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Abstract— Distributed, service-oriented systems is often used 

today for geospatial data access and processing. However, it is 

difficult to find methods for easy, flexible, and automatic 

composition and orchestration of workflow of geo-services. 

More promising is the Open Geospatial Consortium (OGC) 

Web Coverage Processing Service (WCPS), which offers a 

multidimensional raster processing query language with 

formal semantics; we believe that this language contains 

sufficient information for an automatic orchestration. Based on 

this, we present the D-WCPS (Distributed WCPS) – a 

framework in which coverage processing workflow can be 

dynamically distributed among several WCPS servers. Every 

server can schedule and execute a query using information 

from its local WCPS registry. Each local registry, in turn, is 

mirrored across all servers. Some other contributions of this 

paper include query optimization algorithms, tuple-based 

parallelism, registry synchronization techniques. Several 

servers can, therefore, efficiently share data and computation 

with respect to dynamic, resource-aware coverages processing. 

Keywords - geoprocessing, query processing, distributed 

query processing, service registry, query optimization 

I.  INTRODUCTION  

Current trend specifies the use of distributed, service-
oriented systems for geospatial data access and processing. 
Some of the motivations for this include  

• Availability high-speed networks. 

• Computation intensiveness of either a single or 
workflow of geoprocessing tasks such that 
distributed processing pays off. 

• Server limitations in terms of processing capability 
and applications installed. 

• Distribution of dataset across several data centers. 

• Increase in the geo-application requirements, which 
vary from simple 2-D and 3-D map visualization and 
download, to complex computation such as 
statistical analysis, data mining, image classification 
and ocean, atmosphere, and climate modeling. 

Geo-services are usually, standardized by the Open 
Geospatial Consortium (OGC) and some of the standardized 
services include the OGC Web Coverage Service (WCS) for  
coverage data access [5]; the OGC Web Coverage Service- 
Transactional (WCS-T) used for adding, updating and 
deleting coverages on a server [4]; the OGC Web Processing 
Service (WPS) which defines a generic service that offers 
any sort of geoprocessing functionality over a network[25]. 

It turns out very difficult at least to find methods for a 
flexible, automatic orchestration of geo-services. Hence, 
geo-service orchestrations are typically, performed manually, 
such as in the case of cascading OGC WPS and Web Map 
Service (WMS) requests, and process-based compositions 
e.g., BPEL which hardwires the processing configuration. 
We claim that this is due to the lack of an explicit, machine-
understandable semantics of these services. The Web 
Coverage Processing Service (WCPS) [23], however, 
accomplishes interoperability by defining a language for 
server-side processing of multi-dimensional spatial-temporal 
data. This language has a formal semantics definition, hence 
is machine readable and semantic web ready. To this end, 
this paper addresses the efficient answering of queries on 
large, complex spatial-temporal data sets distributed across a 
number of heterogeneous computing nodes. The aim is that 
incoming query requests, expressed in WCPS, are 
automatically split into sub-requests which then are 
processed by suitable nodes in the network to collectively 
produce the final result for the client. Task distribution can 
be based, among others, on the individual node capabilities 
and availability, and load situation, network capabilities, and 
source data location. Sample use cases for distributed 
processing include site suitability studies or statistical 
analysis using data available from different servers, and 
climate reconstruction using climate modelling algorithms. 

The rest of the paper is structured as follows:  Section II 
introduces the WCPS; related work is presented in Section 
III; we describe the distributed WCPS framework in Section 
IV, implementation and performance evaluation is presented 
in Section V and we conclude the paper in Section VI. 

II. WEB COVERAGE PROCESSING SERVICE 

WCPS specifies the syntax and semantics of a query 
language (service request) which allows for server-side 
retrieval and processing of multi-dimensional geospatial 
coverages representing sensor, image, or statistics data [23]. 
The term “coverage”, in the general definition of OGC [20] 
and ISO [21], encompasses any spatial-temporally extended 
phenomenon. As currently overarching query languages in 
this generality are not sufficiently understood, WCPS 
focuses on raster data. The raster data is a gridded multi-
dimensional array of some dimensionality, and some extent 
(spatial-temporal domain) where each grid cell value 
represent information. Sample raster data include 1-D sensor 
time series; 2-D satellite imagery; 3-D x/y/t image time 
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series, and 4-D atmospheric model data. WCPS queries are 
given as expressions composed from coverage-centric 
primitives. The grouping of these primitives is shown below: 

• Geometric operations extract some subset of cells 
which together again form a coverage. Trimming 
retrieves a sub-coverage whose dimensionality 
remains unchanged. Slicing delivers a cut-out with 
reduced dimensionality.  

• Induced operations apply cell type operations to all 
cells in coverage simultaneously. This includes 
arithmetic, trigonometric and logical operations, etc 

•  Coverage summarization includes aggregation 
operations like count, average, min, max etc.  

• All of the above functions actually represent 
convenience operators which can be reduced to a 
coverage constructor, an aggregator, or a 
combination thereof.  

• Scaling and reprojection constitute non-atomic 
function.  

• Data format encoding specifies how results are to be 
shipped back to the client. The list of such encodings 
includes formats like TIFF, NetCDF, or SEG-Y. 

Shaped in the style of XQuery and SQL, the WCPS 
defines a declarative, set-oriented query language for a 
coverage processing workflow. The overall structure of 
WCPS is as follows:  

for  c1 in (C1,1, C1,2,…, C1,m),  

cn in (C2,1, C2,2,…, C2,m),  

…,  

cn in (Cn,1, Cn,2,…, Cn,m)  

where  booleanExpr(c1, …, cn) 

return  processingExpr(c1, …, cn)  

This can be seen as a nested loop where each ci is bound 

to the Ci,j coverages in turn. For each variable binding, the 

“where” predicate booleanExpr() is evaluated first. 
Only if the boolean expression evaluates to true will the 

processingExpr() will be evaluated on the current 
variable assignment and its result element will be added to 
the result list. We introduce WCPS by way of example.  

Assume a WCPS server offers 3-D satellite image time 
series stacks, S1 and S2, plus a 2-D bitmask M with the same 
spatial extent as the time series cubes. Then, the following 
query returns those cubes where, in time slice T, threshold 
value V is exceeded in the red band somewhere within the 
mask area: 

for  s in ( S1, S2), 

m in ( M ) 

where  some(s.red[t(T)]> m and m>0) 

return  encode( s/max(x), “netcdf” ) 

The subsetting operation in square brackets specifies a 

cut along axis t. The aggregator expression some() 
conflates this to a single Boolean value. Those result cubes 
which pass this filter are shipped to client in NetCDF format.  

The WCPS query processing model is based on adapted 
rasdaman query processing model [27]. It consists of a set 
processing tree, and coverages processing trees as sub-trees 

as shown in Figure 1(a). The set processing trees specifies 
the assignment of coverages to coverage iterator. The leafs of 
the set tree are the coverage lists. The set tree contain three 
relational operations – the cross (cartesian) product (x) of the 
different coverage lists, the selection (σ) of tuples from the 
resulting cross product table based on the predicate defined  
in the “where” clause, and the application (α) where the 
coverage processing expression is evaluated on the current 
iterators' coverages assignment. On the other hand, the 
coverage processing expressions, i.e., booleanExpr() and 
processingExpr(), are trees of coverage processing operators 
Ox as shown in the sample query tree in the Figure 1(b) 

Due to the fact that the semantics of WCPS service 
request is known both to the client and servers, [22] opined 
that automatic service dispatching, chaining and optimizing 
is possible, as a WCPS server is able to automatically extract 
portions that are best resolved locally, distribute other parts 
to other suitable servers, re-collect results, package them, 
and return them without any human interference. 

In this paper we described our distributed WCPS (D-
WCPS) system wherein several servers can collaboratively 
and dynamically execute geo-processing tasks specified as 
WCPS query transparently. Servers can therefore share data, 
load and applications. We also describe the means of 
orchestrating the composed service efficiently in a fault-
tolerant manner. Depending on the objective of the servers, 
different scheduling algorithms can be used for decomposing 
a query in such infrastructure. Hence, we do not specify the 
details of any particular scheduling algorithm in this paper.  

III. RELATED WORKS 

In classical distributed database systems (DBMS), grid 
computing systems, and Service Oriented Architecture 

Figure 1: WCPS Query Tree 
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(SOA), a mediator-based method typically used for 
distributed query processing (DQP). In this approach [26], a 
mediator’s registry stores and integrates the data sources 
schema, statistics and properties. It also contains the server 
properties of all the data servers. Global queries (queries 
which address more than one server) are directed to the 
mediator which parses and translates them into a query tree. 
Using information from the registry, the query tree is 
optimized logically and physically using both single and 
multi-node algorithms. The query tree operators are, later on, 
scheduled, and execution code is generated and run for the 
scheduled tree. Usually, the orchestration and integration of 
partial results from other servers are done in the mediator.  

Some of the DBMS-based middleware using this 
approach include DISCO[3], Garlic [15], Hermes [28], 
TSIMMIS [12], Pegasus [18]. Also, several levels of support  
for a mediator-based data integration is provided by major 
database vendors such as IBM (using DB2 Propagator), 
Sybase (using Replication Server), Microsoft (SQL Server), 
and Oracle (using Data Access Gateways) [1][8]. Classical 
systems like R*[10] integrates data from several databases, 
while SDD-1[24], present mechanisms for distributed join 
processing algorithms on a homogenous set of servers.  

Similarly, grid-based DQP typically consists of several 
mediators using one registry. Some of the generic grid-
enabled query processors include Polar [13], OGSA-
DQP[19], SkyQuery[30], CoDIMS-G [31]; and GridDB-Lite 
[29]. The main task of GridDB-Lite is the selection and 
transfer of distributed scientific data from storage cluster to 
compute clusters. Polar* is a distributed object oriented 
query processor which accesses remote data using remote 
operation calls. OGSA-DQP and CoDIMS-G are based on 
service oriented grid. OGSA-DQP extends the concepts in 
POLAR by automatically composing a static, per-client DQP 
service instance from a set of manually selected resources. 
CoDIMS-G, on the other hand, profiles services in order to 
select the resources to use, and adaptively reschedules query 
operators based on runtime conditions. SkyQuery provides 
an implementation of a mediator-based DQP for distributed 
astronomic data in a SOA. Its mediator dynamically tests for 
performance of the servers before scheduling its query. 

However, with respect to distributed coverage 
processing, we note the following 

• In DBMS, grid and SOA-based DQP, many of the 
scheduling algorithms, and parallelization, 
optimization, and execution model deals with 
relational and xml databases as opposed to 
coverages. For instance, a typical DBMS-based DQP 
will focus on scheduling relational join operators on 
servers based on different join algorithms. However, 
in D-WCPS, scheduling the costly coverage 
processing operators takes precedence over 
comparatively less expensive join operators. 

• The centralized mediator used for the registry 
management and query execution constitutes a 
performance bottleneck and single point of failure. 

• Concepts and framework of D-WCPS is based on 
SOA while DBMS-based DQP is typically not. 

• Because the grid deals with heavy weight, long 
running scientific applications, the costs of the grid-
based DQP scheduling and execution overhead is 
relatively small compared to the query execution 
cost.  However, WCPS is typically, a medium 
weight application whose running time varies 
between milliseconds to minutes. Hence, cost of 
overhead of grid based methods in D-WCPS is 
significantly large and inefficient. 

A component common to all distributed systems is the 
registry. These can go by different names such as Universal 
Description Discovery and Integration in SOA, OGC 
Catalog Service for the Web in OGC web services, federated 
database catalog in distributed databases, Monitoring & 
Discovery System in Globus Grid etc. To ease management 
overhead, registries are usually centrally located. However, 
besides constituting a performance bottleneck and single 
point of failure, this architecture is not usually efficient. 
Another proposal uses decentralized Peer to Peer registry 
based on distributed hash table [6]. Although this system 
scales up and is resilient to failure, they response times for a 
query is usually large. Also, its registry’s management is 
complex, and it does not efficiently support range queries. 
Similarly, some other registries are based on meta-directory 
architecture whereby a node stores meta-information about 
the distributed registries [2]. This has the advantage of 
scaling, however, performance is still an issue and it is prone 
to single point of failure. Hence, we proposed the use of 
mirrored registry for D-WCPS. This has the advantage of 
being highly efficient in its query processing because it is 
available locally on every server. However, synchronization 
of all the servers for transaction based queries (updates, 
insert, delete) can be costly. As it is not expected that the rate 
of transaction in D-WCPS is going to be high, this cost will 
not be significant. Besides, since the database is mirrored on 
all servers, the registry is more resilient to failure, and the 
central server’s performance bottleneck is removed.  

Overall, our work focus on processing coverages and 
more emphasis is laid on optimizing, scheduling and 
executing coverage processing operators rather than 
relational operators. We also present an orchestration model 
which is based on recursive nesting of queries. Furthermore, 
we specify the use of inter-tuple parallelism in query 
execution. Lastly, we use an architecture where every 
participating server can serve as a mediator.  

IV. D-WCPS FRAMEWORK 

On a high level, we present D-WCPS - a framework 
where several WCPS servers can share the computation of a 
service request. Every server in this framework has a local 
copy of the global WCPS registry of data and services. 
Information from this registry is used to decompose a global 
query request into a distributed query request.  As shown in 
Figure 2, every server runs WCPS and registry services, and 
these in turn, are made up of several components. The 
procedure of composition and execution of distributed 
WCPS is adapted from distributed DBMS-query processing. 
After the global query is received by any of the servers:  

• The parser transforms the query to a query tree.  
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• The coverages metadata and location, and the 
servers to use for the distributed processing together 
with their capacities (e.g., CPU speed) and 
restrictions (e.g., maximum memory available) are 
then determined by querying the local registry.  

• Based on the query structure, data sizes and location, 
the coverage processing query tree is optimized for 
distributed execution by rearranging its operators 
using different sets of equivalence rules.  

• Using the server capabilities and initial data 
locations, the query is decomposed to a distributed 
query such that fulfils an objective function. Several 
objective functions exists and these include 
minimizing execution time, total data transferred, 
and total time spent on all servers; maximizing 
throughput; and load balancing on different servers. 
Decomposition of the query tree involves the 
scheduling of the query tree operators on different 
servers. This is an NP-complete problem, hence, the 
use of heuristic-based algorithms [26].  

• After the scheduling, the global query is re-written 
into a distributed query (query with scheduling 
information) which is then executed. 

A. Inter-Tuple Parallelism in D-WCPS  

From Section II, the WCPS query tree consists of a set 
tree and coverage processing trees. The set tree creates a 
table of cartesian product of the coverage lists bounded to 
each coverage iterator in the query. Then, the predicate 
expression and/or processing expression are executed for 
each tuple in the table. Compared to the coverage processing 
operation, the cartesian product operation is cheap, hence, it 
is done on the server which receives the query. However, the 
execution of the coverage processing tree is distributed. 
Moreover, since each tuple in the cross product table can be 
processed independently of others, we parallelise the 
processing of each tuple in the table i.e., the optimization, 
scheduling and execution of a query are parallelized on a 
tuple-by-tuple basis. So, given the sample query below 

For   a in (X, Y),  

 b in ( Z ) 

where max(a) < avg(b) 

return encode(cos(a)+min(b),“hdf”) 

Table 1: Cartesian Product Table of WCPS Query. 

 

Tuples Iterator  a Iterator  b Query Materialization 

1 X Z   Predicate : max(X) < avg (Z) 

  Processing Expression: Encode(cos(X) 

+ min(Z), “hdf”) 

2 Y    Predicate : max(Y) < avg(Z) 

  Processing Expression: Encode (cos(Y) 

+ min(Z), “hdf”) 

 
A cartesian product in Table 1 is created whose 

processing is then parallelized tuple-wise. 

B. Optimization 

In order to increase the efficiency of the execution of the 
D-WCPS, the global query is optimized by re-writing of the 
query based on equivalence rules. By query re-writing, we 
mean the re-arrangement of the ordering of operators of a 
query tree. This is done using a two-staged approach – 
applying single-node optimization before a multi-node 
optimization. We apply the optimizations on the coverage 
processing tree, hence, any reference to operator from 
henceforth implies coverage processing operator. The single 
node optimization assumes the query is executed on a server 
and is based on rasdaman query re-writing rules.  The 
rationale and proof of the optimizations can be obtained from 
[7]. Overall, the idea is to minimize the size of the data 
processed by an operator. This is because, smaller input data 
for an operator implies  

• Less processing work would be done by the operator 

• Reduced data transfer time between an operator and 
its operand. 

Some of the single node optimization includes pushing 
down of domain reducing, and aggregation expression down 
the query tree; using the associative and distributive 
properties of expression to re-write queries such that data 
transferred is minimized. For instance, assuming OG 
represents coverage subsetting operation and OC represents 
other coverage processing operations. By pushing down of 
the geometric operation as shown in Figure 3(a), the cost of 
executing OC, and transferring data between OC and OG will 
be smaller. Similarly, in Fig 3(b), if operators a, and b are 
associative, their operands can be re-arranged such that data 
processed at and transferred from operator b is minimized. 

The aim of multi-node optimization is to prepare a query 
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Figure 2: Components of a D-WCPS Server. 
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tree for distributed execution. And one of the optimizations 
we introduce here aim at transforming a left deep tree to a 
bushy tree (Figure 4(a)) using the associative and distributed 
properties of the operators in the tree. This is because left 
deep tree would have a high through time; irrespective of 
scheduling algorithm used. Besides, more operators can be 
executed in parallel in bushy tree. Another optimization we 
used here is to use the bring operators which have data on the 
same host as close together as they can possibly get on the 
tree. This ensures that data will not be transferred just for 
integration purposes when there is no performance gain. As 
an example, consider the tree in Figure 4(b), where D1, and 
D3 are located on server Sx and D2 on server Sz. If operators 
P1 and P2 are associative, operand D2 will be interchanged 
with D3 in order to ensure D1 and D2 are close to each other. 

C. Scheduling 

After the optimization of the query tree, the operators of 
the coverage processing trees are scheduled. Several 
algorithms exist for scheduling DAGS [32][9]. The choice of 
algorithm by a server is specified by used by the objective 
the server wants to fulfill. Different scheduling algorithms 
can therefore be used in D-WCPS. However, it has been 
shown that Heterogeneous Earliest Finish Time (HEFT) 
algorithm [11] is one of the best algorithms [9] in systems 
consisting of several heterogeneous servers.  

D. Distributed Query Modeling and Its Orchestration 

A P2P orchestration model, whereby WCPS servers 
recursively invoke other servers with a distributed query 
request, is used for executing D-WCPS. After a server 
receives a distributed query request, it invokes other servers 
with partial query requests as specified in the query, executes 
its local query requests and integrates the results.  The 
integration may involve writing a temporary copy of the data 
due to the fact that partial query results can be larger than the 
main memory. The distributed query request is composed by 
the server which receives the initial global query. Therefore, 
other servers used for executing the distributed query need 
not run the scheduler again except if there is a change in the 
conditions in the network, and the query needs to be adapted. 

For  p in (  

 For r in (  

 For t in (T)  

return encode( cos( 

t),“raw”) on server_B 

     )  

 s  in ( S )  

 return encode((a+b),“hdf”)   

 on server_A  
 

   )  

 q  in ( Q )  

 return encode  ( x + max(y), “tiff” ) 

Figure 5 : Nested Distributed WCPS Query. 

The WCPS query syntax is modified to support such 
distributed execution [17]. In the introduced modifications, a 
coverage iterator will not only bind to coverages, but can as 
well bind to partial queries with a specified execution host. 
For example, Figure 5 shows a distributed WCPS query with 
different levels subquery nesting. The server that receives the 
query invokes server_A with its inner subquery, and 
server_A in turn invokes server_B with its inner subquery. 

The quality of D-WCPS schedule generated initially can 
deteriorate if conditions in the network change during the 
execution its execution. Two major runtime disruption 
addressed in D-WCPS are server overload, and server 
unavailability. In the case that an overloaded server receives 
a partial query, the overloaded server reschedules the query 
for other servers. Similarly, if a server that is critical (it has 
some data or operations which is not available on other 
servers) to the query is unavailable, the query execution is 
terminated, otherwise, the partial query is rescheduled by the 
server which invokes the request on the unavailable server. 

E. The Registry 

The architecture of the registry adopted for a framework 
depends on the trade-offs between requirements such as 
efficiency, scalability, simplicity, availability, fault-
tolerance, ease of management, flexibility, allowance for 
redundancy, rate of update, support for range or singleton 
query, ability to easily classify the registry entries.  In D-
WCPS, emphasis is placed on efficiency, fault-tolerance, and 
easy configuration. In addition, we envisage a system with a 
slow rate of update and which can scales to thousands in 
terms of services registered, and each server, in turn, can 
hold thousands of coverages. In this respect, we propose 
mirrored registry architecture. Because each server has a 
local copy of the registry, querying it for query 
decomposition information is very efficient compared to if 
the registry were to be external service. Furthermore, each 
local registry in the network is kept in sync with the others, 
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and updates are only made when a new server joins the 
network, a new data is added to /deleted from a server, a 
server’s properties change, or when the properties of some 
data saved is changed. Therefore, the challenge in the 
networks is keeping servers in sync with minimum effort. 

The arrangement of the servers in the mirrored registry 
network is based a hierarchical topology for. Each server can 
only join the network from one server i.e., a server has only 
one gateway but it can have several backup gateways. And 
several servers can join the network through a server. In this 
paper, all the servers that share a gateway are child servers of 
their gateway server. A server can only receive a message 
from either its gateway or any of its child servers. When a 
server receives or generates a message, it propagates it to all 
the servers connected to it (child servers and gateway) except 
the source of the message. In this way, messages get sent to 
all the servers without looping as a broadcast will do. 
Furthermore, every server that intends to join the network 
can register with any server in the network. In order not to 
overload a server, a server has the maximum number of child 
servers it can have, and if any intending server wants to 
register with a server and its maximum number of child 
servers has been reached, it forwards the registration 
information to its child servers in a round-robin fashion. In 
case the gateway of a server becomes unavailable, the server 
can re-register with any other gateway server. 

Three interfaces are exposed by the registry service 
namely register, update, and info interface. The registration 
interface is used for registering and de-registering servers. 
The update is used to insert, delete or update information 
about servers or data, and the info interface is used for 
management e.g., receiving and sending keep-alive 
messages, informing other peer servers that their gateway 
server is dead. 

F. Calibrating and Profiling 

Every server has a calibration engine which is used to 
measure its capacities for coverages processing. Information 
gathered by the engine are published into the service registry, 
and these include the read, write, and coverage processing 
speed and overhead; available memory; number of 
simultaneous processes that can run without degrading the 
servers performance; set of preferred servers (the set of 
servers a server will prefer to use in for distributed 
processing), and the network speed to these servers; and 
lastly, the average network speed to all servers. We obtain 
the read and write speed and overhead by writing some test 
data to and reading some test data from the database. The I/O 
speed and overhead depend on type of disk systems used 
(e.g., whether it is RAID system, virtual disk system etc), 
their speed and configurations, file/database system used and 
their configurations, etc. Similarly, [14][7] opines that the 
quoted speed of systems in terms of MIPS, FLOPS, QUIPS, 
clock rate cannot be used to determine the performance of a 
system due to  factors such as inter-processor 
communication, I/O performance, cache coherence and 
speed, memory hierarchy etc. Therefore, we define the speed 
of processing of a system with regards to coverage 
processing as the speed it takes a system to do a copy of a 

char-typed pixel from one memory location to another. The 
calibration engine obtains this value by running a set of 
standardized query against the database. Furthermore, due to 
fact that systems nowadays have several physical and/or 
virtual processors, systems can run several queries 
simultaneously, without any significant degradation of its 
performance. Hence, we determine the maximum number of 
queries a system can run without performance loss.  

V. IMPLEMENTATION AND EVALUATION 

An experimental D-WCPS infrastructure was set up 
consisting of 30 WCPS servers which are heterogeneous 
with respect to processing, read, write and network speed. A 
server was chosen as the initial D-WCPS server with which 
other servers have to register before they can start registering 
other servers. For this setup, we choose minimization of 
execution duration as our objective. Therefore, a modified 
form of HEFT algorithm [11] based on a coverage 
processing cost model [16] was used to schedule the 
operators of any query received by any of the servers. Using 
query trees with different types of structural properties, 
operators, and initial data distribution, we evaluate the 
performance of our framework with respect to some of the 
query processing and optimization techniques.  

In Figure 7(a), we highlight the gains of pushing down 
subsetting operators in a distributed processing system, given 
the percentage of the total initial data retrieved by the 
subsetting operator. Due to the large processing and inter-
server data transfer costs, the smaller the percentage gets the 
smaller the execution duration. Similarly, Figure 7(b) 
compares the query execution times when a left deep tree is 
transformed to bushy tree and when it is not. In some of the 
cases, the execution duration does not change, but in many 
others, it is reduced. The performance gain of inter-tuple 
parallelism is also shown in Figure 7(c). 

 

 
Figure 7: D-WCPS Performance Evaluation Graphs 
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VI. CONCLUSION 

The OGC WCPS offers a multidimensional raster 
processing query language with a formal semantics which 
contain sufficient information for automatic orchestration. 
Based on this, we present an infrastructure for distributed 
execution of WCPS query by dynamically composing 
services from a query request. Every server in the network 
has a local copy of the WCPS registry, and servers 
synchronize the updates to the registry with each other. 
Using the information from the registry, and tuple-wise 
based parallelization, servers can optimize, decompose and 
execute a received query. Finally, we present the model for a 
decentralized orchestration of the distributed WCPS query. 
Several servers can, therefore, efficiently collaborate in 
sharing data, computation, loads and other tasks with respect 
to dynamic, resource-aware coverages processing. 
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