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Abstract— Visualizing density and distribution information is a 

key support for understanding spatio-temporal phenomena 

represented by point data. However, the temporal information 

is not yet adequately handled in existing density map 

approaches. In this paper, we propose a novel approach for the 

creation of a 2D density surface - using contour intervals – for 

dynamic points or phenomena. Our method is based on a 

rainbow color scheme, which enables the user to visually 

extract spatio-temporal changes of point density and 

distribution. Furthermore, we present various possibilities for 

extending and improving our approach. 

Keywords-spatio temporal density map; rainbow color 
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I.  INTRODUCTION 

Visualization helps to investigate and understand 
complex relationships in a spatial context. Maps account as 
one of the most powerful visualization forms. They represent 
geographic information in abstract ways that support the 
identification of spatial patterns and the interpretation of 
spatial phenomena.  

Furthermore, the visual presentation and analysis of 
dynamic data and dynamic phenomena is currently a hot 
research topic [1].  

Hence, in today’s society, the need for data abstraction 

along with the growing amount of available digital geodata is 
rapidly increasing. One reasonable way of abstracting data is 
provided by density maps [2].  

Density maps can be applied for point data in various 
fields, for instance, in physical or human geography, 
geology, medicine, economy or biology [3, 4]. How to 
present the density for dynamic data/phenomena is, however, 
not yet adequately addressed. 

In this paper, we introduce a novel density mapping 
approach for spatially and temporally changing data.  

In the next section, the state of the art related to density 
maps, in particular, an overview of approaches considering 
the dynamics of movement data in the density visualization 
is given. In the section afterwards, our own approach is 
described in detail, followed by implementation processes, 
discussions of the results and a conclusion. 

II. DENSITY MAPS - STATE OF THE ART 

One of the most straight forward ways to visualize point 
density is a scatter plot or a dot map. Graphic variables for 
point symbols, such as size, shape, color and transparency, 

can depend on point’s attribute value. In order to discern the 
density distribution, these graphic variables can be iteratively 
adapted to the given map scale, but still the occlusion of 
neighboring points cannot be always desirably avoided. The 
density value of each point can be obtained by counting all 
points within a buffer around the point or within a grid cell 
the point is located in.  

In the following, the density estimation and map 
principles are shortly presented and the state of the art of 
density maps with static or dynamic data is given. 

A. Kernel Density Estimation (KDE) 

The Kernel Density Estimation (KDE) [5] is a classic 
method widely used to determine densities of individual 
points that represent a continuous surface. The KDE 
approach is described in detail in [5, 6, 7]. The standard 
KDE, a normal distribution function, uses a Gaussian kernel. 
A certain bandwidth (search radius) is defined for the 
kernels, located around each point. For each cell of an 
underlying grid (defined by a certain resolution) a density 
value is calculated and hence a smooth surface is provided 
[8]. The bandwidth value strongly influences the density 
surface [9]. A formula for an optimal bandwidth is proposed 
by Silverman [6]. Kernel density estimates have been used 
for cluster detection in various fields, such as crime analysis. 
Kwan [10] uses geovisualization of activity patterns in 
space–time and displays the results as a continuous density 
surface. She applies the density estimation as a method of 
geovisualization to find patterns in human activities related 
to other social attributes. Assent, Krieger, Müller, and Seidl 
[11], Krisp and Špatenková [12], and Maciejewski, et al. [13] 
investigate the classic kernel density estimation and define it 
as a visual clustering method. In these works, KDE maps 
were created in order to visually provide a better overview 
and insight into the given data. 

B. Contour lines and intervals 

A common technique to map point densities calculated 
using KDE are isopleth maps with filled contour intervals. 
The term “isopleth map” (isopleth = equal in quantity and 
number), refers to one of two types of isoline maps (also 
called isarithmic or contour maps). In the first type of isoline 
maps each contour line indicates a constant rate or ratio 
derived from the values of a buffer zone or kernel area. In 
this sense, the continuous density surface is derived from an 
originally discrete surface. In the other type of isoline maps 
(commonly referred to “isometric map”), contour lines 
(isometers) are drawn through points with directly 
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measurable equal value or intensity such as terrain height or 
temperature [14]. It is assumed that the data collected for 
enumeration units are part of a smooth, inherently 
continuous phenomenon [15]. In this paper, we only use 
contour lines to delimit the intervals (the areas between 
contour lines). Furthermore, Langford provides a good 
overview of density surfaces used in Geographic Information 
Systems (GIS) as choropleth population density maps, 
population density on grids, population density surfaces, and 
pseudo-3D population density surfaces [16]. In several 
works as [3, 4], the KDE concept is adapted for the 3D-
Space density mapping of static 3D data.  

C. Dynamic data and density information 

In the last years, we published several papers related to 
visual analysis of moving objects with a focus on the 
representation of dynamic lightning data [17, 18, 19]. In 
these works, different visualization methods were proposed 
for moving lightning point data. However, density surfaces 
were not yet taken into account. 

In the following sub-sections, an overview is given about 
existing works related to density maps of dynamic points.  

1) KDE for dynamic points 
A straightforward way of visualizing the density of 

dynamic points would be a sequence of density surfaces (one 
per time interval) as reported in [20]. The change of the 
density in time could be better discernable by means of an 
animation of these density maps. Another option would be to 
use an individual Kernel density map with a unique color 
scheme that fills the areas between the contour lines. Due to 
the movement of points (as for example swarms), however, 
the tinted intervals may spatially overlap and make the map 
reading a difficult endeavor. 

2) Dual KDE 
Jansenberger and Staufer-Steinocher [21] analyzed two 

different point data sets recorded within the same area, but at 
two different moments of time. The authors suggest a Dual-
KDE approach, which results in a map illustrating the spatio-
temporal density difference of the two datasets. The absolute 
difference is used, that is, the absolute density of the second 
point data set subtracted from that of the first point data set.  

3) DKDE 
The approach called Directed Kernel Density Estimation 

(DKDE) that is able to take the dynamics of moving points 
inside density maps into account was suggested in previous 
works [22, 23, 24, 25, 26]. The DKDE is applicable for 
discrete moving points and it considers two moments of 
time. Instead of an upright kernel as in the KDE method, a 
titled kernel is used. The tilt depends on the movement 
direction vector of the respective point. The resulting 
DKDE-map shows the so-called “ripples”, which can be 
interpreted as an indicator for the movement direction and 
density change of points that are located closely to each other 
with very similar movement speeds and directions. These 
ripples are visible among overlapped contour lines. The 
tinted contour intervals do not contain the information about 
movement or density change. 

4) 3D density map using space time cube 

Nakaya and Yano [27] suggest a method using a space–
time cube to visually explore the spatio-temporal density 
distribution of crime data in an interactive 3D GIS. In order 
to investigate the dynamics and density change, an 
interactive use within a 3D environment is essential. 

5) KDE for trajectories 
In a comprehensive review of the existing visual analysis 

[1], methods, tools and concepts of discrete objects point 
data were introduced. A section is dedicated to continuous 
density surfaces (fields) derived from trajectories or from 
point-related attributes. Density maps of moving objects 
were created on the basis of aggregated points of trajectories. 
A trajectory is understood as a function of time or a path left 
by a moving object in space. Moving objects can be confined 
within a network (such as cars along streets of a traffic 
network) or float freely over a region (boats) or in space 
(airplanes). Spatio-temporal density maps of trajectories 
were investigated in [28, 29, 30, 31]. In these approaches, the 
KDE method is adapted to trajectories as a function of 
moving velocity and direction. The resulting density maps 
can reveal simultaneously large-scope patterns and fine 
features of the trajectories. This mapping idea was extended 
to the 3D space in [29] where the trajectory densities are 
visualized inside a space-time cube.  

Another possibility of displaying density information of 
trajectories is to use derived discrete grid cells, whereby each 
cell color refers to the amount of trajectories passing through 
the cell [32, 33]. 

D. Research questions 

In the existing 2D density maps based on KDE, the time 
is either frozen on a certain moment or confined within a 
certain time interval. Consequently, the resulting contour 
lines do not carry information of temporal changes. Although 
various approaches for density visualization of trajectories 
have been investigated, an appropriate method for 2D 
density maps of moving point clouds is still missing. Can the 
dynamics of spatially extended phenomena - represented by 
points - be adequately expressed in a single contour map? 
This research question remains unsolved. In the following 
sections, we will tackle this question and introduce a new 
approach termed Spatio-Temporal Density Mapping or 
STDmapping. 

III. METHODOLOGY 

A. Test data  

We used lightning points recorded by LINET, a lightning 
detection network [34], as the test data set. It contains 
altogether 7100 detected lightnings in the region of Upper 
Bavaria (47°N–49°N Latitude and 10°E–12,5°E Longitude) 
on 22.07.2010 between 2pm and 9pm. Each point is encoded 
with its geographic coordinates (longitude, latitude) as well 
as the exact lightning occurrence time. The recorded height 
information is not considered within our approach. 

Figure 1 illustrates the provided lightning point 
coordinates projected onto a plane surface a using black dots. 
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Figure 1.  Initial test data set. 

Visual analysis methods for these lightning points, which 
represent the moving phenomena of a thunderstorm, were 
published in [17, 18, 19]. 

B. Initial situation and basic idea of the new approach 

First of all, we applied KDE using Silverman’s formula 
for calculating an optimal kernel bandwidth [6] to the given 
test data set. On top of the resulting density contour map, we 
overlay the initial points, which change colors whenever a 
time interval has been crossed. In doing so, we used a time 
interval of 10 minutes starting at 2 pm for the temporal 
clustering. Additionally, we applied a buffer threshold of 6 
km for the spatial clustering.  

 

  
Figure 2.  KDE map and clustered points. 

Details of the temporal and spatial clustering including 
explanations for thresholds can be found in [17, 18, 19]. 

The resulting map is shown in Figure 2. The density 
layers in grey tones in Figure 2 do not bear any temporal 
information. But, the overlaid lightning points are segmented 

and colored according to the different time intervals, thus 
reveal the dynamic changes. In Figure 2 two moving 
lightning clusters are perceivable within the test area. Their 
geographic and temporal locations are apart from each other 
with one formed lower left starting around 2pm and the other 
upper left occurring around 6pm. The initially lower left 
point cluster is moving north-eastwards from 2pm (red dots) 
to 6pm (green dots). The initially upper left cluster is also 
moving north-eastwards from 6pm (green dots) to 9pm 
(purple dots). 

C. Workflow 

In Figure 3, an overall workflow of our approach is 
illustrated.  

 
Figure 3.  Workflow of STDmapping of lightning data. 

Initial lightning point data are explained in Section III.A. 
As described in Section III.B, first of all a density contour 
map using KDE is created. Additionally, the given point data 
set is temporally and spatially clustered. In the next step, the 
overlapping clusters (in case they are temporally successive) 
are detected and allocated towards independent tracks. 
Cluster centroids are embedded in the trajectories. A detailed 
description about these steps can be found in [17]. A linear 
approximation of each track trajectory results in a tendency 
line, which represents the average moving direction of the 
point cluster. The linear approximation can be based either 
only on the cluster centroids or on the entire point data sets 
of a track. 

Based on this new approach, we have on the one hand the 
density surfaces represented by layered tints between 
neighboring contour lines and on the other hand we have the 
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tendency line with either abrupt or smooth transition at 
borders of temporal clusters. This temporal border is a line 
that lies perpendicular to the tendency line passing through 
the average locations of all points within 10 minutes before 
and after a full hour. If the phenomenon is moving, all points 
between the “1 pm line” and the “2 pm line” are grouped 
into the temporal interval “1 pm - 2 pm”. 

The question being addressed now is how we can 
incorporate the dynamics inside the density map. The idea is 
to divide the tendency line into temporal parts, which in turn 
guide the segmentation of the density surface. Different 
surface segments carry different color hues. Within the same 
surface segment, the color hue remains the same but its 
intensity varies with the change of density.  

In our approach, we adopted the “rainbow color scheme”, 
which is essentially the visible and continuous 
electromagnetic spectrum. Its main color hues transit from 
red, orange, yellow, green, blue to violet. The spectrum can 
be divided into an arbitrary number of intervals. Users may 
easily anticipate and comprehend the color transitions. In our 
approach, we assign each time interval to a certain color hue 
– the medium color of the rainbow subinterval. Figure 4 
illustrates 8 different rainbow color hues with each being 
displayed in up to 9 different color intensities from light to 
dark. For instance, the red color scheme refers to the time 
from 1 to 2 pm and contains 9 different red tones, which are 
related to 9 different density values/ value intervals. We split 
the entire time of our dynamic dataset into equal time 
intervals. Interval size can be determined based on the user’s 
interest.  

 
Figure 4.  Rainbow color scheme. 

With regard to the division of density surface by means 
of the temporal tendency lines, we introduce the 
perpendicular line to each tendency line as the temporal 
border between the two neighboring time intervals of the 
underlying KDE map. The color transition between two 
temporal segments can be either abrupt or smooth. In case of 
smooth temporal borders between temporal KDE segments, 
a defined threshold for the smooth color transition is set. The 
threshold refers to a certain time before and after the abrupt 
temporal borders. That leads to two parallel border lines – 
one on the left hand site of the abrupt border line and one at 
the right hand site of the abrupt border line. The distance 
(time) between each smooth border line and the respective 
abrupt border line is equal and variable. 

IV. RESULTS AND DISCUSSION 

As shown in Figure 5 Figure 5. the density visualization 
option (KDE with dynamic points) described in Section 
II.C.1) is applied to our test dataset. For each spatio-temporal 
cluster, a segment of density map with layered tints was 
produced.  

 

 
Figure 5.  Segmented KDE in one map. 

However, the results in Figure 5 are not satisfying due to 
map overlays and occlusion – even if transparency is applied. 
It leads to a loss of the overall density information. 

Applying the new approach following the workflow in 
Figure 3, we created two different output maps: 

A. STDmap with abprupt color transition 

Figure 6 presents a STDmap with abrupt color transition. 
Obviously the entire density information is kept while 
temporal information (and zhus information about 
phenomena dynamics: speed and moving direction) is the 
added value: Both lightning clusters are moving north-
eastwards and in particular around 8 pm the upper cluster is 
moving faster than at any other time, while points in the blue 
colored contours are less dense and more distributed in 
southwest-northeast direction.  
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Figure 6.  STDmap with abrupt color transition. 

The clear-cut temporal cluster borders reveal another 
advantage: Density information in layered tints within each 
specific time interval is clearly visible and separable from 
neighboring segments. 

B. Smooth STDmap 

Figure 7 presents the STDmap with smooth color 
transition.  

 

 
Figure 7.  Smooth STDmap. 

 
The smooth color transitions between neighboring 

segments are closer to the reality and correspond better to the 
visual perception: lightning points occurring for instance 
some minutes after 2 pm can be located inside the 1-2 pm 
segment and points appearing some minutes before 2 pm 
might be placed inside the 2-3 pm segment. With the help of 
an adaptive slider tool, the smoothing effect can be set for 
either a small time interval (e.g., 13:55 – 14:05) or a large 
one (maximum smoothing interval: half of the time interval 
left and right of the temporal border, e.g., 13:30 – 14:30). In 
our case we used a threshold of 20 minutes (10 minutes 
before and after each abrupt border line). For an easy 
comprehension, we suggest to limit the number of colors 
(time intervals) to no more than about 10. In case of very 
extensive temporal range, the brightness of the same tone 
within the same interval can be adopted. For instance, 24 
hours can be cut into six by four hours intervals. With each 
four hour interval four different brightness of the same tone 
can be used. 

C. Comparison with existing approaches 

The 3D density space time cube suggested by Nakaya 
and Yano [27] is a comparable approach, where a series of 
time steps is taken into account within density information 
visualization with the aim to illustrate the change of point 
density in time. However, the density changes in time can 
only be explored by using interactive tools such as panning, 
zooming and rotating of the space time cube. If a cluster of 
interest is surrounded by other clusters, it can be hardly 
explored. Our approach has overcome this drawback by 
storing and presenting temporal information in different 
colors in a STDmap (in 2D). 

V. CONCLUSION AND FUTURE WORK 

In the existing approaches for visualization of dynamic 
phenomena represented by moving point datasets, temporal 
information is not yet adequately handed. This research gives 
a try to close the gap by incorporating and visualizing the 
temporal change of point cluster in a 2D density map. Our 
approach is termed as STDmapping according to which a 
density surface of layered tints can be divided into different 
temporal segments. Each segment is then visualized by a 
color hue with varying intensities. The resulted STDmaps 
contain not only the information about the spatial density 
distribution, but also the changes in time about moving 
direction and speed of dynamic point clusters. Therefore, 
they can support the pattern detection/extraction of spatio-
temporal phenomena without having to activate interactive 
tools.  

In future work, we will investigate the relation between 
the characteristics of initial data (density, distribution, spatio-
temporal change of point coordinates) and their modeling 
parameters (movement tendency, time interval, boundary 
lines) with the purpose to describe the dynamic phenomena 
with minimum information loss or distortion for the 
subsequent visualization and use of STDmaps. Furthermore, 
an adaption of our approach for 3D point data is also 
possible.  
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Moreover, an interesting relative topic could be the 
dynamic mapping for sensor-based systems: in this case, the 
contour line must be computed from values regularly sent by 
sensors (e.g., temperature data). 
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