GEOProcessing 2015 : The Seventh International Conference on Advanced Geographic Information Systems, Applications, and Services

Geocoding with OpenStreetMap Data

Konstantin Clemens

Service-centric Networking
Telekom Innovation Laboratories
Technische Universitit Berlin, Germany
Email: kclemens@tu-berlin.de

Abstract—OpenStreetMap (OSM) is a platform where users con-
tribute geographic data. To serve multiple use cases, these
data are held in a very generic format. This makes processing
and indexing OSM data a challenge. Nominatim is an open
source search and geocoding engine that consumes OSM data.
While Nominatim does process OSM data well, it does not use
term frequency — inversed document frequency (TF/IDF) based
ranking of search results. Lucene is a framework offering TF/IDF
for ranking of indexed documents. In this paper Nominatim’s
processing of OSM data is utilized to assemble full addresses
with their geocoordinates. These addresses are then indexed in
Elasticsearch, a web service on top of Lucene. The resulting
TF/IDF based geocoding system is benchmarked in comparison
with plain Nominatim. The analysis shows: TF/IDF based ranking
yields more accurate results, especially for queries with unordered
address elements or only partially specified addresses.

Keywords—Geocoding, Address Search, OSM, Nominatim, Elas-
ticsearch

I. INTRODUCTION

OSM data consist of the three entity types node, way, and
relation. For referencing, each entity type has an ID. There
are also additional attributes specifying a contributor and a
version.

Nodes have values for longitude and latitude, thus they
model points on the globe. Ways compose lines between points
by specifying ordered lists of node references. Relations, in
turn, may reference both ways and nodes. Therefore relations
can model complex geographic features as polygons with
holes as well as specify, e.g., a center point for displaying
pins on the map. Relations may also reference other relations
assembling abstract entities that span several 'real things’ such
as universities with multiple, wide-spread buildings or groups
of islands. Finally, nodes, ways, and relationships can hold
an arbitrary number of tags. These key-value pairs specify
names, categories, address elements, house number ranges,
data sources, speed limits, and other attributes of real-world
features that the entities model.

Because of the structure of data, address elements are often
spread across different entities. For example, a node might only
be tagged with a house number, while the way that references
this node only holds the street name information. The way,
may be covered by a relation that represents the postal code
area. However, the relation not necessarily references the way.
Therefore, to offer a geocoding service, addresses need to be
assembled out of these OSM entities first.

Nominatim is an open source system that builds on top
of OSM data to provide a geocoding service. That means,

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-383-4

Nominatim resolves named locations (full addresses, or named
areas) into latitudes and longitudes of their whereabouts. Nom-
inatim is implemented in multiple programming languages and
builds on top of a PostGIS enabled PostgreSQL data base. It
offers a pipeline that parses, assembles, and indexes OSM data.
Unlike document stores, Nominatim also precomputes result
ranks at indexing time, independent of queries.

In contrast to that, Lucene is a generic open source doc-
ument indexing framework. Lucene supports various ranking
schemes for ordering results, including TF/IDF [1][2]. TF/IDF
is a formula to rank documents based on query terms and their
distributions. Particularly, a document is ranked higher, if it
contains query terms that are rarely used in other documents.
In the same way, a document is ranked lower, if it only
contains query terms that are very common. Elasticsearch is a
document store that uses Lucene internally to index, find, and
rank documents.

In general, geocoding services utilize several algo-
rithms [3][4][5][6]. They have to parse addresses, recognize
address elements, derive their meaning, and rank and filter
discovered candidates. The index of address data thereby has
to be both fuzzy and robust against errors in queries and source
data as well as precise enough to rule out ambiguously named
address parts that a query did not refer to. TF/IDF based
ranking strives to fulfill these requirements with unstructured
documents. Because of that, Nominatim is compared to the
generic document store Elasticsearch in this paper.

II. EXPERIMENT

To compare Nominatim and Elasticsearch, first Nominatim
has been set up with OSM data for Europe. Next, the function
Nominatim uses to assemble search results has been used
to extract all available addresses. Finally, an Elasticsearch
instance has been set up next to Nominatim and populated
with the extracted addresses. This way two geocoders with
the same addresses indexed were running next to each other:
Nominatim with pre-ranked results as well as TF/IDF based
Elasticsearch. Note that while Nominatim has loaded and
indexed all of OSM data, only assembled addresses have been
indexed in Elasticsearch. Thus, extended features of OSM and
Nominatim, e.g., translated addresses, were not available in
Elasticsearch.

For the first experiment, 2000 randomly selected addresses
were extracted from the Nominatim database. In accordance to
the set up, the addresses were from various European countries
and were all indexed in both systems. From these addresses
queries with exact addresses have been generated first. The

GEOProcessing 2015 : The Seventh International Conference on Advanced Geographic Information Systems, Applications, and Services

2000 querying for shuffled addresses tokens - indexed addresses

I nominatim
[elastic search

1500 1

1000 1

of found addresses in first result

v
o
)
T
L

0 unshuffled 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25
% of address tokens left in query

Figure 1. Nominatim and Elasticsearch on full and partial addresses.

next set of queries contained shuffled address tokens. This
simulated queries that do not adhere to an address format.
Finally in steps of 5% random address tokens have been
removed from the queries, simulating incomplete requests. A
request was regarded as successfully served, if the first result
of the response was the address the query has been generated
from. The number of successful requests of the respective
systems is displayed in Figure 1.

The second experiment used 1000 addresses of German
pharmacies. Only addresses indexed in both systems have
been used. To count successful requests, all addresses have
been geocoded with Google’s geocoder. Because Google data
and OSM data differ, different coordinates for same results
have been expected. Therefore distances of the first result to
Google’s geocoordinates have been grouped into buckets. The
buckets within 100m, 100m-1000m, further than 1000m, and
no result have been used. For a general purpose geocoder, only
the first bucket should be treated as a successful result. Similar
to the first experiment, requests with full addresses as well as
requests with only 75% of the address tokens have been stated.
Table I enumerates the results.

TABLE 1.

NOMINATIM AND ELASTICSEARCH ON PHARMACY ADDRESSES.
full addresses | within 100m 100m-1000m further 1000m no result
Nominatim 946 0 0 54

Elasticsearch 1000 0 0 0
75% address | within 100m 100m-1000m further 1000m no result
Nominatim 399 13 0 588

Elasticsearch 988 11 1 0

Note that addresses used in the first experiment have been
generated by Nominatim. They contained many additional
address elements stating administrative areas that are not
commonly mentioned in German postal addresses. Pharmacy
addresses where of that common type: They only contained
the four address elements house number, street, city, and postal
code. This is why for the second experiment only addresses
with 75% address tokens have been used next to the full
addresses: Most of them lacked exactly one token which
made up an entire address element. Also some of the chosen
pharmacies were already present as POIs in the OSM data set
in addition to their addresses. Still, because the pharmacies’
addresses have been used to create requests, the presence or

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-383-4

absence of a POI in OSM has not influenced the result.

III. RESULTS

Figure 1 shows that Nominatim is incapable to deal with
shuffled address tokens: it recognizes only a small fraction of
the addresses that Elasticsearch can find. While more missing
address tokens lead to less accurate results of Elasticsearch
proportionally, the performance of Nominatim at first increases
slightly. Because less tokens can be shuffled in less ways,
Nominatim reaches it’s sweet spot at ca. 70% of address tokens
being queried. After that addresses become less distinctive
and Nominatim decreases in accuracy in the same way as
Elasticsearch. Also, already for full addresses Elasticsearch
outperforms Nominatim.

According to Table I, Nominatim fails to geocode 54 full
addresses. All full addresses are resolved by Elasticsearch to
100m correctly. Again, there is a big drop in Nominatim’s
performance for incomplete addresses with shuffled tokens —
only 399 addresses are still found, while Elasticsearch manages
to geocode 988 addresses into the within 100m bucket.

IV. CONCLUSION

The experiments showed that Nominatim is tightly coupled
to specific address formats. This is a strong limitation, as there
are contradicting address formats world wide [7]. It is also
clear that preranking results independent of queries leads to
less accurate results. It is worth noting that the experiments
only took queries for street addresses with house numbers into
account. The actual ratio of queries for named areas should be
incorporated into benchmarks of live services.

Elasticsearch has proven to be more robust against shuffled
and dropped address tokens. Because of that, for geocoding
addresses Flasticsearch populated with addresses assembled
by Nominatim yields better results than Nominatim alone.
It is also clear that TF/IDF ranking is more suitable for
geocoding than precomputing result ranks. Obviously, the
actual performance of a geocoding system highly depends
on the actual queries. Still, Elasticsearch can be used as a
solid base line when developing and comparing geocoding
algorithms and indexes.

REFERENCES

[1] G. Salton and C.-S. Yang, “On the specification of term values in
automatic indexing,” Journal of documentation, vol. 29, no. 4, 1973,
pp- 351-372.

[2] G. Salton, C.-S. Yang, and C. T. Yu, “A theory of term importance in
automatic text analysis,” Journal of the American society for Information
Science, vol. 26, no. 1, 1975, pp. 33-44.

[3] J. Fitzke and R. Atkinson, “Ogc best practices document: Gazetteer
service-application profile of the web feature service implementation
specification-0.9. 3,” Open Geospatial Consortium, 2006.

[4] D. Goldberg, J. Wilson, and C. Knoblock, “From text to geographic
coordinates: The current state of geocoding,” URISA-WASHINGTON
DC-, vol. 19, no. 1, 2007, p. 33.

[5S] D. Yang, L. Bilaver, O. Hayes, and R. Goerge, “Improving geocoding
practices: evaluation of geocoding tools,” Journal of Medical Systems,
vol. 28, no. 4, 2004, pp. 361-370.

[6] L. Can, Z. Qian, M. Xiaofeng, and L. Wenyin, “Postal address detection
from web documents,” in Web Information Retrieval and Integration,
2005. WIRI’05. Proceedings. International Workshop on Challenges in.
IEEE, 2005, pp. 40-45.

[71 K. Clemens, “Automated processing of postal addresses,” in GEOPro-
cessing 2013, The Fifth International Conference on Advanced Geo-
graphic Information Systems, Applications, and Services, 2013, pp. 155—
160.

