
O*-W: An Efficient O* algorithm to Process Optimal Sequence Traversal Query in

a Complete Directed Graph

Qifeng Lu

 MacroSys LLC.

Arlington, United States

qilu1@vt.edu

Kathleen Hancock

Center for Geospatial Information Technology, Virginia

Polytechnic Institute and State University

Arlington, United States

hancockk@vt.edu

Abstract— Optimal Sequence Traversal Query (OSTQ) is a

graph based query that retrieves a minimum cost path that

starts from a predefined vertex, traverses a set of given

vertices, and ends at a predefined vertex. One of its

applications is trip planning in the GeoProcessing domain in

transportation. With sound theoretical support for optimally

efficient, optimal, and greedy solutions, best first search in the

artificial intelligence domain is effective to process such trip

planning queries. O* is an existing bivariate best first search

framework and its special case O*-SCDMST was proposed

recently to retrieve optimal solutions for such a query. In this

paper, we propose O*-W, a novel O* algorithm that uses a

globally admissible heuristic to obtain optimal solutions for

such a query. The performance of O*-W and O*-SCDMST in

a complete directed graph whose vertices only contain the

origin, the destination, and the vertices of interest, and is

studied through a set of experiments, and the result

demonstrates that when the number of vertices of interest is up

to 15, on average, O*-W reduces computation time by more

than one order of magnitude when compared to O*-SCDMST.

More importantly, on average and in worst cases, O*-W

increasingly outperforms O*-SCDMST when the number of

points of interest increases.

Keywords- Bivariate Best First Search, Heuristic, OSTQ, O*,

O*-SCDMST, O*-W

I. INTRODUCTION AND BACKGROUND

Optimal Sequence Traversal Query (OSTQ) is a graph
based query that retrieves a minimum cost path that starts
from a predefined vertex, traverses a set of given vertices,
and ends at a predefined vertex [1]. The graph, g-G, may
include normal vertices that are neither vertices of interest,
nor the given origin or destination. In the GeoProcessing
domain in transportation, an OSTQ corresponds to a trip
planning query that asks for a shortest or quickest path that
traverses a set of locations with the given origin and
destination. For example, a user may start from his/her
office, go to a supermarket, a book store, a restaurant, a
movie theater, and end at home.

Similar to a travelling salesman problem [2], OSTQ is
NP hard [3][4]. The naïve method that retrieves the optimal
solution would compute all possible order combinations of
the given points of interest. The time complexity is O(n!),
where n is the number of locations of interest.

O*, a bivariate best first algorithm that uses problem
domain knowledge to guide the search for the optimal
solution to an OSTQ in a g-G graph, was recently proposed

[1]. As exact solutions, two special cases of O*, O*-
SCDMST [1] and O*-Dijkstra [1], were proposed to process
OSTQ in a fully connected directed graph whose vertices
only contain the origin, the destination, and the vertices of
interest. Such a graph is defined as g-G. The O*-SCDMST is
proved to be optimal in a directed graph that obeys the
triangle inequality and more efficient than O*-Dijkstra.

In a g-G graph, based on given rules, O* incrementally
searches paths most likely to lead towards the goal state until
it finds a path of minimum cost having traversed vertices of
interest to the goal. O* uses a vertex’s identification plus its
VisitList, a sorted list that consists of a sorted sequence
containing traversed vertices of interest along the path, to
describe a state in the search.

A vertex in O* may have multiple states, and each state
represents a different set of traversed vertices of interest.
Different from states in a single-variate best first search such
as A*, these states may not be compared to each other and
removed accordingly unless some special state pruning rules
unique to bivariate best search are followed [1].

At each step, O* uses a distance-plus-cost heuristic
function, defined as f(s) for a state s, to determine the order
in which the search visits states in the graph [1]:

f(s)=g(s)+h(s) (1)
where
g(s) is the cost function of the path from the initial state

to the current state, and
h(s) is the global heuristic that estimates the distance

from the current state to the goal state, traversing the
remaining vertices of interest.

O* first takes the paths most likely to lead towards the
goal state, which means the lower the f(s), the higher is the
priority for a state to be expanded.

Whenever an equal f(s) occurs, the state with a larger
VisitList will be the next to expand. Otherwise, one is
randomly selected. State A’s VisitList, vlA, is larger than
State B’s VisitList, vlB, i.e., vlA>vlB, if the length of vlA is
longer. In other words, the path from the start state to A
traverses more vertices of interest than that to B.

For an N-point traversal problem, O* first generates the
source state that contains the given vertex and an empty
VisitList. For all the states in the open list, the algorithm
expands the state with the lowest f(s) value, and its children
states are generated. A child state always inherits the
VisitList of its parent whenever the child is not a vertex of
interest; otherwise, the child’s VisitList will be incremented
by adding the vertex to it. The process continues until a goal

204Copyright (c) IARIA, 2012. ISBN: 978-1-61208-178-6

GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services

state whose vertex is the final goal and VisitList contains all
the vertices of interest or no solution is found. Once a goal
state is reached, the algorithm will retrieve the obtained path
using a data structure called backpointer, the combination of
vertex identification and VisitList, to recursively obtain the
parent until the origin state is reached.

Different heuristics in O* will result in different O*
algorithms. The recently proposed O*-SCDMST is a special
case of O* in that it uses a Semi-Connected Directed
Minimum Spanning Tree (SCDMST) [1] to compute h(s) in
a directed graph [1] and retrieves optimal paths.

In bivariate best first search, the global admissibility of a
heuristic guarantees the solution be optimal. Global
admissibility means that the global heuristic h(s) is
admissible, i.e., its value is always smaller than or equal to
the actual cost of the minimum-cost path from the current
state to the goal state.

In this paper, O*-W, a novel O* algorithm that uses a
globally admissible heuristic H-W, is proposed to retrieve
optimal solutions for OSTQ query in a complete directed
graph. Its performance is studied against O*-SCDMST, and
the result shows that when the number of vertices of interest
is up to 15, on average, O*-W reduces computation time by
more than one order of magnitude when compared to O*-
SCDMST. In addition, O* increasingly outperform O*-
SCDMST on average and in worst cases.

The remaining of the paper is organized as follows. First,
related work is introduced. Then, the O*-W algorithm is
presented, followed by the algorithm to retrieve the heuristic
for O*-W. Next, experiments and results are discussed. At
last, the conclusion is provided.

II. RELATED WORK

This section provides a review of the state-of-the-art
research on Traveling Salesman’s Problem (TSP) and OSTQ.
TSP is similar to OSTQ and the only difference is that TSP’s
origin and destination are the same while OSTQ’s are not
necessarily the same.

A. Travelling Salesman Problem (TSP)

The earliest TSP research is in Euclidean space that
searches for a shortest round-trip route to traverse each city
exactly once with all cities directly connected to each other.
Solutions using dynamic programming [5], nearest neighbor
[6], iterative algorithms such as 2-OPT, 3-OPT, and n-OPT
[7], colony simulation [8], simulated annealing [9], Branch
and Bound approach [10], were proposed to solve the
problem, either exactly or approximately, and the result is a
Hamiltonian cycle that visits each vertex exactly once and
returns to the starting vertex. These algorithms may be
adjusted to process OSTQ. However, none of these
algorithms is within the best first search domain, which is the
major interest of this paper.

B. Bivariate Best First Search

The concept of bivariate best first search was first
proposed in [11] to address the deficiency of a single-variate
best first search to process multiple categories of interest. It
uses multiple variables to specify a state to be evaluated and

expanded. L#, a generalized best first search that evaluates
the promise upon a state in a similar form as A*, was
proposed, together with a set of novel concepts in best first
search, including local heuristic, global heuristic, local
admissibility, and global admissibility [11]. As an instance of
L#, the bivariate best-first-search C* was provided to
processes Category Sequence Traversal Query (CSTQ) in a
graph, which asks for a minimum cost route that starts from
a given origin, traverses a set of ordered categories of
interest that includes multiple objects in each category, with
one selection from each category, and ends at a given
destination [11].

As another instance of L#, O* was proposed to process
OSTQ in a graph [1]. It is different from C* because their
state definitions are different, and adopted data structures are
different as well. O*-SCDMST and O*-Dijkstra are two
special cases of O* to retrieve optimal solutions for fully
connected directed graphs.

III. O*-W: AN EFFICIENT O* ALGORITHM TO

PROCESS OSTQ IN A COMPLETE DIRECTED GRAPH

In this section, a global heuristic, H-W, as the estimate
from the current state to the goal state is proposed. The O*
algorithm uses H-W as the heuristic to retrieve optimal
solutions for OSTQ is named O*-W.

Consider a complete directed graph, G(V,E), where V and
E are the set of vertices and edges, respectively, and a
starting vertex s and an ending vertex e in V. V only contains
s, e and the vertices of interest. Associated with each edge
(i,j) from vertex Vi to vertex Vj in V is a cost c(i,j). Let |V|=n
and |E|=m, n is larger than 2, and all the edge costs in
G(V,E) obey the triangle inequality, which means for any
triangle composed by three vertices in V, the sum of the costs
of any two sides must be greater than or equal to the cost of
the remaining side. W, an edge set, is defined to contain the
following edges: 1) for any vertex v except s and e in V, W
contains its incoming edge from a vertex vx other than e and
its outgoing edge to a vertex vy other than s where vx is not
the same as vy and the sum of the costs of these two edges
are the least of all its incoming edge and outgoing edge
combinations; 2) for s, W contains s’s least-cost outgoing
edge, les, whose end vertex is not e; and 3) for e, W contains
e’s least cost incoming edge, lee, whose end vertex is not s.
Accordingly, the total number of such edges in W is 2(n-1).
Assume the total cost of these edges in W is S. Now H-W is
defined as the following in such an environment:

For an OSTQ, assume all vertices except s and e in V
from G are remaining vertices of interest, e is the goal state,
and s is the current state, then the global heuristic H-W is S/2.
When no vertices other than s and e exist in V, then H-W is
c(s,e), the cost of the edge from s to e.

Theorem 1: H-W is globally admissible.
Proof:
1) When no vertices other than s and e exist in V,

H-W=c(s,e). Since c(s,e) is the same as the actual cost, then
H-W is globally admissible.
 2) The following is to prove that H-W is globally
admissible when more than two vertices exist in V.

205Copyright (c) IARIA, 2012. ISBN: 978-1-61208-178-6

GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services

Assume an optimal path, p, is defined as (v0,v1,…,vn-1)
with the sequence of visited vertices of interest, its cost is
c(p), and v0=s and vn-1=e. First, it is clear that 1) any vertex v
other than s and e along p will have both an incoming edge
and an outgoing edge, 2) the other end vertex of its incoming
edge, va, is not e, 3) the other end vertex of its outgoing edge,
vb, is not s, and 4) va and vb are not the same either because
the graph is complete and obeys the triangle inequality. It is
also true that the number of edges along such an optimal path
is n-1. For any two consecutive edges (j-1,j) and (j,j+1) from
vertex vj-1 to vertex vj and then to vj+1 along p, based on the
definition of the edges in W, the sum of the costs of both
edges are not smaller than the sum of the cost of the
incoming edge to j and the cost of the outgoing edge from j
in W. Therefore, for any two consecutive edges starting from
a vertex vk on the partial path (v0, v1,…,vn-3) of p, the sum of
the two edges’ costs is never smaller than the sum of the
costs of two edges of the vertex vk+1 from W (one to vk+1 and
the other from vk+1).

Now assume all vertices on the partial path (v0, v1,…,vn-3)
of p are taken into account, then any edge (j-1,j) (j>1 and
j<n-1) along p is repeated once while each of edge (0,1), i.e.,
s->v1, and edge (n-2,n-1), i.e., vn-2->e, is counted only once.
Correspondingly, all edges except edge les and lee in W are
taken into account and each is counted once. In addition,
based on the definition of les and lee, we know c(0,1), the
cost of edge (0,1), is never smaller than c(les), the cost of les;
and c(n-2,n-1), the cost of edge (n-2,n-1), is never smaller
than c(lee), the cost of lee. Accordingly, assume the total
weighted cost of the n-1 edges along p is c(ce) (the cost of an
edge that repeats once is doubled when to calculate the total
cost),i.e., c(ce)=c(0,1)+2c(1,2)+…+2c(n-3,n-2)+c(n-2,n-1),
then the following inequations exist:

c(0,1)>= c(les) (2)
c(n-2,n-1)>=c(lee) (3)
c(ce)>=S- c(les)- c(lee) (4)
since c(0,1)+c(n-2,n-1)+c(ce)=2c(p) (5), based on

inequations (2), (3), and (4) and equation (5),
2c(p)>=S, and thus
c(p)>=S/2.
Based on case 1) and case 2), the proof is complete.
Since H-W is globally admissible, based on Lemma 2 in

[1], O*-W that uses globally admissible heuristics retrieves
optimal solutions.

It is clear that O*-W is a special case of O*. Accordingly,
it follows the same process as O* as discussed in Section 1.
O*-W is proved globally admissible in a complete directed
graph while O*-SCDMST in a fully-connected graph. Both
Graphs obey the triangle inequality, and the first is a special
case of the second. The other difference between O*-
SCDMST and O*-W is that O*-W uses W-H as the global
heuristic while O*-SCDMST uses the cost of the SCDMST
tree.

IV. THE YUMEI ALGORITHM TO RETRIEVE H-W

The Yumei algorithm in Figure 1 is proposed to retrieve
the edge set W for H-W. After W is obtained, the half of the
total cost of its edges is H-W.

The time complexity of Yumei is O(|V|
2
) and spatial

complexity is O(|V|
2
).

Figure 1: The pseudo code for Yumei algorithm

V. EXPERIMENT AND RESULT ANALYSIS

The purpose of the experiment is to test the performance
of O*-W to retrieve optimal paths in complete directed
graphs. O*-SCDMST is used as the baseline.

A. Data Set
An asymmetric TSP problem (Fischetti) with 34 points of

interest [12], corresponding to vertices of interest in O*, is
used as the data set for this experiment. The problem is a
special case of Vehicle Routing Problem, and thus an
asymmetric TSP [12]. The data set contains the edge costs
between any two points in the generated complete directed
graph that only contains the starting vertex, the ending
vertex, and the vertices of interest. In this experiment, a set
of sample OSTQ problems is generated from this data set.
First, the number of points of interest consecutively changes
from 2 to 15. Second, for each number of points of interest,
30 problem samples are randomly generated, i.e., the origin,
the destination, and the points of interest in each problem
sample are randomly selected from the 34 points.
Consequently, a set of 420 problems is generated.

B. Performance Measures
To study the performances of the two algorithms, the

following performance measures are identified.
Minimum Process Time (MinPT): the minimum time

required to obtain a solution for each number of points of
interest (seconds);

Maximum Process Time (MaxPT): the maximum time
required to obtain a solution for each number of points of
interest (seconds);

Average Process Time (APT): the average time required
to process a query over all runs (seconds).

Input: A complete directed weighted graph with vertices V and

edges E (V only contains the starting vertex s, and the ending

vertex e, and vertices of interest).

Initialize: Vnew = {s}, W = {}

Calculate les and lee, Vnew = {s,e}, W = { les, lee }

Repeat until Vnew = V:

Calculate edge (u, v) from E whose value is the minimum

among all edges to v and u is not e.

Calculate edge (v, w) from E whose value is the minimum

among all edges from v and w is not s.

If u=w:

Calculate the edge (u’,v) from E whose cost is the

second least among all edges to v and u’ is not e.

Calculate the edge (v,w’) from E whose cost is the

second least among all edges from v and w’ is not s.

If cost(u’,v)+cost(v,w)>cost(u,v)+cost(v,w’):

 Add v to Vnew, add (u, v) and (v,w’) to W

Else:

 Add v to Vnew, add (u’, v) and (v,w) to W

Else:

 Add v to Vnew, add (u, v) and (v,w) to W

Output: Vnew and W

206Copyright (c) IARIA, 2012. ISBN: 978-1-61208-178-6

GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services

C. Results and Discussion
The results are presented in Table 1. O*-S represents O*-

SCDMST, and NPoI represents the number of points of
interest, i.e., the number of cities to traverse.

Figure 2 through Figure 4 are provided to visualize the
performance measures provided in Table 1. Notice that the
Y-Axis in Figure 3 and Figure 4 uses logarithmic scale.

In addition, it is observed that the cost of each optimal
path retrieved by O*-W is the same as O*-SCDMST, which
demonstrates that O*-W also retrieves optimal solutions for
OSTQ processing.

Based on MinPT, O*-W can retrieve the optimal path
within 2 seconds for an OSTQ of 15 NPoI. However, based
on MaxPT, it may still require 871.88 seconds for another
query with the same number of points of interest. This
implies that O*-W’s performance depends on how closely
the selected H-W heuristic approaches to the actual cost.

Based on MinPT shown in Figure 2, O*-W outperforms
O*-SCDMST over all runs.

Based on MaxPT shown in Figure 3, O*-W outperforms
O*-SCDMST when NPoI is larger than 4. This is due to the
fact that O*-W requires additional time to compute the H-W
heuristic, and when NPoI becomes larger, this additional
time is no longer a dominant factor, instead, the obtained
heuristic expedites the overall search process. In addition, for
these worst cases, O*-W increasingly outperforms O*-
SCDMST when the number of points of interest increases.

Based on APT shown in Figure 4, O*-W increasingly
outperforms O*-SCDMST when the number of points of
interest increases. On average, O*-W can process OSTQ of
up to 14 NPoI within 1 minute.

In Figure 3 and Figure 4, it is noticeable that O*-W is
sub-exponential in time complexity. It is hard to decide from
Figure 2 whose Y-Axis does not use logarithmic scale.

TABLE 1: PERFORMANCE RESULTS FOR O*-W AND O*-SCDMST (IN

SECONDS)

NPoI

MinPT MaxPT APT

O*-S O*-W O*-S O*-W O*-S O*-W

2 0.00 0.00 0.04 0.02 0.00 0.00

3 0.00 0.00 0.00 0.02 0.00 0.00

4 0.00 0.00 0.01 0.02 0.00 0.00

5 0.00 0.00 0.03 0.02 0.01 0.01

6 0.00 0.00 0.15 0.09 0.04 0.02

7 0.00 0.00 0.77 0.39 0.17 0.07

8 0.05 0.00 2.21 0.36 0.53 0.16

9 0.05 0.02 7.62 1.98 1.78 0.47

10 0.04 0.03 51.96 6.68 5.63 1.15

11 0.18 0.16 314.78 52.60 29.03 6.07

12 0.39 0.14 234.94 40.94 66.82 10.78

13 3.54 0.52 1109.16 199.05 245.07 30.78

14 2.06 0.87 3900.67 537.26 548.08 58.34

15 3.37 1.39 20857.75 871.88 2204.14 144.32

Figure 2: Minimum process time over different number of traversed points

of interest: O*-W versus O*-SCDMST

207Copyright (c) IARIA, 2012. ISBN: 978-1-61208-178-6

GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services

Figure 3: Maximum process time over different number of traversed points

of interest: O*-W versus O*-SCDMST

Figure 4: Average process time over different number of traversed points of

interest: O*-W versus O*-SCDMST

VI. CONCLUSION
This paper proposed a novel O* algorithm, O*-W, to

retrieve optimal solutions for OSTQ processing in a
complete directed graph. It uses a globally admissible
heuristic, H-W, to effectively and efficiently prune states.
According to the experiment result, on average and in worst
cases, O*-W increasingly outperforms O*-SCDMST. Even
when the number of points of interest is not larger than 15,
O*-W can still outperform O*-SCDMST by more than one
order of magnitude, measured in either MaxPT or APT,
which indicates O*-W works significantly better than

O*-SCDMST.
The data size used in the experiments is rather small. To

address OSTQ processing of a large data set, since it is
known that the complexity to compute the pair-wise
distances between all pairs of via-vertices is polynomial and
much lower than the complexity of the corresponding OSTQ
problem, in existing geoprocessing practices, typically these
distances are pre-computed and stored in a database to
expedite the process for querying any pair-wise distances.

REFERENCES
[1] Q. Lu and K. Hancock. O*: A Bivariate Best First Search

Algorithm to Process Optimal Sequence Traversal Query in a

Graph. geoprocessing, pp.53-61, 2011 Third International

Conference on Advanced Geographic Information Systems,

Applications, and Services, 2011.

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,

and Clifford Stein. Introduction to Algorithms. The MIT

Press, 1997

[3] Michael R. Garey, Donald S. Johnson, and Larry Stockmeyer.

Some simplified NP-complete problems. Proceedings of the

sixth annual ACM symposium on Theory of computing, p.47-

63. 1974.

[4] Wikipedia. Travelling Salesman Problem.

http://en.wikipedia.org/wiki/Traveling_salesman_problem,

last retrieved on September 20, 2011.

[5] M. Held and R. M. Karp. A Dynamic Programming Approach

to Sequencing Problems, Journal of the Society for Industrial

and Applied Mathematics 10(1) (1962): pp. 196–210.

[6] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis II. An

Analysis of Several Heuristics for the Traveling Salesman

Problem. SIAM Journal on Computing. 6 (1977): pp. 563–

581.

[7] J. L. Bentley. Fast Algorithms for Geometric Traveling

Salesman Problems. ORSA Journal on Computing 4, (1992),

pp. 387-411.

[8] Ma. Dorigo. Ant Colonies for the Traveling Salesman

Problem. Université Libre de Bruxelles. IEEE Transactions

on Evolutionary Computation, 1(1) (1997):pp. 53–66.

[9] E.H.L. Aarts and J. Korst. Simulated Annealing and

Boltzmann Machines: A stochastic Approach to

Combinatorial Optimization and Neural Computing. John

Wiley & Sons, Chichester, 1989.

[10] J. Clausen and M. Perregaard, On the Best Search Strategy in

Parallel Branch-and-Bound - Best-First-Search vs. Lazy

Depth-First-Search, Proceedings of the Parallel Optimization

Colloquium, (1996).

[11] Q. Lu and K. Hancock. C*: A Bivariate Best First Search to

Process Category Sequence Traversal Queries in a

Transportation Network. geoprocessing, pp.127-136, 2010

Second International Conference on Advanced Geographic

Information Systems, Applications, and Services, 2010.

 [12] Robert C. Prim: Shortest connection networks and some

generalizations. In: Bell System Technical Journal, 36, pp.

1389–1401,1957

208Copyright (c) IARIA, 2012. ISBN: 978-1-61208-178-6

GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services

http://en.wikipedia.org/wiki/Traveling_salesman_problem

