
WhizPS: An Architecture for Well-conditioned, Scalable Geoprocessing Services

Based on the WPS Standard

Marius Laska, Stefan Herle
and Jörg Blankenbach

Geodetic Institute and Chair for Computing
in Civil Engineering & Geo Information Systems,

RWTH Aachen University
52074 Aachen, Germany

Email: marius.laska@gia.rwth-aachen.de

Eric Fichter
and Jérôme Frisch

Institute of Energy Efficiency
and Sustainable Building,
RWTH Aachen University
52074 Aachen, Germany

Email: fichter@e3d.rwth-aachen.de

Abstract—Spatial simulations and models are often expert
tools which solve a specific spatial problem or model a spatial
process. Exposing theses analysis capabilities as a web service
is a huge benefit to users of web-based Geographic Information
Systems (GISs). The Web Processing Service (WPS) standard
was developed to realize these services. In the Geothermal
Information System for Potential Studies in Subsurface Soil
Layers (GeTIS) project, several complex analysis tools should
be exposed as a WPS service and, simultaneously, follow the
concept of well-conditioned, scalable services. In this paper, we
describe our implemented backend, which can be used to bind
expert tools and facade them with the WPS interface. The
architecture rests on different communication mechanisms such
as Remote Procedure Calls (RPCs) and message queuing as well
as geospatial services such as Web Map Service (WMS).

Index Terms—Geoprocessing; Web service; Web Processing
Service; Scalability; Geothermal Simulation

I. INTRODUCTION

The Web Processing Service (WPS) interface was intro-
duced in 2007 by the Open Geospatial Consortium (OGC) for
accessing geospatial processing capabilities by HTTP meth-
ods. Unlike other important and already established services
in the geospatial world, such as Web Map Service (WMS)
or Web Feature Service (WFS), the new standard should not
just give access to data but enabled processes and models
to be requested. But still, the WPS is not heavily used
basically because of required advanced knowledge to develop
an application as a compliant service and some drawbacks of
the underlying protocols.

However, in the Geothermal Information System for Po-
tential Studies in Subsurface Soil Layers (GeTIS) project the
WPS interface is a central component of the architecture. The
goal of the project is the development of a web-based informa-
tion system that provides all required data for the regulatory
approval and planning of geothermal systems [1]. Currently,
these information has to be requested explicitly by the ap-
proval authority from different governmental agencies (e.g.,
geological service, environmental agency, cadastral agency),

which is not trivial and inhibits a faster diffusion of geothermal
systems. In order to have a single access point, different data
sources have to be integrated by standardized service interfaces
in such an information system. Apart from that also simulation
processes (e.g., for simulating the extent of the temperature
plume) are connected to the web portal. However, these
simulation tools are developed as expert desktop applications
and are not supposed to be deployed as web services. For
exposing them as standardized web services, a sophisticated
architecture relying on the WPS standard was designed. Based
on the following requirements, we implemented a distributed
WPS architecture:

• The effort of the service provider for making software
accessible and ensure interoperability at the same time
should be minimized.

• The system should be loosely coupled, which means
that service providers can freely choose on which op-
erating system the task is executed. Furthermore, service
providers have the capabilities to run their software in
a distributed environment or on their local server. This
allows for minimal deployment effort as well as scalable
execution of resource dependent tasks.

• The architecture should be built based on open source
software and reuse existing and well-known solutions.

This paper describes the distributed architecture developed
in the GeTIS project. It starts in Section II with a research
about the state-of-the-art of distributed services and especially
other WPS-based solutions. After introducing the basic con-
cepts of the WPS interface in Section III, we describe our
architectural approach (see Section IV) with the conceptual
design and our implementation. Then in Section V, the GeTIS
Online Simulation (GOS) as a use case and its integration
in our distributed WPS architecture is presented. Finally, we
summarize the insights of the implemented system and discuss
further developments.

29Copyright (c) IARIA, 2019. ISBN: 978-1-61208-687-3

GEOProcessing 2019 : The Eleventh International Conference on Advanced Geographic Information Systems, Applications, and Services

II. STATE OF THE ART

A WPS interface is used in the geospatial community to
provide geospatial analysis algorithms as a service to users.
Often, these processes, such as simulations or predictions
are very time consuming, which makes it important to run
these on appropriate hardware to speed up processing time.
Additionally, the implemented algorithms are often expert
tools, which are developed by scientist for running on a single
machine and are not supposed to be provided as a service. The
WPS facades the expert software to facilitate execution and
to provide interoperability. The important factor in merging
expert tools with a service interface is to implement the WPS
with respect to requirements of well-conditioned services.

A well-conditioned service is defined as a simple pipeline,
which depth is determined by the path through the network and
the processing stages of the service [2]. Thus, increasing load
also increases the delivered throughput proportionally until the
pipeline is full and the throughput saturates. In other words, the
service is not allowed to overcommit its resources, otherwise
all clients would suffer. The key property of well-conditioned
services is graceful degradation, which implies that the service
maintains a high throughput without a dramatic increase in
response time. In concurrent server designs, multiple requests
can be accepted and processed at once. The threaded server
design uses a dispatcher to distribute each incoming request
to a separate thread. Each thread processes its request and
returns a result to the client. Challenges with long-lasting pro-
cesses may occur in this setup. With many clients connecting
simultaneously, many threads may be active at the same time
and context switching may consume large memory and CPU
resources. Limiting the number of concurrent clients e.g. by
thread pools can tackle this problem. Another approach is the
event-driven server design. It does not follow the thread-per-
connection model, but uses an event loop in a single thread
to consume events from an event queue. This main thread
processes incoming events and drives the execution of many
finite state machines (FSM) with so-called event handlers.
Each FSM represents a single request but the complexity
is the event scheduler which controls the execution of each
FSM [2]. Both architectural models can be used to build
highly scalable servers [3], however, the highest scalability and
load adaptability can only be accomplished with a distributed
approach, since it can easily expand the resource pool.

In the literature, some approaches can be found for dis-
tributing WPS request between multiple processing units. In
[4] a WPS mediation is implemented to process geospatial
data on different computing backends. The job submission
software Ganga [5] is used to provide distributed computing
in a grid or on a cluster. Performance and scalability were im-
proved successfully. Similarly, other approaches use different
distributed computing infrastructure, such as Unicore [6] [7]
or forward the WPS request to a Hadoop Cluster [8]. In these
solutions, the processes are invoked by sending the input data
and the executable of the application to the grid utilizing the
job submission tool. The implementations improve calculation

performance and service availability enormously. In [9], a
spatial computing node based on WPS is designed. In their
approach, the utilized spatial data libraries, such as Geotools or
GDAL are deployed in distributed machines to process spatial
data concurrently and effectively. The single instance uses
an appropriate middleware to communicate. Data processing
velocity was improved for common spatial processing tasks.
In [10] a RabbitMQ queue is used to communicate with a high
performance cluster to calculate flooded tiles. The request is
computed on the cluster while the result handling is done by
the WPS server. They conclude that exploiting supercomputing
infrastructures provides scalability and performant processing.
Other approaches use middleware software to distribute the
requests directly to multiple machines. The WPS remote com-
munity module of the GeoServer [11] allows to run requests
on one or more remote machines by exposing processes with
the WPS protocol. For realizing this, some RPC methods, such
as run, progress, complete or kill are implemented utilizing the
Extensible Messaging and Presence Protocol (XMPP) protocol
for remote commands. Additionally, a remote balancer is
included to distribute incoming request based on occupancy
of the servers.

III. WEB PROCESSING SERVICE (WPS)

Standardized geo web services are used in modern Spatial
Data Infrastructures (SDIs) to ensure interoperability. With the
OGC WPS version 1.0, a standard for accessing and initiating
geospatial processing was introduced in 2007 [12]. The main
characteristics of the standard are the introduced rules to define
in- and outputs of deployed processes and the different request
methods of the service.

The Hypertext Transport Protocol (HTTP)-based WPS fol-
lows the request/response messaging pattern and has three
core operations: The GetCapabilities operation can be used
by requesting clients to receive meta-information about the
server and its services. The response includes descriptions
and the identifier about each process. Detailed information
about in- and outputs of each process can be requested by the
DescribeProcess operation given the process identifier. Finally,
the Execute operation invokes the process. The user submits
the request by posting necessary input parameters to the server.
The inputs and outputs can have different data types, such as
literals or references to other geo web services.

Processes can be executed in synchronous or asynchronous
mode. In synchronous mode, the server parses the requesting
XML, executes the process with respect to the inputs, waits
until all calculations are performed and returns the resulting
ProcessExecuted XML response to the client. In asynchronous
mode, after receiving and accepting the request, the server
sends a ProcessAccepted response immediately to the client.
The response contains an URL with can be requested to check
the process status while the process runs in the background.
When the process finishes successfully, the server creates a
final response and stores this document at the specified URL.

30Copyright (c) IARIA, 2019. ISBN: 978-1-61208-687-3

GEOProcessing 2019 : The Eleventh International Conference on Advanced Geographic Information Systems, Applications, and Services

The client fetches the result when it requests the given URL
the next time.

Since WPS version 1.0 has some drawbacks, the version
2.0 was released in 2014. The introduced features cover for
instance improvements in the process descriptions or a Dismiss
operation to cancel a process.

IV. ARCHITECTURAL APPROACH

A. Conceptual approach of the architecture

Research projects in the GIS domain, such as the GeTIS
project often involve the development of expert tools and
processes. While rapid prototyping displays a major demand,
the deployment of theses processes and accessibility remains a
challenge. Implemented processes should be discoverable and
exposed as a service via web technologies. This requires that
they are accessible using a uniform interface and that their
inputs and outputs are clearly formulated. The WPS specifi-
cation aims at solving this demand. However, existing imple-
mentations, such as the PyWPS [13] server lack the ability to
bind services and initiate processes remotely. It requires central
development and deployment of the processes, which has two
major drawbacks: First, development of processes is slowed
down since the exposure as a service usually requires adaption
and deployment on a web server and, thus, cannot be directly
offered on the developer’s machine. Second, horizontal scaling
is not possible if the WPS server simultaneously represents
the single computing back-end. Processing large-scale data
or long-lasting processes would influence the responsiveness
of the server, which contradicts the well-conditioned service
paradigm.

WPS
OGC compliant

interface for client
• Process discovery
• Process execution initiation
• Process status/result query

Processing resources

Development
 machine
(Windows)

Process A

Process B

Linux Server

VM 2

VM 4

VM 1

VM 3

Result provider

• OGC services: WMS/WFS/
WCS

• result documents: PDF, XML

serves processing
results

Message Broker
asynchronous

messaging
• Processing resource

mediation
• Status message forwarding
• Result data exchange

compute cluster

Fig. 1. High level view of main components of the distributed WPS
architecture.

An architecture to meet the requirements of exposing expert
tools and to handle the described drawbacks in WPS servers is
illustrated in Figure 1. Providing an OGC compliant WPS in-
terface for the client is reasonable to allow for process discov-
ery and initiation in a standardized way. Thereby, the possibly
multi-layered back-end and expert processes are masked by the
WPS interface. Furthermore, instead of directly processing the
requested task on the WPS web server, mediating the request
to available computing resources constitutes a much more

sophisticated way to process the request. Enabling physical
separation between the WPS interface and the processing re-
sources requires some orchestration via asynchronous message
exchange. A message broker mediates the task to one of the
available processing resources and forwards status messages
as well as the final result data to the WPS interface. In order
to make both, the status messages and the results, accessible
for the client, a result provider is required. Depending on
the result data format, it should offer the client direct access
to documents, such as PDF or XML files, or provide a
OGC compliant service for discovering and accessing spatially
referenced data.

B. Applied tools

A PyWPS server (version 4.0.0) builds the foundation for
constructing the WPS compliant interface in our architecture.
PyWPS is an implementation of the WPS standard from the
OGC written in Python. It enables integration, publishing and
execution of Python processes via the WPS standard [13].
PyWPS can be deployed with integrated Flask [14] web server,
or with an Apache web server. Currently, only the WPS
specification 1.0.0 is supported but adaption of the new version
2.0.0 is planned. Geospatial processes can be implemented by
extending the Process class, which contains a handler and a
list of input and output according to the WPS specification.
Whenever the PyWPS server receives a new WPS Execute
request, it creates a new thread and executes the defined han-
dling method. This limits the ability to distribute processing
load over multiple processing machines, since all processes run
on the same machine where the PyWPS server is deployed. In
order to employ remote processing resources, they have to be
addressed via patterns like RPC, which requires asynchronous
messaging. In our architecture, a RabbitMQ server is chosen
for tackling this issue.

RabbitMQ is the most widely deployed open source mes-
sage broker. It is lightweight and easy to deploy on premise or
in distributed cloud settings and supports multiple messaging
protocols. Producers send messages to exchanges from which
they are forwarded to queues that consumers bind to the
specific exchange. This allows for realizing patterns like a
worker queue, where multiple consumers listen for messages
on the same queue. Furthermore, publish/subscribe patterns
can be implemented by using an exchange with fan-out
characteristics, such that each consumer that wants to receive
the messages can bind its own queue to that exchange. In
the proposed architecture a RPC like pattern is implemented.
Each PyWPS process has its own worker queue. Processing
resources for that PyWPS process listen for tasks on that
queue. Upon entering the worker queue, an incoming task
is fairly dispatched to one of the available resources. In
order to allow communication between the PyWPS process
and the processing resource, the PyWPS process creates a
temporary response queue that the processing resource utilizes
for exchanging status message and result data.

31Copyright (c) IARIA, 2019. ISBN: 978-1-61208-687-3

GEOProcessing 2019 : The Eleventh International Conference on Advanced Geographic Information Systems, Applications, and Services

In order to use the described RPC pattern, a threaded python
implementation using the Pika BlockingConnection [15] has
been realized, which will be referred to in the following as
PyRPCproducer and PyRPCconsumer. Each PyWPS process
has its dedicated PyRPCprocuder. Furthermore, each process-
ing resource operates its own PyRPCconsumer, which can be
configured to listen to a specific worker queue and starts a
specifiable script. The PyRPCconsumer listens for the console
output and forwards messages that contain a specific logging
keyword back via the temporary response queue. After having
successfully executed the script, all data of a specifiable output
folder is encoded and sent back using the temporary response
queue. In order to configure a new processing resource, solely
the PyRPCconsumer has to be installed and configured, which
minimizes the deployment overhead.

C. Workflow

PyWPS

Process A

Process C

RabbitMQ

Processes: Task queues:
A B C

Post job

Temporary
response queue

creates

<wps:Execute>
<ows:Identifier>Process A</ows:Identifier>
<wps:DataInputs>

POST request:

WebServer: Compute Resource
 A (1)

PyRPCproducer

PyRPCproducer

PyRPCconsumer

Compute Resource
 A (2)

PyRPCconsumer

Compute Resource
 C

PyRPCconsumer

Fig. 2. Workflow after client requests new processing task at the PyWPS
server with focus on setup required for task mediation and communication.

The PyWPS server offers multiple processes (according to
WPS formulation), which can be discovered and described
according to the WPS specifications using the GetCapabilities
and DescribeProcess operations. A process can be started
using the Execute operation, while specifying the process
identifier as well as supplying the process with the specified
input data. This request is illustrated by Figure 2. Each of
the processes deployed in the PyWPS server uses a dedicated
instance of the PyRPCproducer implementation, which was
introduced before. The process encodes the input data in JSON
format and sends it to the corresponding task queue. In Figure
2, an execute operation for process A is sent to the PyWPS
server, such that its PyRPCproducer posts the job to task
queue A. Simultaneously, it instantiates a temporary response
queue, which will be used by the assigned working machine
of the service provider to transmit status messages and the
final results of the process. The service provider of process
A might be offering multiple physical machines for handling
incoming tasks in order to handle increasing processing load.
This facilitates horizontal scaling.

PyWPS

Process A

Process C

RabbitMQ

Processes: Task queues:
A B C

Post job

Temporary
response queue

Status
messages

Job assigned

<wps:ExecuteResponse
<wps:Status>

<wps:ProcessStarted percentCompleted="0.1">GET status
request

WebServer: Compute Resource
 A (1)

PyRPCconsumer

Compute Resource
 A (2)

PyRPCconsumer

Executes script:

STATUS: …
DEBUG: …
STATUS: …

console output:

PyRPCproducer

PyRPCproducer

Fig. 3. Workflow after remote processing machine is assigned with emphasis
on communication between PyWPS, the computing resource and the request-
ing client.

Each working machine of a process provider is subscribed to
one or multiple task queues, depending on which processes it
should handle. Given that computing resources are available,
processing requests that arrive at the RabbitMQ broker are
immediately forwarded to one of the subscribed clients. This
process is illustrated by Figure 3. Worker resource A (2) is
assigned to handle the task and starts the processing software.
The process’ RPC client listens for the console output and
forwards messages, which contain specific keywords, such
that status updates can be communicated back to the PyWPS
server. The messages containing the keyword (e.g., STATUS,
green in Figure 3), are forwarded via the temporary response
queue.

After successful completion of the script, all result docu-
ments that are present in a specific folder (output folder, green
in Figure 4) are encoded and returned via the same temporary
response queue.

During the whole processing of a request, the initiator of
the Execute operation is able to access the status messages
of the processes by requesting a resource at PyWPS server.
All status messages as well as the results and input files of
the processes are served by an integrated Flask web server.
PyWPS can also run as WSGI application on an Apache HTTP
server. Finally, the results of the process are served back to
the process’ initiator, either as direct data, or as references to
the location where the data can be requested (illustrated by
Figure 4).

D. Result handling by PyWPS extension

The implemented PyWPS extension offers various result
handling solutions, which are conform to the WPS standard.
They are basically divided into direct responses containing the
result in plain text, such as an XML document, or responses
that contain a reference to a resource combined with its
format specification. Typically, geo processes deliver spatially
referenced data as result, such as GeoTIFFs (raster data)

32Copyright (c) IARIA, 2019. ISBN: 978-1-61208-687-3

GEOProcessing 2019 : The Eleventh International Conference on Advanced Geographic Information Systems, Applications, and Services

PyWPS

Process A

Process C

Processes:

Temporary
response queue

encoded
result data

<wps:ExecuteResponse
<wps:Status>
<wps:ProcessSucceeded>Simulation succeeded

GET status
request

<wps:Output>

WebServer:

GeoServer

Layer:
resultLayerA
resultLayerB

WMS WCS
upload
geotiffs

<wps:Reference http://geoserver/wms?service=WMS"
mimeType="application/x-ogc-wms" layer="resultLayerA">

Compute Resource
 A (1)

PyRPCconsumer

RabbitMQ
Task queues:
A B C

Post job

Job assigned

Compute Resource
 A (2)

PyRPCconsumer

STATUS: process finished

Output folder:
• Result PDF
• .tif data

Executes script:
PyRPCproducer

PyRPCproducer

Fig. 4. Workflow of result data provisioning with emphasis on handling
spatially referenced data.

or shapefiles (vector data format of ESRI). For convenience
reasons, it is beneficial to offer access to these results via
a dedicated service. The OGC defines several standards for
services and encodings. The WMS is a so-called portrayal
service, which delivers georeferenced data as styled images
for visualization purposes. Raw georeferenced raster data is
accessible by the Web Coverage Service (WCS), while vector
data can be provided by the WFS standard. Several imple-
mentations of these services exist, among other the GeoServer
[16], which is a widely used implementation of an open source
server for sharing geospatial data. It provides OGC compliant
implementation of the mentioned standards WMS, WFS and
WCS. Spatial data, such as GeoTIFFs can be uploaded and
function as data source for any of the services.

In our proposed solution, the PyWPS process uploads the
spatially referenced result data of the remote process to a
GeoServer instance via its REST interface [17]. When a client
requests the status of a finished process, the output section of
the result XML file links to the WMS GetCapabilities request,
but also includes the name of the corresponding layer. This
enables the client to specifically discover information on how
to access the WMS layer that has been generated as result of
the process.

Non-spatial data, such as a resulting PDF file are served by
the internal web server of the PyWPS instance and are also
linked in the outputs section of the status response.

Additionally, for long-lasting processes it might be inappro-
priate to constantly poll status updates from the web server.
Therefore, we implemented a notification mechanism that
sends out an email to the initiator of the process as soon as
the results of the process are available. It requires a specified
email address in WPS execute request. Other notifications
mechanisms are conceivable, which could include sending an
SMS or a message via any other messaging protocol like
XMPP [18].

V. USE CASE - ONLINE GEOTHERMAL PROCESS

For demonstrating our architecture in a real usage scenario,
an example process is described below that was developed
within the scope of the GeTIS project.

The GeTIS Online Simulation (GOS) [19] is a transient
three-dimensional subsurface simulation that allows to plan
geothermal borehole heat exchangers. Using a finite volume
approach, it considers heat conduction in the rock as well
as convectional heat transport caused by ground water flow.
For this purpose, spatial, physical and geological properties of
the subsurface are needed. The GOS requires these input data
encoded in an XML file. Therefore, the WPS server facades
the corresponding process with a single input field for the
XML input file and transfers it via the messaging broker to
the computing machine on which the GOS runs. The structured
and parsed information is allocated to the setup functions
building the three-dimensional simulation grid. While solving
the mathematical equations for the simulated time span of
50 years, the remaining processing time is communicated to
the WPS. The results of the GOS are processed textually and
graphically to inform the user. Information about simulation
and subsurface conditions as well as plots for time series
and spatial field data, e.g., to visualize volume fluxes and
performances, are copied into a single PDF. Horizontal section
views showing temperature data are processed to GeoTiff files.
All result documents are transferred back to the WPS server
via the messaging broker. The georeferenced files are uploaded
to the GeoServer using the REST interface such that a WMS
service can be offered to demonstrate the influence of the
heat extraction caused by the borehole heat exchangers on
neighboring properties. Among the request parameters of the
WMS specification is a so-called elevation dimension, which
enables the presentation of geospatial information at different
elevations. In the context of the GOS, the elevation dimension
is used to allow the requester to browse through the different
subsurface levels. The resulting PDF file is stored on a web
server and can be accessed by a request specific URL.

Like the GOS simulation, the GeTIS project involves two
other processes, which can be invoked by the WPS interface
and computed in our architecture. This includes an analytical
subsurface model and a building simulator (see [19]).

VI. CONCLUSION

We proposed the implementation of an architecture to
expose geospatial processes as web services. Since a wide
range of developed spatial simulations and models can be
classified as expert tools, we formulated specific requirements.
The architecture facilitates deploying implemented tools with
minimal effort, it is loosely coupled with the actual expert tools
allowing for hardware independent deployment and, further-
more, it is based on existing open source components. In detail,
we implemented an OGC compliant WPS interface based on
the PyWPS server with respect to the stated requirements.
The RabbitMQ middleware is used to distribute WPS requests

33Copyright (c) IARIA, 2019. ISBN: 978-1-61208-687-3

GEOProcessing 2019 : The Eleventh International Conference on Advanced Geographic Information Systems, Applications, and Services

based on occupancy to available processing resources. For this,
we developed a PyRPCconsumer script that serves as the sole
interface for software providers to connect their expert tools
such that they can be invoked with standardized WPS request.
The WPS implementation is able to handle spatial as well
as non-spatial result data by generating standardized geospa-
tial portrayal and data services (e.g., WMS) provided by a
GeoServer or by serving documents through a simple web
server. The applicability of the proposed architecture has been
demonstrated by utilizing it in the GeTIS project to expose
several complex analysis tools. For demonstration purposes,
the GOS has been described, which simulates the subsurface
allowing to plan borehole heat exchangers.

Currently, each WPS request facades a single expert tool,
however in the future the architecture could be easily ex-
tended so that requests can be split up into sub-tasks, which
could be run concurrently on multiple machines to decrease
processing time. Furthermore, it is not possible to cancel
running processes at the moment, since the underlying PyWPS
implementation is based on the WPS 1.0 specification, which
lacks of the Dismiss operation that has been first introduced
in version 2.0. However, our architecture does already support
the abortion of processes by sending broadcast messages to
all computing resources. If the request is already accepted
and invoked, it is cancelled directly. Otherwise, the en-queued
and pending request is ignored by the computing machines.
As soon as the PyWPS implementation has been upgraded to
support WPS 2.0, the abortion of running processes can be
effortlessly integrated.

ACKNOWLEDGMENT

The work and implementations described in this paper are
conducted in the GeTIS project which is funded by the German
Federal Ministry for Economic Affairs and Energy (BMWi).

REFERENCES

[1] S. Weck-Ponten, R. Becker, S. Herle, J. Blankenbach, J. Frisch,
and C. van Treeck, “Automatisierte Datenaggregation zur Einbindung
einer dynamischen Gebäudesimulation in ein Geoinformationssystem,”
in Tagungsband der 7. Deutsch-Österreichischen IBPSA-Konferenz
BauSIM 2018, Karlsruhe, 2018, pp. 516–523.

[2] M. Welsh, D. Culler, and E. Brewer, “Seda: An architecture for
well-conditioned, scalable internet services,” in Proceedings of the
Eighteenth ACM Symposium on Operating Systems Principles, ser.
SOSP ’01. New York, NY, USA: ACM, 2001, pp. 230–243. [Online].
Available: http://doi.acm.org/10.1145/502034.502057

[3] D. Pariag, T. Brecht, A. Harji, P. Buhr, A. Shukla, and D. R.
Cheriton, “Comparing the performance of web server architectures,” in
Proceedings of the 2Nd ACM SIGOPS/EuroSys European Conference
on Computer Systems 2007, ser. EuroSys ’07. New York, NY, USA:
ACM, 2007, pp. 231–243. [Online]. Available: http://doi.acm.org/10.
1145/1272996.1273021

[4] G. Giuliani, S. Nativi, A. Lehmann, and N. Ray, “WPS mediation: An
approach to process geospatial data on different computing backends,”
Computers and Geosciences, vol. 47, pp. 20–33, 2012. [Online].
Available: http://dx.doi.org/10.1016/j.cageo.2011.10.009

[5] “Ganga,” URL: https://ganga.readthedocs.io/en/latest/ [accessed: 2018-
12-13].

[6] “Unicore,” URL: http://www.somewebpage.org/ [accessed: 2018-12-13].
[7] B. Baranski, “Grid computing enabled web processing service,” in GI-

Days, Münster, 2008, pp. 1–12.

[8] Z. Chen, N. Chen, C. Yang, and L. Di, “Cloud computing enabled web
processing service for earth observation data processing,” IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 5, no. 6, pp. 1637–1649, Dec 2012.

[9] L. Liu, G. Li, and J. Xie, “Design & implementation of distributed
spatial computing node based on WPS,” in IOP Conference Series:
Earth and Environmental Science, ser. IOP Conference Series: Earth
and Environmental Science, vol. 17, 2014, pp. 1–8.

[10] A. Tellez-Arenas, R. Quique, F. Boulahya, G. Le Cozannet, F. Paris,
S. Le Roy, F. Dupros, and F. Robida, Scalable Interactive Platform
for Geographic Evaluation of Sea-Level Rise Impact Combining
High-Performance Computing and WebGIS Client. Cham: Springer
International Publishing, 2018, pp. 163–175. [Online]. Available:
https://doi.org/10.1007/978-3-319-74669-2 12

[11] Open Source Geospatial Foundation, “GeoServer WPS Remote
community module,” 2018. [Online]. Available: http://docs.geoserver.
org/stable/en/user/community/remote-wps/index.html

[12] P. Schut, “OpenGIS Web Processing Service 1.0.0 [OGC 05-007r7],”
Open Geospatial Consortium, Tech. Rep., 2007.

[13] PyWPS Development Team, “Python Web Processing Service (Py-
WPS),” 2009, URL: http://pywps.org [accessed: 2018-12-13].

[14] “Flask,” URL: http://flask.pocoo.org/ [accessed: 2018-12-13].
[15] “Pika Blocking Connection,” URL: https://pika.readthedocs.io/en/0.10.

0/modules/adapters/blocking.html [accessed: 2018-12-13].
[16] “GeoServer,” URL: http://geoserver.org/ [accessed: 2018-12-13].
[17] “GeoServer REST Interface.” [Online]. Available: https://docs.geoserver.

org/stable/en/user/rest/index.html
[18] “Extensible Messaging and Presence Protocol (XMPP),” URL: https:

//xmpp.org/ [accessed: 2018-12-13].
[19] E. Fichter, S. Weck, R. Becker, J. Derksen, S. Düber, J. Frisch, D. Kopp-

mann, R. Löhring, J. Blankenbach, C. van Treeck, and M. Ziegler,
“Geothermal Information System for Potential Studies in Subsurface
Soil Layers,” in Proceedings of Building Simulation: 15th Conference
of IBPSA, San Francisco, CA, USA, 2017, pp. 662–671.

34Copyright (c) IARIA, 2019. ISBN: 978-1-61208-687-3

GEOProcessing 2019 : The Eleventh International Conference on Advanced Geographic Information Systems, Applications, and Services

