows the amount of sub-trajectories
after the local aggregation that need to be processed globally.
It reveals the tremendous difference between SPI and UMOi.3
in trajectory preservation and how it slows down with higher
pd, which reflects in the performance of each index. Also,
Figure 11b shows the average running time of lookup query.
LWHi gives the highest speedup by a factor of 10x, since it
does not need a secondary index, such as TTT, and it only has
to process one partition.

All the experimental results show that LWHi outperforms
UMOi. However, UMOi is more useful in some cases when
spatial locality is required. For example, consider applications
that require special datasets such that the trajectories are mixed
with static spatial data (e.g., buildings, road-network, etc.).
With LWHi, all the partitions share the same global space. So,
all the static spatial data need to be copied to all the partitions
of LWHi, which results in full redundancy. SPI depends on
space-based partitioning which is also suitable for static spatial
data, similar to [12], and will have the lowest redundancy. With
UMOi, the redundancy depends on the value of pd. So, the
application user will be able to control the trade-off between
performance and redundancy.

E. Limitations
Even though UMOi and LWHi show a significant per-

formance improvement over traditional techniques, both have
some limitations. The first challenge is how to select the
optimal pd for a particular application. The optimal value
for a pd depends on the nature of the application’s queries,
the characteristics of the trajectories, and the cluster settings.
UMOi could be extended to contain a small simulation engine
to give the best value for a pd based on a sample from
the queries and trajectories. However, that will reflect on the
construction time which is already higher than SPI and LWHi.

Moreover, both UMOi and LWHi are designed for in-
memory usage. However, Spark also supports partially in-
memory computation, which is useful when the data exceeds
the main memory limits (i.e., usually 30% of the data reside
on the disk). In this case, LWHi will always suffer from disk
I/O for space-based queries, while it depends on the location
of the engaged partitions for SPI and UMOi.

VI. CONCLUSION AND OUTLOOK

The huge volumes of moving object trajectories catalyze
more trajectory-driven applications with more space-based
and trajectory-based queries. As a result, cloud computing
platforms are the typical solution to cope with the large-
scale data and applications’ demands. Spark has been adopted
by most of the cloud platforms, and it offers an in-memory
distributed computation platform. However, the large-scale
trajectories and the adoption of a distributed platform raise

the following challenges: communication cost, computation
skewness, intermediate results skewness, and GC scan.

Therefore, our goal is to develop a large-scale historical
trajectory index to support in-memory processing for both
space-based and trajectory-based query types. Also, it needs to
overcome all the previous challenges. As a result, we propose
UMOi as a universal index that is capable of representing
different partitioning techniques (i.e., space-based partitioning
and object-based partitioning). It provides a flexible preser-
vation degree (pd) parameter to control both spatial and
object localities making it suitable to accommodate divergent
trajectory-driven applications. With the lowest pd value, UMOi
will act just like the traditional space-based index. However,
with the highest pd value, it will act as our second index,
LWHi. We distinguish LWHi as a standalone index because
it guarantees a full trajectory-preservation, which allows opti-
mizations to take place on both index construction and query
processing.

We also conduct extensive experiments to validate our ap-
proaches. The results show a significant performance improve-
ment (on both space-based and trajectory-based query types)
compared to space-based indexing. The significant speedup is
a result of reducing the communication cost and increasing
the cluster utilization. Also, we present an analysis for heavy-
loaded memory to show the far-reaching implications, such as
GC scan and intermediate results skewness.

For future work, several optimizations and extensions could
be considered. Both approaches could be extended to include
partially in-memory data processing, which is also provided by
Spark. Also, the space-splitting could be enhanced to maximize
trajectory preservation by adopting an object-aware spatial
partitioning. Finally, it is important to consider nested queries,
i.e., queries that consist of different query types, and to analyze
how they would benefit from different preservation degrees.

REFERENCES
[1] D. Abadi et al., “The beckman report on database research,” Commun.

ACM, vol. 59, no. 2, Jan. 2016, pp. 92–99. [Online]. Available:
http://doi.acm.org/10.1145/2845915

[2] https://spark.apache.org/, [retrieved: January, 2019].
[3] A. Guttman, “R-trees: A dynamic index structure for spatial

searching,” SIGMOD Rec., vol. 14, no. 2, Jun. 1984, pp. 47–57.
[Online]. Available: http://doi.acm.org/10.1145/971697.602266

[4] J. L. Bentley, “Multidimensional binary search trees in database appli-
cations,” IEEE Transactions on Software Engineering, vol. SE-5, no. 4,
July 1979, pp. 333–340.

[5] D. Pfoser, C. S. Jensen, and Y. Theodoridis, “Novel approaches to
the indexing of moving object trajectories,” in Proceedings of 26th
International Conference on Very Large Data Bases, ser. VLDB 2000,
Sep. 2000, pp. 395–406.

[6] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The
R*-tree: An efficient and robust access method for points and
rectangles,” SIGMOD Rec., vol. 19, no. 2, May 1990, pp. 322–331.
[Online]. Available: http://doi.acm.org/10.1145/93605.98741

[7] T. K. Sellis, N. Roussopoulos, and C. Faloutsos, “The R+-tree: A
dynamic index for multi-dimensional objects,” in Proceedings of the
13th International Conference on Very Large Data Bases, ser. VLDB
’87, 1987, pp. 507–518.

[8] J. T. Robinson, “The k-d-b-tree: A search structure for large
multidimensional dynamic indexes,” in Proceedings of the 1981
ACM SIGMOD International Conference on Management of Data,
ser. SIGMOD ’81. ACM, 1981, pp. 10–18. [Online]. Available:
http://doi.acm.org/10.1145/582318.582321

[9] R. A. Finkel and J. L. Bentley, “Quad trees: A data structure for retrieval
on composite keys,” Acta Informatica, vol. 4, no. 1, Mar. 1974, pp. 1–9.

50Copyright (c) IARIA, 2019. ISBN: 978-1-61208-687-3

GEOProcessing 2019 : The Eleventh International Conference on Advanced Geographic Information Systems, Applications, and Services

[10] M. A. Nascimento and J. R. O. Silva, “Towards historical R-trees,”
in Proceedings of the 1998 ACM Symposium on Applied Computing,
ser. SAC ’98. ACM, 1998, pp. 235–240. [Online]. Available:
http://doi.acm.org/10.1145/330560.330692

[11] K. Zheng, S. Shang, N. J. Yuan, and Y. Yang, “Towards efficient search
for activity trajectories,” in 2013 IEEE 29th International Conference
on Data Engineering (ICDE), April 2013, pp. 230–241.

[12] Z. Ding, B. Yang, Y. Chi, and L. Guo, “Enabling smart transportation
systems: A parallel spatio-temporal database approach,” IEEE Transac-
tions on Computers, vol. 65, no. 5, May 2016, pp. 1377–1391.

[13] A. Eldawy and M. F. Mokbel, “Spatialhadoop: A mapreduce framework
for spatial data,” in 2015 IEEE 31st International Conference on Data
Engineering, April 2015, pp. 1352–1363.

[14] A. Eldawy, Y. Li, M. F. Mokbel, and R. Janardan, “CG hadoop: Com-
putational geometry in mapreduce,” in Proceedings of the 21st ACM
SIGSPATIAL International Conference on Advances in Geographic
Information Systems, ser. SIGSPATIAL’13. ACM, 2013, pp. 294–303.
[Online]. Available: http://doi.acm.org/10.1145/2525314.2525349

[15] S. Nishimura, S. Das, D. Agrawal, and A. E. Abbadi, “Md-hbase:
A scalable multi-dimensional data infrastructure for location aware
services,” in 2011 IEEE 12th International Conference on Mobile Data
Management, June 2011, pp. 7–16.

[16] A. Aji et al., “Hadoop gis: A high performance spatial data
warehousing system over mapreduce,” Proc. VLDB Endow.,
vol. 6, no. 11, Aug. 2013, pp. 1009–1020. [Online]. Available:
http://dx.doi.org/10.14778/2536222.2536227

[17] A. Akdogan, U. Demiryurek, F. Banaei-Kashani, and C. Shahabi,
“Voronoi-based geospatial query processing with mapreduce,” in 2010
IEEE Second International Conference on Cloud Computing Technol-
ogy and Science, Nov. 2010, pp. 9–16.

[18] Q. Ma, B. Yang, W. Qian, and A. Zhou, “Query processing
of massive trajectory data based on mapreduce,” in Proceedings
of the First International Workshop on Cloud Data Management,
ser. CloudDB ’09. ACM, 2009, pp. 9–16. [Online]. Available:
http://doi.acm.org/10.1145/1651263.1651266

[19] J. Yu, J. Wu, and M. Sarwat, “Geospark: A cluster
computing framework for processing large-scale spatial data,”
in Proceedings of the 23rd SIGSPATIAL International
Conference on Advances in Geographic Information Systems, ser.
SIGSPATIAL ’15. ACM, 2015, pp. 70:1–70:4. [Online]. Available:
http://doi.acm.org/10.1145/2820783.2820860

[20] M. Tang, Y. Yu, Q. M. Malluhi, M. Ouzzani, and W. G.
Aref, “Locationspark: A distributed in-memory data management
system for big spatial data,” Proc. VLDB Endow., vol. 9,
no. 13, Sep. 2016, pp. 1565–1568. [Online]. Available:
https://doi.org/10.14778/3007263.3007310

[21] S. You, J. Zhang, and L. Gruenwald, “Large-scale spatial join query pro-
cessing in cloud,” in 2015 31st IEEE International Conference on Data
Engineering Workshops (ICDEW), April 2015, pp. 34–41. [Online].
Available: doi.ieeecomputersociety.org/10.1109/ICDEW.2015.7129541

[22] H. Wang and A. Belhassena, “Parallel trajectory search based on
distributed index,” Information Sciences, vol. 388-389, 2017, pp. 62 –
83. [Online]. Available: https://doi.org/10.1016/j.ins.2017.01.016

[23] D. A. Peixoto and N. Q. V. Hung, “Scalable and fast top-k most similar
trajectories search using mapreduce in-memory,” in Databases Theory
and Applications. Springer International Publishing, 2016, pp. 228–
241.

[24] H. Wang et al., “Sharkdb: An in-memory column-oriented
trajectory storage,” in Proceedings of the 23rd ACM International
Conference on Information and Knowledge Management, ser.
CIKM ’14. ACM, 2014, pp. 1409–1418. [Online]. Available:
http://doi.acm.org/10.1145/2661829.2661878

[25] A. Eldawy and M. F. Mokbel, “The era of big spatial data: A survey,”
Information and Media Technologies, vol. 10, no. 2, 2015, pp. 305–316.

[26] S. T. Leutenegger, M. A. Lopez, and J. Edgington, “STR: A simple
and efficient algorithm for R-tree packing,” in Proceedings 13th Inter-
national Conference on Data Engineering, April 1997, pp. 497–506.

[27] F. Chang et al., “Bigtable: A distributed storage system for structured
data,” ACM Trans. Comput. Syst., vol. 26, no. 2, Jun. 2008, pp. 4:1–
4:26. [Online]. Available: http://doi.acm.org/10.1145/1365815.1365816

[28] Z. Chen, H. T. Shen, X. Zhou, Y. Zheng, and X. Xie, “Searching
trajectories by locations: An efficiency study,” in Proceedings of
the 2010 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’10. ACM, 2010, pp. 255–266. [Online].
Available: http://doi.acm.org/10.1145/1807167.1807197

[29] B.-K. Yi, H. V. Jagadish, and C. Faloutsos, “Efficient retrieval of similar
time sequences under time warping,” in Proceedings 14th International
Conference on Data Engineering, Feb. 1998, pp. 201–208.

[30] R. Agrawal, C. Faloutsos, and A. Swami, “Efficient similarity search
in sequence databases,” in International conference on foundations of
data organization and algorithms. Springer, 1993, pp. 69–84.

[31] T. Brinkhoff, “A framework for generating network-based moving
objects,” GeoInformatica, vol. 6, no. 2, June 2002, pp. 153–180.
[Online]. Available: https://doi.org/10.1023/A:1015231126594

51Copyright (c) IARIA, 2019. ISBN: 978-1-61208-687-3

GEOProcessing 2019 : The Eleventh International Conference on Advanced Geographic Information Systems, Applications, and Services

