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Abstract— Optimal Sequence Traversal Query (OSTQ) is a 

graph based query that retrieves a minimum cost path that 

starts from a predefined vertex, traverses a set of given 

vertices, and ends at a predefined vertex. One of its 

applications is trip planning in the GeoProcessing domain in 

transportation. With sound theoretical support for optimally 

efficient, optimal, and greedy solutions, best first search in the 

artificial intelligence domain is effective to process such trip 

planning queries. O* is an existing bivariate best first search 

framework and its special case O*-SCDMST was proposed 

recently to retrieve optimal solutions for such a query. In this 

paper, we propose O*-W, a novel O* algorithm that uses a 

globally admissible heuristic to obtain optimal solutions for 

such a query. The performance of O*-W and O*-SCDMST in 

a complete directed graph whose vertices only contain the 

origin, the destination, and the vertices of interest, and is 

studied through a set of experiments, and the result 

demonstrates that when the number of vertices of interest is up 

to 15, on average, O*-W reduces computation time by more 

than one order of magnitude when compared to O*-SCDMST. 

More importantly, on average and in worst cases, O*-W 

increasingly outperforms O*-SCDMST when the number of 

points of interest increases.  

Keywords- Bivariate Best First Search, Heuristic, OSTQ, O*, 

O*-SCDMST, O*-W 

I.  INTRODUCTION AND BACKGROUND 

Optimal Sequence Traversal Query (OSTQ) is a graph 
based query that retrieves a minimum cost path that starts 
from a predefined vertex, traverses a set of given vertices, 
and ends at a predefined vertex [1]. The graph, g-G, may 
include normal vertices that are neither vertices of interest, 
nor the given origin or destination. In the GeoProcessing 
domain in transportation, an OSTQ corresponds to a trip 
planning query that asks for a shortest or quickest path that 
traverses a set of locations with the given origin and 
destination. For example, a user may start from his/her 
office, go to a supermarket, a book store, a restaurant, a 
movie theater, and end at home. 

Similar to a travelling salesman problem [2], OSTQ is 
NP hard [3][4]. The naïve method that retrieves the optimal 
solution would compute all possible order combinations of 
the given points of interest. The time complexity is O(n!), 
where n is the number of  locations of interest. 

O*, a bivariate best first algorithm that uses problem 
domain knowledge to guide the search for the optimal 
solution to an OSTQ in a g-G graph, was recently proposed 

[1]. As exact solutions, two special cases of O*, O*-
SCDMST [1] and O*-Dijkstra [1], were proposed to process 
OSTQ in a fully connected directed graph whose vertices 
only contain the origin, the destination, and the vertices of 
interest. Such a graph is defined as g-G. The O*-SCDMST is 
proved to be optimal in a directed graph that obeys the 
triangle inequality and more efficient than O*-Dijkstra. 

In a g-G graph, based on given rules, O* incrementally 
searches paths most likely to lead towards the goal state until 
it finds a path of minimum cost having traversed vertices of 
interest to the goal. O* uses a vertex’s identification plus its 
VisitList, a sorted list that consists of a sorted sequence 
containing traversed vertices of interest along the path, to 
describe a state in the search. 

A vertex in O* may have multiple states, and each state 
represents a different set of traversed vertices of interest. 
Different from states in a single-variate best first search such 
as A*, these states may not be compared to each other and 
removed accordingly unless some special state pruning rules 
unique to bivariate best search are followed [1]. 

At each step, O* uses a distance-plus-cost heuristic 
function, defined as f(s) for a state s, to determine the order 
in which the search visits states in the graph [1]: 

f(s)=g(s)+h(s)                                      (1) 
where  
g(s) is the cost function of the path from the initial state 

to the current state, and  
h(s) is the global heuristic that estimates the distance 

from the current state to the goal state, traversing the 
remaining vertices of interest. 

O* first takes the paths most likely to lead towards the 
goal state, which means the lower the f(s), the higher is the 
priority for a state to be expanded.  

Whenever an equal f(s) occurs, the state with a larger 
VisitList will be the next to expand. Otherwise, one is 
randomly selected. State A’s VisitList, vlA, is larger than 
State B’s VisitList, vlB, i.e., vlA>vlB, if the length of vlA is 
longer. In other words, the path from the start state to A 
traverses more vertices of interest than that to B. 

For an N-point traversal problem, O* first generates the 
source state that contains the given vertex and an empty 
VisitList. For all the states in the open list, the algorithm 
expands the state with the lowest f(s) value, and its children 
states are generated. A child state always inherits the 
VisitList of its parent whenever the child is not a vertex of 
interest; otherwise, the child’s VisitList will be incremented 
by adding the vertex to it. The process continues until a goal 
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state whose vertex is the final goal and VisitList contains all 
the vertices of interest or no solution is found. Once a goal 
state is reached, the algorithm will retrieve the obtained path 
using a data structure called backpointer, the combination of 
vertex identification and VisitList, to recursively obtain the 
parent until the origin state is reached. 

Different heuristics in O* will result in different O* 
algorithms. The recently proposed O*-SCDMST is a special 
case of O* in that it uses a Semi-Connected Directed 
Minimum Spanning Tree (SCDMST) [1] to compute h(s) in 
a directed graph [1] and retrieves optimal paths.  

In bivariate best first search, the global admissibility of a 
heuristic guarantees the solution be optimal. Global 
admissibility means that the global heuristic h(s) is 
admissible, i.e., its value is always smaller than or equal to 
the actual cost of the minimum-cost path from the current 
state to the goal state.  

In this paper, O*-W, a novel O* algorithm that uses a 
globally admissible heuristic H-W, is proposed to retrieve 
optimal solutions for OSTQ query in a complete directed 
graph. Its performance is studied against O*-SCDMST, and 
the result shows that when the number of vertices of interest 
is up to 15, on average, O*-W reduces computation time by 
more than one order of magnitude when compared to O*-
SCDMST. In addition, O* increasingly outperform O*-
SCDMST on average and in worst cases.   

The remaining of the paper is organized as follows. First, 
related work is introduced. Then, the O*-W algorithm is 
presented, followed by the algorithm to retrieve the heuristic 
for O*-W. Next, experiments and results are discussed. At 
last, the conclusion is provided. 

II. RELATED WORK 

This section provides a review of the state-of-the-art 
research on Traveling Salesman’s Problem (TSP) and OSTQ. 
TSP is similar to OSTQ and the only difference is that TSP’s 
origin and destination are the same while OSTQ’s are not 
necessarily the same. 

A. Travelling Salesman Problem (TSP) 

The earliest TSP research is in Euclidean space that 
searches for a shortest round-trip route to traverse each city 
exactly once with all cities directly connected to each other. 
Solutions using dynamic programming [5], nearest neighbor 
[6], iterative algorithms such as 2-OPT, 3-OPT, and n-OPT 
[7], colony simulation [8], simulated annealing [9], Branch 
and Bound approach [10], were proposed to solve the 
problem, either exactly or approximately, and the result is a 
Hamiltonian cycle that visits each vertex exactly once and 
returns to the starting vertex. These algorithms may be 
adjusted to process OSTQ. However, none of these 
algorithms is within the best first search domain, which is the 
major interest of this paper. 

B. Bivariate Best First Search 

The concept of bivariate best first search was first 
proposed in [11] to address the deficiency of a single-variate 
best first search to process multiple categories of interest. It 
uses multiple variables to specify a state to be evaluated and 

expanded. L#, a generalized best first search that evaluates 
the promise upon a state in a similar form as A*, was 
proposed, together with a set of novel concepts in best first 
search, including local heuristic, global heuristic, local 
admissibility, and global admissibility [11]. As an instance of 
L#, the bivariate best-first-search C* was provided to 
processes Category Sequence Traversal Query (CSTQ) in a 
graph, which asks for a minimum cost route that starts from 
a given origin, traverses a set of ordered categories of 
interest that includes multiple objects in each category, with 
one selection from each category, and ends at a given 
destination [11].  

As another instance of L#, O* was proposed to process 
OSTQ in a graph [1]. It is different from C* because their 
state definitions are different, and adopted data structures are 
different as well. O*-SCDMST and O*-Dijkstra are two 
special cases of O* to retrieve optimal solutions for fully 
connected directed graphs. 

III. O*-W: AN EFFICIENT O* ALGORITHM TO 

PROCESS OSTQ IN A COMPLETE DIRECTED GRAPH 

In this section, a global heuristic, H-W, as the estimate 
from the current state to the goal state is proposed. The O* 
algorithm uses H-W as the heuristic to retrieve optimal 
solutions for OSTQ is named O*-W.  

Consider a complete directed graph, G(V,E), where V and 
E are the set of vertices and edges, respectively, and a 
starting vertex s and an ending vertex e in V. V only contains 
s, e and the vertices of interest. Associated with each edge 
(i,j) from vertex Vi to vertex Vj in V is a cost c(i,j). Let |V|=n 
and |E|=m, n is larger than 2, and all the edge costs in 
G(V,E) obey the triangle inequality, which means for any 
triangle composed by three vertices in V, the sum of the costs 
of any two sides must be greater than or equal to the cost of 
the remaining side. W, an edge set, is defined to contain the 
following edges: 1) for any vertex v except s and e in V,  W 
contains its incoming edge from a vertex vx other than e and 
its outgoing edge to a vertex vy other than s where vx is not 
the same as vy and the sum of the costs of these two edges 
are the least of all its incoming edge and outgoing edge 
combinations; 2) for s, W contains s’s least-cost outgoing 
edge, les, whose end vertex is not e; and 3) for e,  W contains 
e’s least cost incoming edge, lee, whose end vertex is not s. 
Accordingly, the total number of such edges in W is 2(n-1). 
Assume the total cost of these edges in W is S. Now H-W is 
defined as the following in such an environment:  

For an OSTQ, assume all vertices except s and e in V 
from G are remaining vertices of interest, e is the goal state, 
and s is the current state, then the global heuristic H-W is S/2. 
When no vertices other than s and e exist in V, then H-W is 
c(s,e), the cost of the edge from s to e. 

Theorem 1: H-W is globally admissible.   
Proof: 
1) When no vertices other than s and e exist in V,  

H-W=c(s,e). Since c(s,e) is the same as the actual cost, then 
H-W is globally admissible. 
     2) The following is to prove that H-W is globally 
admissible when more than two vertices exist in V. 
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Assume an optimal path, p, is defined as (v0,v1,…,vn-1) 
with the sequence of visited vertices of interest, its cost is 
c(p), and v0=s and vn-1=e. First, it is clear that 1) any vertex v 
other than s and e along p will have both an incoming edge 
and an outgoing edge, 2) the other end vertex of its incoming 
edge, va, is not e, 3) the other end vertex of its outgoing edge, 
vb, is not s, and 4) va and vb are not the same either because 
the graph is complete and obeys the triangle inequality. It is 
also true that the number of edges along such an optimal path 
is n-1. For any two consecutive edges (j-1,j) and (j,j+1) from 
vertex vj-1 to vertex vj and then to vj+1 along p, based on the 
definition of the edges in W, the sum of the costs of both 
edges are not smaller than the sum of the cost of the 
incoming edge to j and the cost of the outgoing edge from j 
in W. Therefore, for any two consecutive edges starting from 
a vertex vk on the partial path (v0, v1,…,vn-3) of  p, the sum of 
the two edges’ costs is never smaller than the sum of the 
costs of two edges of the vertex vk+1 from W (one to vk+1 and 
the other from vk+1).  

Now assume all vertices on the partial path (v0, v1,…,vn-3) 
of  p are taken into account, then any edge (j-1,j)  (j>1 and 
j<n-1) along p is repeated once while each of edge (0,1), i.e., 
s->v1, and edge (n-2,n-1), i.e., vn-2->e, is counted only once. 
Correspondingly, all edges except edge les and lee in W are 
taken into account and each is counted once. In addition, 
based on the definition of les and lee, we know c(0,1), the 
cost of edge (0,1), is never smaller than c(les), the cost of les; 
and c(n-2,n-1), the cost of edge (n-2,n-1), is never smaller 
than c(lee), the cost of lee. Accordingly, assume the total 
weighted cost of the n-1 edges along p is c(ce) (the cost of an 
edge that repeats once is doubled when to calculate the total 
cost),i.e., c(ce)=c(0,1)+2c(1,2)+…+2c(n-3,n-2)+c(n-2,n-1),  
then the following inequations exist: 

c(0,1)>= c(les)   (2) 
c(n-2,n-1)>=c(lee)   (3) 
c(ce)>=S- c(les)- c(lee)   (4) 
since c(0,1)+c(n-2,n-1)+c(ce)=2c(p) (5), based on 

inequations (2), (3), and (4) and equation (5),  
2c(p)>=S, and thus 
c(p)>=S/2. 
Based on case 1) and case 2), the proof is complete.  
Since H-W is globally admissible, based on Lemma 2 in 

[1], O*-W that uses globally admissible heuristics retrieves 
optimal solutions. 

It is clear that O*-W is a special case of O*. Accordingly, 
it follows the same process as O* as discussed in Section 1. 
O*-W is proved globally admissible in a complete directed 
graph while O*-SCDMST in a fully-connected graph. Both 
Graphs obey the triangle inequality, and the first is a special 
case of the second. The other difference between O*-
SCDMST and O*-W is that O*-W uses W-H as the global 
heuristic while O*-SCDMST uses the cost of the SCDMST 
tree.  

IV. THE YUMEI ALGORITHM TO RETRIEVE H-W 

The Yumei algorithm in Figure 1 is proposed to retrieve 
the edge set W for H-W. After W is obtained, the half of the 
total cost of its edges is H-W. 

The time complexity of Yumei is O(|V|
2
) and spatial 

complexity is O(|V|
2
). 

 

Figure 1:  The pseudo code for Yumei algorithm 

V. EXPERIMENT AND RESULT ANALYSIS 

The purpose of the experiment is to test the performance 
of O*-W to retrieve optimal paths in complete directed 
graphs. O*-SCDMST is used as the baseline.   

A. Data Set 
An asymmetric TSP problem (Fischetti) with 34 points of 

interest [12], corresponding to vertices of interest in O*, is 
used as the data set for this experiment. The problem is a 
special case of Vehicle Routing Problem, and thus an 
asymmetric TSP [12]. The data set contains the edge costs 
between any two points in the generated complete directed 
graph that only contains the starting vertex, the ending 
vertex, and the vertices of interest. In this experiment, a set 
of sample OSTQ problems is generated from this data set. 
First, the number of points of interest consecutively changes 
from 2 to 15. Second, for each number of points of interest, 
30 problem samples are randomly generated, i.e., the origin, 
the destination, and the points of interest in each problem 
sample are randomly selected from the 34 points. 
Consequently, a set of 420 problems is generated.   

B. Performance Measures 
To study the performances of the two algorithms, the 

following performance measures are identified. 
Minimum Process Time (MinPT): the minimum time 

required to obtain a solution for each number of points of 
interest (seconds); 

Maximum Process Time (MaxPT): the maximum time 
required to obtain a solution for each number of points of 
interest (seconds); 

Average Process Time (APT): the average time required 
to process a query over all runs (seconds). 

Input: A complete directed weighted graph with vertices V and 

edges E (V only contains the starting vertex s, and the ending 

vertex e, and vertices of interest). 

Initialize: Vnew = {s},  W = {} 

Calculate les and lee, Vnew = {s,e}, W = { les, lee } 

Repeat until Vnew = V:      

Calculate edge (u, v) from E whose value is the minimum  

among all edges to v and u is not e. 

Calculate edge (v, w) from E whose value is the minimum  

among all edges from v and w is not s. 

If u=w: 

Calculate the edge (u’,v) from E whose cost is the 

second least among all edges to v and u’ is not e.  

Calculate the edge (v,w’) from E whose cost is the 

second least among all edges from v and w’ is not s. 

If cost(u’,v)+cost(v,w)>cost(u,v)+cost(v,w’):  

     Add v to Vnew, add (u, v) and (v,w’) to W 

Else: 

     Add v to Vnew, add (u’, v) and (v,w) to W 

Else: 

 Add v to Vnew, add (u, v) and (v,w) to W 

Output: Vnew and W 
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C. Results and Discussion 
The results are presented in Table 1. O*-S represents O*-

SCDMST, and NPoI represents the number of points of 
interest, i.e., the number of cities to traverse.  

Figure 2 through Figure 4 are provided to visualize the 
performance measures provided in Table 1. Notice that the 
Y-Axis in Figure 3 and Figure 4 uses logarithmic scale. 

In addition, it is observed that the cost of each optimal 
path retrieved by O*-W is the same as O*-SCDMST, which 
demonstrates that O*-W also retrieves optimal solutions for 
OSTQ processing. 

Based on MinPT, O*-W can retrieve the optimal path 
within 2 seconds for an OSTQ of 15 NPoI. However, based 
on MaxPT, it may still require 871.88 seconds for another 
query with the same number of points of interest. This 
implies that O*-W’s performance depends on how closely 
the selected H-W heuristic approaches to the actual cost. 

Based on MinPT shown in Figure 2, O*-W outperforms 
O*-SCDMST over all runs. 

Based on MaxPT shown in Figure 3, O*-W outperforms 
O*-SCDMST when NPoI is larger than 4. This is due to the 
fact that O*-W requires additional time to compute the H-W 
heuristic, and when NPoI becomes larger, this additional 
time is no longer a dominant factor, instead, the obtained 
heuristic expedites the overall search process. In addition, for 
these worst cases, O*-W increasingly outperforms O*-
SCDMST when the number of points of interest increases. 

Based on APT shown in Figure 4, O*-W increasingly 
outperforms O*-SCDMST when the number of points of 
interest increases. On average, O*-W can process OSTQ of 
up to 14 NPoI within 1 minute. 

In Figure 3 and Figure 4, it is noticeable that O*-W is 
sub-exponential in time complexity. It is hard to decide from 
Figure 2 whose Y-Axis does not use logarithmic scale.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE 1: PERFORMANCE RESULTS FOR O*-W AND O*-SCDMST (IN 

SECONDS) 

NPoI 

MinPT MaxPT APT 

O*-S O*-W O*-S O*-W O*-S O*-W 

2 0.00 0.00 0.04 0.02 0.00 0.00 

3 0.00 0.00 0.00 0.02 0.00 0.00 

4 0.00 0.00 0.01 0.02 0.00 0.00 

5 0.00 0.00 0.03 0.02 0.01 0.01 

6 0.00 0.00 0.15 0.09 0.04 0.02 

7 0.00 0.00 0.77 0.39 0.17 0.07 

8 0.05 0.00 2.21 0.36 0.53 0.16 

9 0.05 0.02 7.62 1.98 1.78 0.47 

10 0.04 0.03 51.96 6.68 5.63 1.15 

11 0.18 0.16 314.78 52.60 29.03 6.07 

12 0.39 0.14 234.94 40.94 66.82 10.78 

13 3.54  0.52 1109.16 199.05 245.07 30.78  

14 2.06  0.87 3900.67  537.26 548.08  58.34 

15 3.37  1.39 20857.75 871.88  2204.14 144.32 

 
Figure 2: Minimum process time over different number of traversed points 

of interest:  O*-W versus O*-SCDMST 
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Figure 3: Maximum process time over different number of traversed points 

of interest:  O*-W versus O*-SCDMST 

 

Figure 4: Average process time over different number of traversed points of 

interest:  O*-W versus O*-SCDMST 

  

VI. CONCLUSION 
This paper proposed a novel O* algorithm, O*-W, to 

retrieve optimal solutions for OSTQ processing in a 
complete directed graph. It uses a globally admissible 
heuristic, H-W, to effectively and efficiently prune states. 
According to the experiment result, on average and in worst 
cases, O*-W increasingly outperforms O*-SCDMST. Even 
when the number of points of interest is not larger than 15, 
O*-W can still outperform O*-SCDMST by more than one 
order of magnitude, measured in either MaxPT or APT, 
which indicates O*-W works significantly better than  

O*-SCDMST.  
The data size used in the experiments is rather small. To 

address OSTQ processing of a large data set, since it is 
known that the complexity to compute the pair-wise 
distances between all pairs of via-vertices is polynomial and 
much lower than the complexity of the corresponding OSTQ 
problem, in existing geoprocessing practices, typically these 
distances are pre-computed and stored in a database to 
expedite the process for querying any pair-wise distances.  
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