
Generation and Validation of Workflows for On-demand Mapping

Nick Gould and Omair Chaudhry

Manchester Metropolitan University

Manchester, UK

emails: {nicholas.m.gould@stu.mmu.ac.uk, o.chaudhry@mmu.ac.uk}

Abstract— The paper presents a method to automatically select

and sequence the tasks required to build maps according to

user requirements. Workflows generated are analysed using

Petri nets to assess their validity before execution. Although

further work is required to select the optimal method for

generating the workflow and to execute the workflow, the

proposed method can be used on any workflow to assess its

validity.

Keywords-automated map generalisation; workflows;

Internet mapping; Petri nets.

I. INTRODUCTION

The development of Google Maps and similar products
has led to a vast number of ‘mashups’ where users can
overlay their own data on Google Maps backgrounds and
make the resultant map available to others. The problem with
this approach is that the user is limited to the background
maps supplied by Google; there is no, or very little,
flexibility to vary the content depending on the context and
there is no data integration [1]. This is highlighted in Fig. 1
where the street names are obscured by overlaid cycle routes.
Further problems may occur when the scale changes. For
instance, a minor road that may be part of a cycle route may
disappear at smaller scales since the two datasets are
independent.

What is required is a system to allow data from a variety
of sources to be mapped at a variety of scales. Since, the
possible combination of datasets and scales is too numerous
to be pre-defined, on-demand generalisation (deriving
smaller scale maps from larger scale maps) is necessary.

Cartographic generalisation is a complex process [2] and
much effort has gone in to developing automation techniques
that reduce or eliminate human involvement [3].

The focus has, until recently, been on allowing National
Mapping Agencies (NMAs) to automate the production of
maps at different scales from a single master source [4][5].
Automatic generalisation is applied to a pre-defined set of
map features at pre-defined scales to produce a pre-defined
set of products. However, the advance of neo-geography and
Volunteered Geographic Information [6] means that on-
demand generalisation is required allowing users to integrate
their data with that of NMAs and other mapping resources.
There have been attempts to generate online on-demand
maps to user requirements, but such systems have been
developed by applying a fixed sequence of generalisation
operations to known datasets [7][8].

An on-demand mapping system will require a number of
components including a means of taking high level user
requirements (e.g., “I want a city-wide map of road
accidents”) and producing a machine-readable specification
of the map [9]. The system will also need a knowledge base
to store cartographic rules of the type: “if the scale is greater
than 1:30,000 omit minor roads”. A set of map generalisation
services are then required to satisfy such rules or constraints.
Traditionally the selection of map generalisation operators
and their sequencing is done by cartographic experts, but for
on-demand mapping, aimed at the non-expert user, a system
is required that can automatically generate, validate, execute
and monitor these operations; in other words a workflow
needs to be generated and executed [9]. The focus of this
research is on developing a workflow engine that, given the
specification, using the rules, will automatically select,
sequence, and execute the map generalisation services
required to generate the map or spatial output.

This paper describes the initial attempts to automatically
generate a workflow for building a map based on user
requirements and suggests how to validate that workflow.

To illustrate the process, a use case involving the
mapping of road accidents will be employed. Fig. 2
represents a detailed map of accidents at a road junction.

Figure 1. Google Maps with cycle routes overlaid Figure 2. Accidents at a road junction

238Copyright (c) IARIA, 2012. ISBN: 978-1-61208-178-6

GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services

To represent all of the data at a smaller scale the road

network is generalised by eliminating any minor roads and
collapsing (reducing to single lines) the major roads. To
avoid information overload the accidents are clustered
(Fig. 3). Elimination, collapse and clustering are common
generalisation operations. The junction in Fig. 2 is
represented by ‘B’.

The generalised map serves to highlight accident hot
spots. However, by removing the minor road ‘A’, context is
lost, since the cluster will appear to be on a straight section
of road, so a step is required to reinstate those minor roads
that intersect a cluster. What we have is a set of tasks that
have to be carried out, some of which are in a particular
order, i.e., we cannot reinstate the minor roads until we have
created the clusters. Since there a number of tasks to
execute, some of which have to be completed before others
can start, a workflow is required to express these
relationships. In addition that workflow has to be valid, i.e.,
all of the tasks must, at least, be called.

The method used was based on the premise that
workflow definitions can be analysed using Petri nets for
flaws that would stop the workflow from completing
execution [10][11].

Firstly, a technique was implemented to generate the list
of tasks and their dependencies based on applying user
requirements to a set of applicable rules (described in
Section II). From this a workflow definition could be
created, represented by a directed graph (Section III). A
method was developed to produce a Petri net from a given
directed graph (Section IV). The Petri net could then be
analysed for flaws in the workflow definition (Section V).

II. GENERATING A LIST OF TASKS AND DEPENDENCIES

There are a number of different techniques for
automatically generating workflows including Case Based
Reasoning [12] and product structures, where the map is
treated as a product that has to be constructed from
component parts [13].

The technique used in this research was one that employs
user preferences to define the selection and execution of a set
of rules [14]. This technique was selected because of its
focus on the user’s needs, which is essential for on-demand
mapping.

 The user preferences are gathered by navigating a

knowledge/rule hierarchy (Fig. 4). If a particular branch is
not selected by the user than that branch is closed off. For
example, if the user does not select an ‘unknown’ feature
type they are not prompted for ‘vector’ or ‘raster’. In the
prototype the user is simply prompted for his or her
preferences using text boxes and drop down boxes in a web
page. Each leaf node in the hierarchy has one or more
associated rules; these are added to a set of applicable rules
as the user requirements are gathered.

If the user selects the ‘roads’ feature type then the rules
associated with that feature type (R1, R2, R3) are added to
the set of applicable rules. Rules consist of a condition and
an action (e.g., insert a task to the workflow or order two
tasks) and are stored in an XML file (Fig. 5). Using XML
allows for the use of schemas to enforce correct structure.

The gathered user requirements are held in memory as
ordered pairs, for example:

< scale,50000 >
< theme,generic >
< featureType,roads >
< featureType,accidents >

Figure 3. Generalised data at a small scale

...
<featureType name="roads">
 <rules>
 <rule id="R1">
 <condition>scale >= 5000 AND
featureType = roads</condition>
 <action>insert(t1)</action>
 </rule>
 <rule id="R2">
 <condition>scale >= 5000 AND
featureType = roads</condition>
 <action>insert(t2)</action>
 </rule>
 <rule id="R3">
 <condition>scale >= 5000 AND featureType
= roads</condition>
 <action>order(t2,t1)</action>
 </rule>
 </rules>
</featureType>
...

Figure 5. Knowledge/rule hierarchy (partial) as XML

Figure 4. Knowledge hierarchy

239Copyright (c) IARIA, 2012. ISBN: 978-1-61208-178-6

GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services

Once these have been collected, the applicable rules are
then evaluated, checking rule conditions against user
preferences to generate a set of tasks and a set of task
dependencies. For example, if the user has selected the
feature type “roads” and a map scale of greater than 1:5000
then the conditions for rules R1, R2 and R3 (Fig. 5) will be
met and their actions triggered, e.g. task t1 is inserted into
the workflow. The action ‘order(t2,t1)’ means task t1 is a
dependency of task t2 and should only be run after t2 has
been executed.

Using the above use case, the selected tasks may be:

t1: collapse roads
t2: delete minor roads
t9: add copyright notice for roads dataset
t3: cluster accidents
t8: reinstate minor roads on clusters

and the dependencies:

t2 ≺ t1
t1 ≺ t8
t3 ≺ t8

In this case, there are five tasks to perform and there are

three dependencies (or precedence constraints). For example,
we want to delete any minor roads (task t2) before we
collapse the roads (task t1) as it is inefficient to collapse a
subset of the road network that we are later going to delete.
Task t9 is not involved in any dependency and is classified
as an independent task.

The above output can be expressed as a directed graph
where tasks are represented as nodes and dependencies as
edges (Fig. 6).

However, the graph does not constitute a workflow. The
next section describes why and then what is needed to
construct a workflow definition.

III. CREATING A WORKFLOW DEFINITION

The directed graph (Fig. 6) generated from the example
set of task dependencies does not make up a workflow
definition. This is because there is no place for any
independent tasks (in our case task t9). In addition, the
following rules must be satisfied for a workflow
definition according to [15]:

 The workflow graph should have a single source
node and a single sink node

 Every other node should have at least one parent
and at least one child

This ensures that the workflow has a defined start and

end and that there are no unnecessary tasks.

A workflow definition directed graph can be created by

the following procedure:

1. Add start (A) and end (B) nodes
2. Create an edge for every dependency
3. For every node that has no children add an edge to

the end node
4. For every node without a parent add an edge from

the start node
5. For each independent tasks link the task directly to

the start and end node.

The revised graph can be seen in Fig. 7.

The method so far has produced a workflow definition

for the given case study but is it valid? For instance, it is
relatively easy to ensure that there are no directly
contradictory dependencies between the selected tasks so
that both t1 ≺ t2 and t2 ≺ t1 did not appear in the same
workflow. However, indirectly contradictory dependencies
such as that seen in Fig. 8 would be harder to identify. In this
example the dependency “t3 precedes t14” has introduced
deadlock [15] into the workflow. Task t3 will not start until
t8 starts; but t8 will not start until t14 starts, which will not
start until t3 starts. So, tasks t14, t8, t5, t3 and subsequent
tasks will never be executed.

Figure 6. Directed graph based on dependencies

Figure 7. Workflow definition graph

240Copyright (c) IARIA, 2012. ISBN: 978-1-61208-178-6

GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services

A method of testing the soundness of a workflow before

attempting execution is needed. The simplest way of
checking for deadlock is by performing a topological sort on
the graph. However, the application of Petri nets will allow
for a more expressive form of graph and the ability to
describe more complex workflow patterns [16] than that
described above. In addition to describing workflows, the
mathematical foundations of Petri nets [17] allow for the
analysis of workflows and are applicable to more complex
analysis than the deadlock problem [10][11]. Extensions to
Petri nets, such as coloured Petri nets, which allow for the
investigation of delays and throughput, have been defined
formally [11]. Petri nets offer a number of advantages over
PERT charts such as the ability to model nondeterministic
behaviour and loops in the workflow [31]. The adoption of
Petri nets at an early stage will allow the design to be scaled
to more complex workflows. But, first, we need to generate
the Petri net from the directed graph.

IV. GENERATING A PETRI NET

A Petri net is a particular class of directed graph, defined
as a bipartite directed graph consisting of two types of nodes
called transitions and places [17]. Nodes are linked by arcs
such that arcs cannot link a place to a place or a transition to
a transition. Transitions, denoted by rectangles, represent
events or, in our case, workflow tasks. Places denoted by
circles, represent states (Fig. 9).

Staines [18] describes the process for generating a
directed graph from a Petri net, which can be reversed to
generate a Petri net. The procedure used is as follows:

1. Nodes (tasks) are converted to transitions
2. Each edge generates arc-place-arc
3. Extra places are added preceding the start node (A)

and following the end node (B).

The Petri net generated from the workflow shown in Fig.

7 can be seen in Fig. 9.

The starting place, P0, contains a single token. Tokens

can be used to model the workflow. A transition may be
fired only if there are one or more tokens in all of its input
places [17]. In this example, transition A can be fired. When
a transition fires it takes a token from each of its input places
and places a token in each of its output places. So after the
firing of transition A, there will be a token in each of the
places P5, P4, P7 (but no longer P0) thus enabling transitions
t3, t2 and t9. Note that t8 will not be fired until both t3 and t1
have, which models the original dependencies.

Code was written to generate an XML file in a format
that can be read by the PIPE software [19]. PIPE can then be
used to visualise and animate the Petri net firings to ascertain
whether the workflow is executable.

Deadlock can be identified visually or by using a Petri
net analysis tool such as PIPE. It needs, however, to be
identified as part of the on-demand mapping system. The
following section describes how this was done.

V. VALIDATING THE WORKFLOW

Our system generates a workflow net [15], a particular
type of Petri net such that:

• The net has a single source and a single sink node

Figure 8. Deadlock in a workflow

Figure 9. Petri net for valid workflow

241Copyright (c) IARIA, 2012. ISBN: 978-1-61208-178-6

GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services

• Every tasks lies on a directed path between the
source and the sink nodes.

However, as has been shown, a workflow net containing

anomalies such as deadlocks can still be generated. A sound
process is defined as one that contains no unnecessary tasks
and where every case submitted to the process must be
completed in full and no reference to it remaining in the
process, i.e., for every token that is in the start place there is
one token in the end place and no others in the net [15].

There is a number of, sometimes complex, techniques for
checking the soundness of a workflow net. Fortunately the
Petri nets derived from our workflow generation are a
particular sub-class of Petri nets known as conflict free or T-
systems where every place has no more than one input and
one output transition [20]. In effect conflicts are ruled out;
there are no logical ORs in the system. This makes them
easier to analyse [21].

In the prototype the Petri net is checked for deadlock by
looping through the set of places and firing any transitions
that are enabled until no more transitions can be fired. If all
the transitions are fired then the workflow is valid, if there
are transitions that cannot be fired then these are listed.

In addition to the case study, the method was tested on a

number of randomly generated task lists and dependencies.
A demonstration version of the prototype can be seen at
www.ondemandmapping.org.uk (Fig. 10).

VI. CONCLUSION AND FUTURE WORK

The increasing availability of once inaccessible datasets

and the explosion of crowd-sourced data, alongside the
growth of web-based mapping, have led to the need for on-
demand mapping. The requirement to integrate data from a
number of disparate sources means that there is a need to
automate the creation of the workflow required to generate
such maps.

This paper has presented two aspects of automatic
workflows; firstly the generation of the workflow from
simple user specifications and secondly the generation of
Petri nets from the workflow definitions to allow for their
validation. In particular the work done so far has highlighted
the potential problem of contradictory rules that can generate
deadlocks in workflow definitions.

It was assumed that the generation of the workflow is a
static scheduling problem, i.e., the workflow is deterministic,
known in advance of execution [22]. This is likely to be a
simplification of the on-demand mapping problem; it will be
necessary to consider how the workflow may change during
execution when, e.g., a particular generalisation service is
not available at execution time. For this reason adaptive and
autonomic workflow techniques [23][24][25] may need to be
investigated. However, it could be argued that any
replacement service or set of services would not affect the
workflow if the replacement(s) could be represented as a
sub-net with a single point of entry and a single point of exit
to replace the failed service.

Further work is also required on the means for expressing
the cartographic rules. For example, in the case study
(Fig. 5) three rules had the same conditions but different
actions. Could the rules be expressed more concisely? Also
required is further investigation into how the rule base is to
be populated and the knowledge hierarchy defined.

The execution of workflows will consist of calling a
number of web services that provide generalisation
operators. Web services are usually orchestrated using
Business Process Execution Language (BPEL) [26]. Once
sound workflow nets can be generated and validated using
Petri nets it will be useful to investigate the process of
generating BPEL from Petri nets [27][28].

Previous research into the orchestration of generalisation
services in particular [29][30] will also need to be considered
with a view to investigating how to integrate such services
into the system.

A major problem with the work done so far is the lack of
a data model. The method lacks the concept of tasks doing
work on spatial datasets. Datasets have to be managed as
they progress through the workflow and conflicts have to be
handled when two different tasks attempt to work on the
same dataset at the same time. One possibility may be to
regard the presence of a dataset as a pre-condition to the
firing of a transition. The transition would not fire until the
dataset was available. The output from the transition would
then be the processed dataset, e.g., a set of clustered
accidents.

Whatever the eventual process is employed for
generating the workflow, it is believed that the method
described in this paper can be used to validate the workflow
definition before an execution is attempted.

ACKNOWLEDGEMENTS

This project is funded by the Dalton Research Institute at
Manchester Metropolitan University and the Ordnance
Survey of Great Britain. Thanks to Martin Stanton of MMU
for guidance on the use Petri nets.

Figure 10. Prompting for user requirements

242Copyright (c) IARIA, 2012. ISBN: 978-1-61208-178-6

GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services

REFERENCES

[1] J. Gaffuri, “Improving web mapping with generalization,”
Cartographica: The International Journal for Geographic
Information and Geovisualization, vol. 46, no. 2, January
2011, pp. 83-91.

[2] E.M. João, Causes and consequences of map generalisation.
London: Taylor and Francis, 1998.

[3] Z. Li, “Digital map generalization at the age of
enlightenment: A review of the first forty years,”
Cartographic Journal, vol. 44, no. 1, February 2007, pp. 80-
93.

[4] J. Stoter, et al., State-of-the-art of automated generalisation in
commercial software. 2010. Available from:
http://www.eurosdr.net/projects/generalisation/eurosdr_gen_fi
nal_report_mar2010.pdf 01.09.2011

[5] A. Ruas, and C. Duchêne, “A prototype generalisation system
based on the multi-agent system paradigm,” in Generalisation
of Geographic Information, A.M. William, R. Anne, and L.T.
Sarjakoski, Eds., Amsterdam: Elsevier Science, 2007.

[6] M. Goodchild, “Citizens as sensors: the world of volunteered
geography,” GeoJournal, vol. 69, no. 4, 2007, pp. 211-221.

[7] F. Grabler, M. Agrawala, R. W. Sumner and M. Pauly,
“Automatic generation of tourist maps,” Proc. ACM
SIGGRAPH 2008 papers, Los Angeles, California: ACM,
2008.

[8] K. Johannes, A. Maneesh, D. Bargeron, S. David and M.
Cohen, “Automatic generation of destination maps,” ACM
Trans. Graph., vol. 29, no. 6, December 2010, pp. 1-12.

[9] S. Balley and N. Regnauld, “Collaboration for better on-
demand mapping,” in ICA Workshop on Generalisation,
Paris, France, 2011.

[10] N. R. Adam, V. Atluri and W. K. Huang, “Modeling and
analysis of workflows using Petri Nets,” Journal of Intelligent
Information Systems, vol. 10, no. 2, March/April 1998, pp.
131-158.

[11] W. M. P. van der Aalst, “The application of Petri nets to
workflow management,” Journal of Circuits, Systems and
Computers, vol. 8, no. 1 , 1998, pp. 21-66.

[12] A. Aamodt and E. Plaza, “Case-based reasoning: foundational
issues, methodological variations, and system approaches,”
AI Communications, vol. 7, no. 1, 1994, pp. 39-59.

[13] W. M. P. van der Aalst, “On the automatic generation of
workflow processes based on product structures,” Computers
in Industry, vol. 39, no. 2, 1999, pp. 97-111.

[14] S. Chun, V. Atluri and N. Adam, “Domain knowledge-based
automatic workflow generation,”, Proc. Database and Expert
Systems Applications, 13th International Conference, Aix-en-
Provence, France, Berlin: Springer, 2002, pp. 778-838.

[15] W. M. P. van der Aalst and K. M. van Hee, Workflow
management models, methods, and systems, Cambridge,
Mass.: MIT, 2004.

[16] N. Russell, A. ter Hofstede, W. van der Aalst, and N. Mulyar,
“Workflow Control-Flow Patterns: A Revised View,”
Technical Report BPM-06-22, 2006; Available from:
http://www.workflowpatterns.com 01.09.2011

[17] T. Murata, “Petri nets: properties, analysis and applications,”
Proceedings of the IEEE, vol. 77, no. 4, 1989, pp. 541-580.

[18] A. S. Staines, “Rewriting Petri Nets as Directed Graphs,”
International Journal of Computers, vol. 5, no.2, 2011, pp.
289-297

[19] N. Akharware, PIPE - Platform Independent Petri net Editor
2. 2005; Available from: http://pipe2.sourceforge.net/.
01.09.2011

[20] J. Desel and J. Esparza, Free Choice Petri Nets, Cambridge:
Cambridge University Press, 1995.

[21] P. Alimonti, E. Feuerstein, U. Nanni and I. Simon, “Linear
time algorithms for liveness and boundedness in conflict-free
Petri nets,” in LATIN '92 Lecture Notes in Computer Science,
Berlin: Springer, 1992, pp. 1-14.

[22] J. W. Herrmann, C.-Y. Lee, and J. L. Snowdon, “A
classification of static scheduling problems,” in Complexity
Issues in Numerical Optimization, P. M. Pardalos, Ed, World
Scientific Publishing Co.: Singapore, 1993, pp. 203-253.

[23] R. Muller, U. Greiner, and E. Rahm, “AgentWork: a
workflow system supporting rule-based workflow
adaptation,” Data & Knowledge Engineering, vol. 51, no. 2,
2004, pp. 223-256.

[24] M. Polese, G. Tretola and E. Zimeo. “Self-adaptive
management of Web processes,” Proc. Web Systems
Evolution (WSE), 12th IEEE International Symposium, 2010.

[25] G. Tretola, and E. Zimeo, “Autonomic internet-scale
workflows,” Proc. of the 3rd International Workshop on
Monitoring, Adaptation and Beyond, Ayia Napa, Cyprus,
New York: ACM, 2010.

[26] OASIS. Web Services Business Process Execution Language
v2.0. 2007; Available from: http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf 01.09.2011

[27] P. Sun, C. Jiang and M. Zhou, “Interactive Web service
composition based on Petri net,” Transactions of the Institute
of Measurement and Control, vol. 33, no. 1, 2011, pp. 116-
132.

[28] W. M. P. van der Aalst and K.B. Lassen, “Translating
unstructured workflow processes to readable BPEL: Theory
and implementation,” Journal of Information Software
Technology, vol. 50, no. 3, 2008, pp. 131-159.

[29] T. Foerster, L. Lehto, T. Sarjakoski, L. T. Sarjakoski, and J.
Stoter, “Map generalization and schema transformation of
geospatial data combined in a Web Service context,”
Computers, Environment and Urban Systems, vol. 34, no. 1,
2010, pp. 79-88.

[30] G. Touya, C. Duchêne, and A. Ruas, “Collaborative
generalisation: formalisation of generalisation knowledge to
orchestrate different cartographic generalisation processes,”
Proc. of the 6th international conference on Geographic
Information Science, Zurich, Berlin: Springer-Verlag, 2010.

[31] D. Dubois, K. Stecke, “Using Petri nets to represent
production processes,” Proc. of the 22nd IEEE Conference
on Decision and Control, 1983.

243Copyright (c) IARIA, 2012. ISBN: 978-1-61208-178-6

GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services

