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Abstract—The analysis of human behavior is the basis of under-
standing many social phenomena. Accurate and reliable human
movement pattern mining can lead to instructive insight to trans-
port management, urban planning and location-based services
(LBS). As one of the most widely used forms of transportation,
buses can tell a lot of stories about people, including passenger
demands, areas people are interested in crossing each day, and
their travel patterns. Based on a large database from a real bus
system, this paper aims to mine spatial and temporal movement
patterns of passengers: evaluating traveling time of passengers,
predicting number of passengers to estimate passenger demand
and the crowdedness in the bus, and identifying attractive
areas for passengers. There are major challenges for mining
human movement patterns on bus networks: inhomogeneous,
seasonal bursty periods and periodicities. In this paper, we take
a Poisson process approach to model and evaluate traveling time
of passengers, which can reflect the time features of individuals
and activity cycles among areas. To overcome the challenges,
we propose three prediction models and further take a data
stream ensemble framework to predict the number of passengers.
To obtain meaningful patterns of attractive areas, we provide a
hierarchical clustering based approach to group spatiotemporally
similar pick-up and drop-off points, as people’s interests to
these areas vary significantly on time, days and seasons. Our
performance study based on a real dataset of five months’ bus
data demonstrates that our approach is quite effective: among
86,411 passenger demands on bus services, more than 78% of
them are accurately forecasted.

Keywords–movement pattern; traveling time; attractive areas;
passenger demand; hierarchical clustering.

I. INTRODUCTION

Human activity patterns have received a certain amount of
attention in recent studies. Analyzing human activity data to
obtain structural information of humans has become an impor-
tant means of studying social systems. Analyzing of individual
banknotes and civil aviation traffic are notable studies in recent
years. These studies have shown that individuals follow simple
and reproducible patterns of mobility in several different
manners [1]. Mining human movement patterns can help us to
understand urban form and travel composition which can be
used to support urban planning in terms of facility location and
site selection. Meanwhile, it also helps us to explore passenger
travel demand in different areas and in different time periods
from transport management perspective, which is very useful
for bus management. From LBS providers’ perspective, the
knowledge of passenger movement and behavior pattern can
help to provide better tailored LBS, such as point of interests
(POI) recommendation for a given time within appropriate
scope.

As one of the most widely used mode of transport, bus
can tell a lot of stories. It can tell not only road network
traffic condition, but also areas people are interested in crossing
in a day and their related travel patterns, such as traffic

demand and their movement. Conventional bus information
analysis tends to focus on road network travel time and average
speed estimation. Indeed, as bus services are required by
the same individual during his/her daily routine, it offers a
proxy to capture individual human movement patterns [2].
This provides a unique opportunity for us to take advantage
of bus information to discover spatial and temporal movement
patterns of passengers, a major focus of this paper.

There are three major goals of this paper. 1) Evaluate
traveling time length of passengers. In order to get the time
features of individuals, we follow the Poisson process to
evaluate the traveling time of passengers. 2) Predict the number
of passengers to estimate passenger demand and congestion
degree. When traveling with buses, travelers care about not
only the waiting time, but also the crowdedness in the bus.
Overcrowded bus may drive away the anxious travelers and
make them reluctant to take buses. We propose a novel
methodology to produce online predictions on the passenger
demand using time series forecasting techniques. 3) Identify
attractive areas. Attractive areas are places that people often
visit, for instance, hot shopping and leisure places or living
and working areas based on their level of attractiveness (LoA).
We take bus pick-up and drop-off points as the focus in this
study, because they can convey rich information on identifying
attractive areas and associated movement patterns. An area’s
LoA can be determined by travelers’ visiting frequency, which
can be measured by the number and density of bus pick-up and
drop-off points.

Accurate, real-time and reliable human movement pattern
mining is the basis of understanding many social phenomena.
However, due to a number of stochastic variables, we need to
face the following three major challenges: 1) inhomogeneous.
A periodicity in time on a daily basis that reflects the patterns
of the underlying human activity, making the data appear
non-homogeneous. 2) seasonal bursty periods. The movement
patterns of passengers can be often messed by seasonal bursty
periods of expected events such as highly crowded holiday
events, weather changes, and so on. 3) other periodicities.
The passengers’ demands and attractive areas vary significantly
at different time of a day, different day of a week, or even
different seasons.

Aiming to address these challenges, in this paper, we
present methods to mine spatial and temporal movement
patterns of passengers on a bus network. To predict passenger
demands, we develop a unique predictive model by adapting
time series forecasting techniques to our problem. To discover
attractive sites, we develop a hierarchical clustering based
approach to group similar pick-up and drop-off points since
people’s interests to these areas varies through time of the
day, day of the week, even season of the year.

In our work, we have conducted a real study using a
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dataset obtained by a large-sized bus network containing a
total of 416 bus stops and 1,326 vehicles running in the
City of Yantai, China. Our test-bed is a computational stream
simulation running offline. The data from the first 16 weeks
were used as training set and the data from the last 6 weeks
were used as input for our stream-type test-bed, i.e., simulating
the movement patterns that would arrive continuously in a
stream. Our experiments demonstrated promising results of our
approach: our model can accurately predict more than 78% of
actual passenger demands for bus services.

Contributions. The major contributions of the paper are
summarized below.

• We take a Poisson process approach to model and
evaluate traveling time of passengers, which can re-
flect the time features of individuals and activity cycles
among this area.

• We propose three distinct prediction models and a
well-known date stream ensemble framework to pre-
dict the number of passengers to estimate passenger
demand and congestion degree. These three models
can gradually solve the challenges of inhomogeneous,
seasonal bursty periods and periodicities.

• We provide a hierarchical clustering based approach
to identify attractive areas by grouping similar pick-up
and drop-off points, since people’s interests to these
areas varies significantly at different time of a day,
different day of a week, or even different seasons.

• Our comprehensive comparative performance study
based on real datasets demonstrates the effectiveness
of our methods.

Paper Organization. The rest of the paper is organized as
follows. Section II summarizes the related work. Section III
introduces the time features of passengers. Section IV proposes
three distinct prediction models and a well-known data stream
ensemble framework to predict the number of passengers. In
Section V we introduce our study method to identify attractive
areas. Section VI describes the experiments based on a real-
world scenario, including the evaluation metrics of our model,
the experimental setup, and the experiment results. Section VII
concludes the paper and describes the future work.

II. RELATED WORK

Some studies [3] utilized data mining approaches, such
as clustering to extract meaningful information by analyzing
trajectory stops, moves and their sequences. Work in [4]
attempted to address the problem by introducing semantic
modeling process into trajectory points so that meaningful
patterns can be extracted from trajectories, as background
geographic information is of fundamental importance for both
traffic-oriented and user scenario-oriented analysis. Otherwise,
patterns may be incomplete due to the missing of POI [3].

Semantic model approach [5] combines background geo-
graphic information together with trajectory location (x, y),
and the concepts of stops and moves [6] are often used to
facilitate discovering and modeling trajectory patterns. How-
ever, semantic modeling approach is only applicable when
trajectory points can be matched with background geographic
places precisely. Since trajectories are often matched onto road
centerlines, while POIs are distributed along road links and

stored as point object in map database, this approach may
not be applicable under many circumstances unless POIs are
represented by polygons and trajectory points are dense enough
to surround these POIs.

To generate meaningful patterns, various types of clustering
techniques have been popularly used. Trajectory point den-
sity, frequency, and stay time are the most frequently used
factors to assist information extraction. For example, Alvares
et al. [5] extracted moving patterns which were assumed to
follow Markov chain between general type of stops, such
as hotels, airports and tourist places. It also assumed each
stop was located at a POI, and used travel frequency to
judge their “importance”. Palma et al. [3] identified stops
by using a density-based clustering algorithm and introducing
a “minimal stop durations” which takes into account of the
average periodicity of the trajectory time points. Li et al. [4]
further considered users’ travel experiences, and discovered the
association among these points, for instance, classical travel
sequence. Verhein and Chawle [7] defined spatio-temporal
association rules and related concepts and found patterns using
pruning properties based on synthetic dataset.

Different from the above studies which are mostly based
on limited amount of personal trajectories, our study uses large
amount of bus information data to explore time-dependent
attractive areas and movement patterns. Such patterns can
be represented by high traffic demand areas and passenger
movement among them. This is more complex in terms of
wider geographic coverage and diverse individual trip pur-
poses. Since bus pick-up and drop-off points represent traffic
demand, clustering these points is a feasible approach to
discover areas with high travel demand. During this process,
travel interactions among the clusters and other information
are obtained. The detailed approach will be illustrated in the
following sections.

III. TRAVELING TIME OF PASSENGERS

As one of the main parts of mining spatial and temporal
movement patterns of passengers, we first put all the buses as a
whole to study the traveling time of passengers. Based on this
result, we may roughly get the time features of individuals and
activity cycles among this area. We follow the Poisson process
to predict the traveling time and assume that at a given interval
time t, the probability of n-incident occurred is:

P (n, q) = e−qt (qt)
n

n!
(1)

Here, q represents the probability of an event occurrence.
Based on (1), we can derive that the interval distribution of
two consecutive events is:

P (τ) = qe−qτ (2)

Here, τ means the traveling time of two consecutive events.
To test this hypothesis, we analyze the data of traveling time
and find that the distribution of traveling time over all buses
is well approximated by a Power-law:

P (τ)∞τ−α (3)

Here, the exponent is between 2.20 and 2.90. We also find
that the traveling time of passengers are mainly in the range of
15-30 minutes, and only a small portion of intervals are longer

95Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-383-4

GEOProcessing 2015 : The Seventh International Conference on Advanced Geographic Information Systems, Applications, and Services



(a) a sequence of events.

(b) the interval time of successive events.

(c) the distribution of data points.

Figure 1. The distribution of the traveling time.

than an hour. The results of traveling time analysis are shown
in Figure 1.

Figure 1 shows the traveling time distribution of passen-
gers. Figure 1(a) shows a sequence of events. Each vertical
line means an occurrence of the incident at that time. Figure
1 (b) shows the interval time of 200 successive events, and
the length of the vertical line corresponds to the time interval
for two consecutive events. Figure 1(c) shows the distribution
of part of the data points in (a) and (b) diagrams in double
logarithmic coordinates.

IV. THE PASSENGER DEMAND PREDICTION

Our goal is to predict the number of passenger demands of
a certain bus b at the bus stop s at instant t. To achieve this,
we have studied three distinct prediction models, and a data
stream ensemble framework.

A. Time Varying Poisson Model
The passenger demand on bus services normally follows a

periodic pattern on a daily basis.
Here, we assume the probability P (n) of n buses appearing

in a determined time period follows a Poisson distribution. We
can define it using the following equation:

P (n;λ) =
e−λλn

n!
, (4)

Here, λ represents the rate (averaged number of passenger
demands on bus services) in a fixed time period. However,

in this specific problem, the rate λ is not constant but time-
variant. Thus, we adapt it as a function of time, i.e., λ(t), and
transform the Poisson distribution into a nonhomogeneous one.
Let λ(t) be defined as follows:

λ(t) = λ0δd(t)ηd(t),h(t), (5)

Here, d(t) represents the weekday {1 = Sunday, 2 =
Monday, ...}; h(t) is the period in which time t falls in.

The model requires the validity of both equations
7∑

i=1

δi = 7, (6)

T∑
t=1

δt,i = T ∀t, (7)

where T is the number of time spans in a day. To ease the
interpretation of these equations, we can define the remaining
symbols as follows:

• λ0 is the average rate (i.e., expected rate) of the
Poisson process over a full week;

• δi is the relative change for the day i (Saturdays have
lower day rates than Tuesdays);

• ηj,i is the relative change for the period i on the day
j (the peak hours);

• λ(t) is a discrete function representing the expected
distribution of passenger demands on bus services over
time for a bus stop of interest s.

B. Weighted Time Varying Poisson Model
The model above can predict the time-dependent average

number of passenger demands on bus services. However, it is
not guaranteed that every bus stop has highly regular passenger
demands: indeed, the demands in many stops can be often
messed by seasonal bursty periods of expected events such as
highly crowded holiday events, weather changes, and so on.

To tackle this special seasonal issue, we propose a weighted
average model based on the above presented approach. Our
goal is to increase the relevance of the demand pattern ob-
served in the last week comparing to the patterns observed
several weeks ago.

Here, the weight set w is calculated using a well known
time series approach – the Exponential Smoothing approach
[8]. We define w as follows:

w = α ∗ {1, (1− α), (1− α)2, ..., (1− α)λ−1}, (8)

Here, λ is the number of historical periods considered in the
initial average, α is the smoothing factor (i.e., a user defined
parameter) and 0 < α < 1.

C. Autoregressive Integrated Moving Average Model
The last two models assume the existence of a regular

(seasonal or not) periodicity in passenger demands on bus
services. However, there are other periodicities, for example,
the number of passenger demands in one bus stop of a certain
bus in regular workdays during a certain period is highly
similar. Moreover, the number of passenger demands on bus
services in the morning and in the evening of the same day is
also very similar.

96Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-383-4

GEOProcessing 2015 : The Seventh International Conference on Advanced Geographic Information Systems, Applications, and Services



We explore the Autoregressive Integrated Moving Average
Model (ARIMA) [10]. In this model, the future value of
a variable is assumed to be a linear function of several
past observations and random errors. We can formulate the
underlying process that generates the time series (passenger
demands on bus services over time for a given bus stop s) as:

Rs,t = θ0 + φ1Xs,t−1 + φ2Xs,t−2 + ... + φpXs,t−p

+εs,t − θ1Xs,t−1 − θ2Xs,t−2 − ...− θqXs,t−q
(9)

Here, Rs,t and εs,t are the predicted value and the random
error at time period t respectively; φl(l = 1, 2, ..., p) and
θm(m = 0, 1, 2, ..., q) are the model weights; p and q are
positive integers often referred as the orders of the model.
Orders and weights can be inferred from the historical time
series using both the autocorrelation and partial autocorrelation
functions.

D. Sliding Window Ensemble Framework
We have proposed three distinct predictive models to learn

from long, medium and short-term historical data. Then, how
can we combine them all to further improve our prediction?

Let M = {M1,M2, ..., Mz} be a set of z models of interest
to model a given time series and Mt = {M1t,M2t, ..., Mzt}
be the set of forecasted values to the next period on the interval
t by those models. The ensemble forecast Et is obtained as

Et =
z∑

i=1

Mit

β
, β =

z∑

i=1

ρiH (10)

where ρiH is the forecasting accuracy obtained for the model
Mi in the periods contained in the time window [t − H, t].
H is a user-defined parameter to define the window size. As
the information is arriving in a continuous manner for the
next periods {t, t + 1, t + 2, ...}, the window will also slide
to determine how are the models performing in the last H
periods. To estimate such accuracy, we take a time series
forecasting error metric: the Symmetric Mean Percentage Error
(sMAPE) [11].

V. DISCOVERY OF ATTRACTIVE AREAS OF PASSENGERS

Since each pick-up and drop-off stop can only represent
the approximate location where travel demand generates from,
it is more proper to represent LoA using a polygon instead of
a point. Clustering is a feasible method to eliminate noises
in discovering the patterns while defining the borders of
attractive areas. After pick-up and drop-off points are clustered,
passenger movement pattern can be identified more clearly
with more information, such as flow interaction and average
travel distance.

Since the number of clusters cannot be known beforehand,
we take a hierarchical or agglomerative clustering algorithm in-
stead of partition clustering. An example of partition clustering
is k-mean, which requires a pre-knowledge of cluster number
and the shapes of all clusters have to be convex. We follow
the notion that the distance dist(i, j) between two points (i, j)
measures their dissimilarity and determines the possibility as
a cluster. Here, we adopt Euclidean distance. Some studies
consider network constraint as an improvement in trajectory
clustering, however, in this study, as the interest is in “area”,
Euclidean distance is more proper.

We take the single-linkage or nearest neighbor clustering
criterion, which is one of the most widely used clustering
criterias:

Dist(cn, ck) = Min(Dist(ci, ck) + Dist(cj , ck)) (11)

where two clusters Ci and Cj are merged to generate a new
higher level cluster Cn, and Ck is the remaining cluster.

Algorithm 1 Clustering Algorithm
Require:

matrix D contains all distances d(i, j).
Ensure:

L(k) is the level of the kth clustering;
the proximity between clusters (n) and (k) is denoted as
d[(n), (k)].

Level L(0) = 0;
sequence number m = 0;
while objects in more than one clusters do

Find the least dissimilar pair of clusters in the current clustering;
d[(n), (k)] = mind[(i), (j)];
Cluster(m)=cluster(n) + cluster(k);
Merge clusters (n) and (k) into a single cluster to form the next
clustering m;
L(m) = d[(n), (k)];
m = m + 1;
Update matrix D;

end while

Hence, the distance between two clusters is computed as
the distance between the two closest elements in the two
clusters. As a result, clusters may be forced together due to
single elements being close to each other, even though many of
the elements in each cluster may be very distant to each other.
This is called as “chaining phenomenon”, and is usually treated
as a drawback of single-linkage method. However, the bus
information is constrained by linear road links which makes
the most distinctive feature comparing with other spatially
distributed data. Conventional clustering algorithms, even the
emerging spatio-temporal clustering method [9] do not take
linear distribution into consideration. Based on the notion that
vehicles driving on the same road links usually share similar
destination, trajectories along the same road link thus are more
similar compared with those distributed on different road links
even if with smaller spatial distance. Therefore, more weight
is given to the trajectory points on the same road link, which
exactly conforms to the chaining phenomenon.

Moreover, single-linkage clustering is deterministic, in the
sense that the resulting clusters do not depend on the order
in which elements having equal distances are chosen. This is
not necessarily true of other linkage schemes. The clustering
algorithm is described in Algorithm 1.

VI. EXPERIMENTAL RESULTS

In this section, we first describe the experimental setup
developed to test our model on the available data, then present
and discuss the results.

A. Experimental Analysis of Passenger Demands
Our model produces an online forecast for the passenger

demands in all bus stops at each P-minutes period. Such test
is through an offline continuous simulation. The scripts used
are developed using the R statistical software. The predefined
functions used and the values set for the model’s parameters
are detailed along this section.
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TABLE I. ACCURACY OF MODELS USING ALPHA(α)=0.4.

Model Periods
5am to 9am 9am to 1pm 1pm to 5pm 5pm to 9pm

Poisson Mean 75.83% 71.69% 74.13% 73.58%
W. Poisson Mean 76.98% 74.27% 75.76% 75.18%

Arima 78.35% 73.79% 76.28% 75.99%
Ensemble 79.26% 76.59% 78.39% 77.96%

TABLE II. ACCURACY OF MODELS USING ALPHA(α)=0.5.

Model Periods
5am to 9am 9am to 1pm 1pm to 5pm 5pm to 9pm

Poisson Mean 75.83% 71.69% 74.13% 73.58%
W. Poisson Mean 76.63% 73.58% 74.86% 74.39%

Arima 78.35% 73.79% 76.28% 75.99%
Ensemble 79.37% 76.62% 78.33% 78.06%

Here, the aggregation period is set to 30 minutes (i.e., a
new forecast is produced each 30 minutes; P=30) and a radius
of 100 meters is used (W = 100). These parameters are set
according to the average waiting time in bus stop ( < 21
minutes).

The previously described dataset is divided into a training
portion of 16 weeks, and a test portion of 6 weeks. Both
training and test set are composed by one time series per bus
stop and each value tested on the period t is merged to the
training set to generate the forecast on the period t + 1, i.e.
the real number of passenger demands count for each bus at
a given bus stop along 30 minutes are considered for the next
period forecast, and so on.

The time-varying Poisson averaged models (both weighted
and non-weighted) are updated every 24 hours. A sliding
window of 4 hours (H=4) is considered in the ensemble. The
accuracy of each model is measured using the metric, which
is also used to weight each model in the ensemble - sMAPE.
Distinct results for two distinct values (0.4 and 0.5) of the
parameter alpha (α in the weighted average) are presented
below.

A total of 86,411 bus services are tested. The accuracy
measured for each model is presented in Table I and Table II.
The results are firstly presented per shift and then globally.
The values presented below are calculated through an average
weight of the accuracy obtained in each one of the time series
(i.e., the accuracy of the forecast on the passenger demand for
buses on each one of the 416 bus stops). Each accuracy is
weighted according to the number of services demanded on
the corresponding bus stop along all the test periods.

Each model presents accuracy above the 76% in both
tables. The W. Poisson Mean and the Ensemble are the only
ones affected by the changes on the alpha (α) parameter. The
sliding window ensemble is always the best model in every
shift and period considered, with an accuracy superior to 78%:
67,400 of the 86,411 total services are correctly forecasted
in both time and space using an aggregation of 30-minutes
periods.

B. Experimental Analysis of Attractive Areas
To discover attractive areas, or so-called hot regions, we

choose those areas that have over 60 pick-up and drop-off
points. This is because each time span is 4 hours, i.e., 240
minutes. The 60 points can ensure there emerges at least one

TABLE III. CLUSTERING RESULTS ON MONDAY.

Time Span Total points No. of clusters (n>60)
5am-9am 10,682 12
9am-1pm 7,205 32
1pm-5pm 9,420 28
5pm-9pm 8,793 21

TABLE IV. CLUSTERING RESULTS ON SATURDAY.

Time Span Total points No. of clusters (n>60)
5am-9am 5,481 36
9am-1pm 7,915 28
1pm-5pm 9,506 15
5pm-9pm 10,472 21

pick-up or drop-off point in the cluster less than every 4-minute
in average, which is dense enough. As described above these
vehicles usually run in one out of four 4-hour shifts: 5am-
9am, 9am-1pm, 1pm-5pm and 5pm to 9pm. Each time span
corresponds to a cluster result, as summarized in Table III
and Table IV. Table III shows the cluster results on Monday,
while Table IV shows the cluster results on Saturday. From the
total number of pick-up and drop-off points and the number
of clusters, we can see that on a typical workday, people tend
to be more active during the time span of 5am-9am and 1pm-
5pm, while in a typical weekend, people tend to be more active
in the afternoon and at night.

Figures 2 and 3 give an overview of the distribution of
studied bus pick-up and drop-off points on workdays and on
weekends separately. From the distribution of the clusters in
two figures, it can be further observed that the distribution of
the attractive areas follow certain pattern while vary crossing
workdays and weekends. For example, there are some areas
which remain attractive, though the sizes of them vary with
time. There are also areas whose LoA are time-dependent.
Moreover, we can see that people’s activities are more con-
centrated on work places and living places on workdays,
while places of amusement and schools are more attractive
on weekends.

Figure 2. The cluster distribution on workday.

C. The Analysis of Movement Patterns of Passengers
The billing system of bus services records each passenger’s

behavior when a passenger gets on a bus and gets off a bus.
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Figure 3. The cluster distribution on weekend.

Therefore, there is a certain correlation between the data of
buses and the behavior of people in bus services. In order to
study the correlation, we explore the data of buses to find the
behaviors of people. The foregoing analysis shows that people
who take a bus service may have the following characteristics:

• The service time is mainly about 15-30 minutes and
only a minority is longer than an hour. The distribution
of service time interval is approximated by a Power-
law.

• In 77% cases, the number of passengers is over the
available capacity of bus services. That means the
buses are too crowded in most cases.

• Passengers’ active time is often much concentrated.
People tend to be more active during the time span
of going to work and getting off work on workdays,
while on weekends, people tend to be more active in
the afternoon and at night.

• Attractive areas are time-dependent. People’s activities
are more concentrated on work places and living
places on workdays, while places of amusement and
schools are more attractive on weekends.

VII. CONCLUSION

In this paper, we present our work on mining spatial and
temporal movement patterns of passengers on bus networks
from three aspects: evaluating traveling time of passengers,
predicting number of passengers to estimate passenger demand
and congestion degree, and identifying attractive areas. The
study is performed by transforming both GPS and event signals
emitted by 1,326 buses in the City of Yantai, China into time
series of interest. As a result, our method is able to identify
attractive areas and predict passenger demand on buses at each
one of the 416 bus stops at every 30-minutes.

Our method demonstrates a satisfactory performance, and
predicts accurately more than 78% of the 86,411 demanded
services, anticipating in real time the spatial distribution of
the passenger demand. The approach is novel and can provide
instructive insight to transport management, urban planning
and location-based services. In particular, our work has major
practical impact to help the management of bus companies to
provide optimal services based on the knowledge of passenger
movement patterns.
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