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Abstract—Wireless sensor networks have been widely used
in numerous monitoring applications and real life phenomena.
Due to the low quality of sensors and random effects of the
environment, the collected sensor data is subject to several
sources of errors. Such errors may seriously impact the answer
to any query posed to the sensors and therefore, it is very
critical to clean the sensor data before using them to answer
queries or conduct data analysis. Well known data cleansing
approaches, are used to meet the requirements of both energy
efficiency and quick response time in many sensor related
applications. Several energy saving methods based on clustering
sensors, so that sensors communicate information only to
cluster-heads and then the cluster-heads communicate the
aggregated information to the processing center are reviewed,
and discussed. We focus on the distribution of sink operation
among sensor nodes and specify the criteria of selecting
effective cluster-heads that enable both balanced and low
energy consumption in data query and collection. As a result
of the effective selection of cluster-heads, both balanced and
decreased energy consumption are superior compared with the
conventional retrieval model, which is not using cluster-heads,
because their use provide maximum data aggregation among
various sensors, and it alleviates the heavy energy consumption
near the sink.

Keywords-Data cleansing, selective query, Wireless Sensor
Network.

I. INTRODUCTION

Wireless Sensor Networks (WSN) have become an impor-
tant source of data with numerous applications in monitoring
various real-life phenomena as well as agro-environmental
and industrial applications. Data delivered by sensors is typi-
cally noisy and unreliable. The task of improving, correcting
and filtering the incoming data is usually referred as data
cleansing. Such errors may seriously impact the answer
to any query posed to the sensors, since they may yield
imprecise or even incorrect and misleading answers, which
can be very significant if they result in immediate critical
decisions or activation of actuators.

A. Dimensionality of Data Cleansing
Data cleansing has different dimensions, which are related

to the different kinds of noise.
• Noise Reduction or Smoothing: Stochastic noise or

noise caused by interferences can often be treated by

some kind of smoothing (like a moving average) or
other noise reduction methods. The idea is to extract the
relevant portion of the incoming signal. The incoming
signal is modified but not removed. Thus the risk of
loosing relevant information by this kind of cleansing
is very low.

• Filtering: Faulty data due to sensor failures or human
errors can often be recognized by cross-checking in-
formation from different sources. This is often based
on physical models. In certain places for example one
could use temperature and smoke sensors to detect fire.
Cross-checking the signals from spatially close sensors
of both kinds allows to detect unlikely or impossible
measurements of a single sensor and could help to avoid
false-alarms. However filtering has to be used carefully
as it might be vulnerable for manipulations.

• Generation: Data cleansing may also try to fill gaps in
the data due to missing sensors or transmission errors.
This task is likely to employ physical models. Filling
up missing data can be very useful as it allows to draw
an overall picture of the state of an infrastructure. Such
data should be marked as generated, virtual or simu-
lated since it is not as reliable as real measurements.

B. Methods for Data Cleansing

In order to remove noisy sensor data or at least reduce the
effect that brought about by noises is a key issue to answer
queries or detect events accurately. Statistical and proba-
bilistic modelling techniques have been used to solve the
issues we discussed earlier. Modelling usually involves two
phases: training and testing. In training, the parameters of
the characteristic function representing the data are learned.
Sometimes held-out data is used for validation to further
improve the accuracy of the training process by preventing
over-fitting. In the next phase, predictions are made about
the testing data. Training is frequently done off-line while
testing can be done either off-line or on-line.

Sensor data is temporal and spatial in nature. In general, a
reading is usually of the format <sensor-id, location, time,
value>. If the sensors are static, then the location field is
usually omitted. Individual observations are assumed to be
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independent. Traditional data cleansing techniques cannot
be applied to sensor data as they do not take into account
the strong spatial and temporal correlations typically present
in sensor data. Nevertheless, well known data modelling
methods like Kalman filters and regression have shown
good results in capturing spatio-temporal correlations. The
Kalman filter is an efficient recursive filter, which estimates
the state of a dynamic system from a series of incomplete
and noisy measurements. Regression usually involves fitting
the best curve for a given set of points. In the case of time-
varying and spatial data the use of regression is mainly to
find the best curve approximating the readings. This curve
can be used not only to find missing or unknown data but
also to reduce noise.

So far, interesting prior work has been done on data
cleansing in the context of sensor network data. Many tool-
kits for cleansing noisy and incomplete sensor data are
available, supporting interpolation and extrapolation func-
tionalities. In addition, they provide data analysis tools
like visualization and a step utility to examine the actual
training process. Comparative studies of two methods shows
promising results for the Kalman filter for most of the
physical attributes modelled.

C. Cleansing and Query processing

If cleansing is performed at the sensors, there would be
significant communication cost in sending the parameters
of the model to the individual sensors. Furthermore, there
is a storage cost associated with storing the parameters. In
addition to communication and storage costs, performing
the actual cleansing at the sensors would incur a processing
cost on the resource-constrained sensors. These problems do
not arise if cleansing is done at the sink, given the typical
processing power and storage capacity of sinks. Moreover,
there would be huge savings by not having to communicate
the model parameters to each individual sensor. Given that
the lifetime of the sensors is heavily dependent on the
amount of communication that they do, communication
savings is very important. Having the data and the model at
the sink is advantageous when it comes to query processing,
as answers to user queries can be easily computed.

We define a monitoring query as a continuous data col-
lection task that requests sensed values from nodes fulfilling
selection criteria based on certain physical conditions. For
instance, queries that monitor object movements in a field
would report the sensed values only from the nodes that
have recently sensed these movements. The following are
key aspects of monitoring queries:
• Monitoring queries are selective: Typically, a WSN can

cover an area much larger than the area of interest at
any given point in time. For instance, in the monitoring
example presented above, although nodes are present all
over the field, the object movements may only be found
within a limited area. We argue that for energy efficient

optimization of such queries, the data collection task
should be selectivity-aware.

• Monitoring queries are continuous: A monitoring task,
by design, is expected to query readings from sensor
nodes over an extended period of time. The mainstream
WSN database systems have realized the need for
continuous queries and provide SQL clauses to define
such queries.

• Monitoring queries select spatially correlated nodes:
Physical phenomena are characterized by their spatial
correlation; hence, when monitoring a physical phe-
nomenon, sensor nodes at proximal locations tend to
have similar values. Therefore, this spatial correlation,
coupled with the notion of selectivity, results in clus-
tered participation. For instance, if a node is selected
by a query based on its sensed temperature value, there
is a high probability that neighbouring nodes will also
be selected by the same query.

Cleansing and query processing can be performed either
at the individual sensors or at the sink. Performing the
cleansing at the sensor level and query processing at the
sink has no clear advantages. This is because communicating
a single noisy reading to the sink and performing the
cleansing work there incurs less communication cost than
communicating all the model parameters over to the sensor
itself. The latter, as we have mentioned earlier, imposes
unnecessary processing and storage overhead on the sensors.

The remainder of the paper is structured as follows: Sec-
tion II summarises the background information related with
the existing cleansing and querying mechanisms, Section III
analyses, in terms of minimization of the total energy spent
in the system, two schemes proposed for data collection
and querying process, and finally, Section IV concludes the
present work with some discussion on the results and a
future work.

II. MATERIAL AND METHODS

A. Cleansing Mechanism

1) Weighted moving average algorithm: A well known
approach to remove noise in random samples and compute
the monitoring values is to use the moving average [1],
[2]. Note that moving average in sensor networks has two
dimensions. Sensor data are averaged temporally within
one sensor, and also spatially among neighbouring sensors.
For example, at any time t, the algorithm first averages a
sequence of samples xi,t−k+1, . . . , xi,t at each sensor i,
and gets x̄i = (xi,t−k+1 + . . . + x̄i,t)/k. We then average
values of neighbouring sensors, ¯̄xi =

∑
j∈R(i) x̄j/|R(i)|,

where R(i) is a set of neighbouring sensors of sensor i.
The above approach is not suitable for sensor network

applications, mainly because there is a trade-off between
energy efficiency and query response time. For example, to
improve the efficiency sampling rates should be low, namely,

77Copyright (c) IARIA, 2012.     ISBN: 978-1-61208-178-6

GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services



the interval between two consecutive samples should be
long. Thus, any change takes a long time to be reflected in
the moving average. On the other hand, if the sampling rate
is high, the response to a change is short and therefore more
samples need to be taken. However, in practice, since sam-
pling is one of the costly operators for sensors, the energy
efficiency of high sampling rate is lowered. To address these
two aspects together a weighted moving average algorithm
has been proposed [3], that collects confident data from
sensors and computes the weighted moving average.

In particular, the temporal moving average is defined as:

x̄ti = (wi,t−k+1xi,t−k+1 + . . .+ wi,txi,t)/h (1)

where wi,t is the weight of value xi,t at sensor i, which is
related to the confidence of this value and h = wi,t−k+1 +
. . . + wi,t is the accumulated temporal weight. In addition,
the spatial moving average of the data coming from spatially
correlated sensors is defined as:

x̄si =
1

m

∑
j∈R(i)

bj,twj,txj,t (2)

where m =
∑
j∈R(i) bj,twj,t is the accumulated weights and

weight bj,t is a digit value according to whether or not a
neighbouring sensor j reports the confident value xj,t to the
sink. We can greatly achieve low sampling cost when xi,t is
a smooth and predictable value. Data cleaning is performed
in two places. On the sensor side, multiple sampling is used
to remove random noises in data, whereas on the sink side,
the weighted moving average is used in both dimensions to
further smooth the data.

From equation (1) the temporal part is a weighted version
of the normal moving average x̄ti provided that wi,t =
ŵi,t∀i, t and k is a given window size. The spatial part
includes value xj,t from sensors j, where xj,t is in the
error range [xj,t − e, xj,t + e] of xi,t, and it has a high
confidence with its weight wj,t > 1. That means xj,t is
in xi,t’s error range and has high confidence to improve the
moving average at xi,t. In a similar way the spatial part
of moving average is provided by equation (2). Finally the
weighted moving average is the combination of the temporal
and spatial parts: x̄i,t = (hx̄ti +mx̄si )/(h+m).

2) k-Means Algorithm: The latest sensor network tech-
niques enable a sensor to sense multiple measures simulta-
neously. Therefore, multidimensional data analysis such as
clustering is needed for analyzing sensor network data. For
example, for temperature sensor network the dimension is
one, for a sensor network measuring both temperature and
humidity the dimension is two, whereas for a sensor network
measuring temperature, humidity, and density at the same
time the dimension is three, etc. k-means algorithm proposed
in [4] and [5], is an old, simple, and well known method
for analysing multidimensional data by separating data into
different clusters. It converges very fast when the dimension

of data is small, such as in the cases of environmental
problems.

In mathematical terms the problem is defined as follows.
We consider a set of points U , where U is assumed to be
an r-dimensional space. At a time instant i, the value of a
point u ∈ U is ui = (u1, . . . , ur). In other words, a point in
U can be regarded as a moving object in an r-dimensional
space. We are interested in k-means clustering of the current
values of the points at each time instant. At an instant i, let
c1, . . . , ck be k points, which may or may not be in U .
The points in U can be partitioned into k exclusive subsets
U1, . . . , Uk according to their values at instant i: a point
u ∈ U is assigned to cluster Ui if:

dist(ui, ci) = min
1≤j≤k

{dist(uj , cj)} (3)

where dist() is the distance function in question. Note that
the points c1, . . . , ck are the k-means of U if:

min

{
k∑
i=1

∑
u∈Ui

dist(ui, ci)

}
(4)

To lower down the communication cost a hierarchical
clustering structure is proposed in [6] and [7]. A set of
sensors are grouped together, and one of them becomes
a Cluster-Head (CH). In data collection, each sensor in
the cluster sends its data to the CH, and the CH reports
the aggregated data to the sink. A distributed randomized
algorithm was proposed to cluster the sensors. Each sensor
takes a probability to become a CH, and broadcasts itself
to other sensors within certain hops. The sensors tha t are
not CHs join the closest CH. The optimal parameters of the
clustering, which minimize the communication cost are also
derived. However, as time goes by, the status of each sensor
may change, and thus the so-built hierarchical structure may
not always be optimal. For example, some sensors may use
more energy to collect data, so they are dying faster than the
others. If we use such sensors as CHs, the lifetime of the
whole cluster decreases. The problem has been studied in
[8], where it periodically recomputes the CHs based on the
residual energy of each sensor and its relationship to other
sensors.

To maximize the lifetime of the sensor network a hierar-
chical model is used that utilizes data aggregation and in-
network processing at two-levels of the network hierarchy.
First, a set of sensor nodes called Local CHs (LCHs) are
elected to form a fixed virtual routing architecture on, which
the first level of aggregation and routing is performed.
Then, the problem is that of finding an optimal subset of
LCHs, called Master CHs (MCHs), which are selected to
perform the second level of aggregation under the objective
to maximize the network lifetime. Clearly, the problem
of optimal selection of MCHs is NP-complete since it is
equivalent to the p-median problem in graph theory, which
has been shown to be NP-complete [9].
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To implement the k-means algorithm one needs to initial-
ize mean values with k, say, random MCHs from the set of
LCHs. To initialize k MCHs we choose k LCHs at random
from the set of sensors S, |S| = s ∈ N while making sure
that the pairwise distance (number of hops) between these
k MCHs is large enough. One way to do that is to choose
m LCHs at random from S (where m >> k but m < s)
and then perform k-means clustering on those m LCHs.
To initialize this sub-problem, we arbitrarily assign LCHs
to different k MCHs(classes). The algorithm simply iterates
until a termination condition is met. In every iteration, each
LCH in S is assigned to a chosen MCHs such that the
distance from LCHs to sink through that selected MCHs is
minimized. Then, for each class, we recalculate the means
of the class based on the local nodes that belong to that
class. Theoretically, k-means should terminate when no
more LCHs are changing classes; however, in practice, this
may require a large number of iterations.

3) Weighted data cleansing: The above approach intro-
duces a periodic multilevel data cleansing algorithm aiming
to optimize the volume of data transmitted thus saving
energy consumption and reducing bandwidth on the network
level. It is based on a tree network where sensed data needs
to be aggregated on the way to their final destination. In
particular, a frequency filtering technique is applied, which
exploits the ordering of measurements according to their
frequencies, by means of the number of occurrences of
this measure in the set. Since sensor nodes are deployed
randomly, it is most likely that neighbouring nodes generate
similar sets of data.

Data aggregation works in two phases, the first one at
the LCHs, where each node compacts its measurements set
according to a link function. The objective is to identify
similarities between neighbouring sensor nodes, and inte-
grate their sensed data into one record while preserving
information integrity. This first level of cleansing process
is called in-sensor process periodic cleansing. A second
cleansing process is applied on the level of the MCH itself,
where the frequency filtering technique will be applied. The
cleaned data is finally sent from the MCHs to the sink.

In periodic sensor networks, at each period T each node
sends its aggregated data set to its proper LCH, which
subsequently aggregates all data sets coming from different
sensor nodes and sends them to the sink. We consider that
each sensor node i at each slot takes a new measurement yit.
Then node i forms a new set of sensed measurements Mi

with period T , and sends it to the aggregator. Note that,
a sensor node can take different kind of measures (e.g.,
temperature, humidity, light, etc), making of yit a vector
instead of a scalar. For the sake of simplicity, in the rest
of the paper we shall consider that yit ∈ R. It is likely that a
sensor node takes the same (or very similar) measurements
several times especially when t is too short. In this phase of
aggregation, we are interested in identifying duplicate data

measurements in order to reduce the size of the set Mi.
Therefore, to identify the similarity between two measures,
we define the link function between two measures as:

link(yitj , y
i
tk

) =

{
1 : if ‖yitj − y

i
tk
‖ ≤ δ

0 : otherwise
(5)

where δ is a threshold determined by the application. Fur-
thermore, two measures are similar if and only if their link
function is equal to 1. The frequency of a measurement
yit is defined as the number of the subsequent occurrence
of the same or similar (according to the link function)
measurements in the same set. It is represented by:

f(yit) =

T∑
j=ti+1

link(yitj − y
i
tk

)

4) Greedy Algorithm: In the virtual graph of the set
of sensors S, |S| = s ∈ N, LCHs are numbered se-
quentially from 1 (left-upper corner) to s starting from 1
and then from left to right proceeding row by row. The
greedy algorithm starts with the first node in S and proceed
sequentially through the whole topology in a left-to-right
and top down fashion [10]. We assume that each LCH
has global information about network topology (shortest
path from each LCH - LCH and from LCH - sink can be
obtained by running all-pairs shortest path algorithm) and
this information is broadcasted before the greedy algorithm
is executed. To construct the MCHs graph, the shortest path
is first established for the first LCH source node acting as
the first MCH to the sink. Each subsequent LCH source
is incrementally connected to the MCHs graph either as a
MCH itself or by selecting a MCH from the set of nodes that
are already been allocated as MCHs. In the latter, a LCH
selects the MCH that results in the least power consumption
to reach the sink. Then, LCH sends the MCH its group
number. A MCH holds a registry for its constituent LCH and
for those LCHs that exist in multiple groups to distinguish
data coming common LCHs. The process is iterated until all
LCHs are covered by MCHs and until there is no change in
the value of the objective function, which is to obtain the
least total power consumption to reach the sink.

B. Query Resolution Mechanism

When the sink receives a query message, it resolves
the name of the query to the corresponding sensor IDs,
according to the resolution table. After a query′s name
is translated into an ID group corresponding to sensors,
the sink calculates the query area by deriving a rectan-
gle, in which all corresponding sensor nodes reside. A
rectangle area is calculated based on the locations (xi, yi)
of each sensor i = 1, 2, . . . , s that is in the ID list
obtained from the query resolution: Rxy = Rx × Ry =
[min{xi},min{yi},max{xi},max{yi}] ∀i = 1, . . . , s
with s = |S| be the number of all sensors in the network. It is
assumed that all sensors can reach the sink, using multi-hop
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communication. In addition, whenever a sensor j = 1, . . . , s
is activated it emits a constant energy signal Ej in the
surrounding environment. The measured signal is inversely
proportional to the distance from the activated sensor raised
to some power γ ∈ R+, which depends on the environment.
As result, the measurement of a CH h ∈ H,H ⊆ S is given
by the equation:

zh = min

Ech,
s∑
j=1

Ej
rγhj

+ wh (6)

where Ech is the maximum energy, which can be recorded
by a CH, rhj is the radial distance of CH h from the

sensor j ∈ S, rhj =
√

(xchh − xj)2 + (ychh − yj)2 and wh

is additive Gaussian noise with zero mean and variance σ2
h.

Note that the neighbourhood of a CH h is defined as the
set of all sensors that are located at a distance less than or
equal to rc. Therefore the neighbourhood of a CH h ∈ H
is the set of all sensors in S that are in the disk centred at
~xh with radius rc, or,

CHrc(h) = {j : ‖~xh − ~xj‖ ≤ rc,∀j ∈ S, j 6= h}, ∀h ∈ H

Thus, in case rc is the communication range of the sensor,
then the set CHrc(h) defines all sensors that are one hop
away from the CH h.

Generally, sensing data is collected at appropriate CHs,
at which is aggregated and forwarded to the sink. There are
two types of CH selection schemes. One is fixed selection
scheme, in which an identical CH will be selected at different
times for the queries that have the same query resolution
result. The next is dynamic selection scheme, in which
various CHs will be selected at different times for the queries
that have the same query resolution result. Note that for
the fixed selection scheme a CH is selected to be the node
nearest to the centre location of the query area, whereas for
the dynamic selection scheme a rotation operation on the
CH is utilised.

Localised data query distribution consists of query unicast
and query geocast. The unicast distribution is used to deliver
query messages from a sink to the CH. Based on the nodes’
location there are many approaches for the sink to calculate
a source route to the CH. For example, in the Sink-CHs-
Sensors scheme [11], the sink first selects and includes in
the source route the sensor that is nearest the CH among
one-hop neighbours of the sink. Then the sink calculates
the next sensor in the source route, by selecting the sensor
nearest to the CH among the neighbours of the previous
selected sensors in the source route. This process continues
until a source route is found to the CH. As soon as the
query message is delivered by the CH in the query area, it
is geographically broadcast to all sensors inside the query
area. The CH forwards the query message to its one-hop
neighbours.

Localised sensing data collection consists of local data
delivery, data aggregation, and aggregated data delivery to
the sink. On receiving a query message, the corresponding
sensors send the sensing data back to the CH in a local
region using the reverse path obtained from the query
geocast initiated by the CH. The CH collects the sensing
data locally before forwarding it to the sink and aggregates
the sensing data by placing multiple sensing data into one
packet.

In the following an analysis and discussion is provided on
the energy bottleneck in data collection of both, the Sink-
Sensors-Sink and the Sink-CH-Sensors schemes, by means
of the fixed and dynamic selection schemes, suggested
above. As it will be seen, under certain conditions, the
effective selection of CHs and MHs are comparable over
the conventional Sink-Sensors-Sink retrieval model in terms
of both balanced and saving energy consumption.

III. ENERGY MODEL ANALYSIS

A. Selection of CHs in Data Query

For simplicity we assume the query area is a square con-
sisting of |S| = s nodes. The average energy consumption
of a one-hop transmission of a packet is assumed to be E0.
In the conventional model flooding is typically adopted for
disseminating a query to sensors in the network. The energy
cost of a data query is given by Ecdq = s ∗ E0. In the
Sink-CHs-Sensors information retrieval model, the operation
consists of unicasting from sink to CH, and geocasting from
CH to sensors in the geocast area, which is a combined
rectangle area that contains both CH and the query area.
Assuming p ∈ (0, 1] presents the ratio of the number of
sensors in the geocast to the total sensors s, then p ∗ s
equals the number of sensors in the query geocast area. If
Shops denotes the number of hops of transmission in the
unicast from the sink to the CH then, the energy cost of
Sink-CHs-Sensors query is Echdq = p ∗ s ∗ E0 + Shops ∗ E0.
As a result, the ratio λdq of data query cost of the Sink-
CHs-Sensors model to the conventional model is given by
λdq = Echdq /E

c
dq = (p ∗ s + Shops)/s, which means that

greater energy savings is obtained for smaller values of λdq .
Thus, when λdq ≤ 1 or equivalently Shops < s(1 − p) a
Sink-CHs-Sensors query saves energy compared with the
conventional scheme. If a query interest area is defined, both
values of p and Shops can be determined by the position of
a CH.

B. Selection of CHs in Data Collection

In the Sink-Sensors-Sink conventional scheme of data
collection, the energy cost can be approximately given by the
sum cost of the replied data unicast from each sensor to the
sink. Let p1, p2 ∈ (0, 1] be the ratio of sensors that will reply
a query message, and the ratio of aggregated data size to the
non-aggregated data size, respectively. Then p1∗s equals the
number of sensors corresponding to the Sink-CHs-Sensors
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query and p2 ∗ (p1 ∗ s) equals the number of sensors
corresponding to the aggregated data size. In addition, let L̄0

and L̄ch be the average route length from each corresponding
sensor to the sink and the average route length from each
corresponding sensor to the CH, respectively. Then, the
energy cost of the conventional data collection scheme,
denoted by Ecdc, is given by Ecdc = p1 ∗s∗E0 ∗ L̄0, whereas
the energy cost of the Sink-CHs-Sensors data collection
information retrieval scheme, denoted by Echdc , is given by
Echdc = p1 ∗ s ∗E0 ∗ L̄ch + p2 ∗ (p1 ∗ s) ∗ Shops ∗E0. Thus,
the ratio of data collection cost of Sink-CHs-Sensors to the
conventional model will be given by λdc = Echdc /E

c
dc =

(L̄ch + p2 ∗ Shops)/L̄0. Obviously, in case λdc ≤ 1 or
equivalently L̄0 > L̄ch + p2 ∗ Shops, there is energy saving
in Sink-CHs-Sensors data collection scheme compared with
convention data collection scheme.

IV. CONCLUSIONS

In this work we reviewed some interesting clustering
based approaches employing data cleansing, data aggrega-
tion, and data query in order to extend the lifetime of sensor
networks. Further, we have discussed a distributed algorithm
for organizing sensors into a hierarchy of clusters with an
objective of minimizing the total energy spent in the system
to communicate the information gathered by these sensors to
the information-processing center (sink). As it was expected
we indicated (a rigorous proof remains an open question)
that the sensors, which become the CHs in the proposed
architecture spend relatively more energy than other sensors
because they have to receive information from all the sensors
within their cluster, aggregate this information and then
communicate to the higher level CHs or the information
processing center. However, cluster-based algorithms along
with data aggregation and in-network processing can achieve
significant energy savings in the sensor networks.

Data aggregation and in-network processing techniques
is performed at two levels. We introduced a method to
select master/local CHs such that the network lifetime is
maximized. Clearly, data aggregation was affected by several
factors, such as the placement of aggregation points, the
aggregation function, and the density of the sensors in the
network. In this framework the determination of an optimal
selection of aggregation points, by means of reducing the
number of redundant data sent to the end user while pre-
serving data integrity, was crucial and thus very important.
In the analysed schemes, sensing data was collected at
appropriate CHs, at which data was aggregated and sent
to the sink. A query’s name was resolved into the IDs
and locations of corresponding sensor nodes before being
distributed to the network. According to the location of
sensor nodes, query distribution and data collection were
performed in a corresponding local area. The query message
was efficiently unicasted to the CH in a query area, and was
then forwarded to a localised area of the network. Sensing

data were collected at a CH, at which data were aggregated
and sent to the sink. The energy bottleneck analysis and
discussion on the criteria of selecting effective CHs show
that the discussed schemes were promising.
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