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Abstract—An Optimal Sequence Traversal Query is a new 

query in a graph typically representing a transportation 

network that determines the minimum-cost path with a 

predefined origin-destination pair, traversing a set of non-

ordered points of interest, at least once for each point. It has 

distinctive applications in the GoeProcessing domain in 

transportation where a user may query a shortest route to start 

from his/her office, traverse a set of consumer destinations, 

and then go home. Optimal Sequence Traversal Query 

generalizes TSP in the sense that the origin and the destination 

may be different in the former. This paper proposes a bivariate 

best first search, O*, to process such a query within a graph. 

Two special cases of O*, O*-SCDMST and O*-Dijkstra, are 

provided, their performance in a fully connected directed 

graph are studied through a set of experiments, and the result 

demonstrates that, on average, O*-SCDMST reduces 

computation time by one order of magnitude when compared 

to O*-Dijkstra.   

Keywords- Bivariate Best First Search, Heuristic, Optimal 

Sequence Traversal Query, O*, O*-SCDMST 

I.  INTRODUCTION AND BACKGROUND 

The Optimal Sequence Traversal Query (OSTQ) is a 
query conducted to find the minimum-cost path that starts 
from any given origin, passes through a set of points of 
interest, and terminates at a given destination. It has 
distinctive applications in the GeoProcessing domain in 
transportation where a user may query a shortest route to 
start from his/her office, traverse a set of consumer 
destinations, and then go home. It may have potential 
applications in artificial intelligence where a robot is sent to 
collect data from multiple sensors and delivers the data to a 
given destination for downloading and analysis. The 
traveling salesman problem (TSP) is a special case of OSTQ, 
where the given origin and destination are the same [1] [2] 
[3] [4] [5] [6].  

A graph can conceptually represent a complex network, 
such as a transportation network. In this context, a graph G is 
defined as a set of vertices, {Vi}, and a set of directed line 
segments, {Ei,j}, called arcs. Ei,j is defined such that an arc is 
from vertex Vi to vertex Vj, and Vj is a successor of Vi. Each 
Ei,j has an associated cost Ci,j. Only graphs with Ci,j>=0 are 
considered in this paper. These graphs are referred to as δ 
graphs.  

In this paper, we propose a new type of query defined in 
such a δ graph: Optimal Sequence Traversal Query (OSTQ). 
Given a δ graph G with its vertices {Vi} and edges {Eij}, a set 
of vertices of interest VI from {Vi} in graph G, a starting 

vertex S, and a destination vertex D, an OSTQ retrieves the 
minimum-cost path, traversing all vertices of interest, at least 
once for each vertex. In such a graph, there may exist normal 
vertices that are neither vertices of interest to traverse, nor 
the given origin or destination. Within this context, all 
necessary sub state graphs are generated implicitly. An 
application of this query in the GeoProcessing domain is that 
a consumer drives from his/her office, traverses a gas station, 
a coffee shop, and a post office, and gets home. Another 
application is that a food delivery person starts from the 
restaurant he works at, traverses a set of delivery points, and 
then returns to the restaurant, a typical example of TSP.  

This paper proposes a bivariate best-first search 
algorithm, O*, to process OSTQ in a graph. O* is a bivariate 
best first search in the sense that it uses two variables to 
specify its state. Both theoretical and experimental analyses 
of the proposed algorithm are presented.  

The paper is organized as follows. First, related work is 
discussed in Section II. In Section III, O* is presented. 
Section IV provides the SCDMST heuristic, a globally 
admissible heuristic for O*. Section V presents a set of 
experiments and an analysis of the results. Finally, the 
conclusion is presented.  

II. RELATED WORK 

This section provides a review of the state-of-the-art 
research on 1) Traveling Salesman’s Problem (TSP), and 2) 
best first searches. 

A. Travelling Salesman Problem (TSP) 

The earliest research in TSP is in Euclidean space that 
searches for a shortest round-trip route to traverse each city 
exactly once with all cities directly connected to each other, 
forming a fully connected graph. A set of solutions, 
including dynamic programming [7], nearest neighbor [8], 
iterative algorithms such as 2-OPT, 3-OPT, and n-OPT [9], 
best first search [10], ant colony simulation [11], simulated 
annealing [12], Branch and Bound approach [13], and so on, 
were proposed to resolve this problem, either exactly or 
approximately, and the result is a Hamiltonian cycle that 
visits each vertex exactly once and returns to the starting 
vertex. These algorithms may be adjusted to process OSTQ. 

B. Best First Searches 

A best first search is a kind of informed search. The 
following two subsections provide a review of best first 
searches. A best first search is n-variate if it uses n variables 
to specify its states. 
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Single-Variate Best First Searches 
Single-variate best first search is the existing best first 

search that searches a graph by expanding the most 
promising vertex chosen according to some rule. It adopts 
estimates to the promise of vertex n by a “heuristic 
evaluation function f(n) that, in general, may depend on the 
description of n, the description of the goal, the information 
gathered by the search up to that point, and most important, 
on any extra knowledge about the problem domain.” [14], 
which is in prevalent used by researchers in Artificial 
Intelligence (AI), including Russell & Norvig [15].  

Several algorithms, including A* [15][16], Dijkstra 
search [17], Greedy search [15], frontier search [18], and so 
on, extract the path of minimum cost between a predefined 
origin-destination vertex pair in a graph. A* uses a distance-
plus-cost heuristic function as f(n) to determine the order, in 
which the search visits vertices in the graph [14]. f(n) is the 
sum of two functions: g(n), the path cost function of the path 
from the origin to the current vertex n, and h(n), the heuristic 
estimate of the distance from the current vertex n to the goal. 
For h(n), two important concepts exist. The first is 
admissibility. A heuristic is admissible if its value is less than 
or equal to the actual cost [15]. The other is consistency. A 
heuristic is consistent when the real cost of the path from any 
vertex A to any vertex B is always larger than or equal to the 
reduction in heuristic [16]. Once a heuristic is consistent, it is 
always admissible [15]. A* has been shown to obtain the 
optimal solution, i.e., the minimum-cost solution, whenever 
the heuristic is admissible [15], and, indeed, is optimally 
efficient among all best-first algorithms guided by path-
dependent evaluation functions when the heuristic is 
consistent [19]. Additionally, A* is complete in the sense 
that it will always find a solution if one exists. The spatial 
and time complexity of A* depends on the heuristic and, in 
general, is exponential. However, A* is very fast in practice. 
Both Dijkstra and the Greedy algorithm can be considered as 
a special case of A*. Dijkstra algorithm only considers g(n) 
as f(n). The Greedy algorithm only uses h(n) as f(n). Frontier 
search is similar to A* except that Frontier search only works 
on data sets with consistent heuristic and does not require a 
closed-list to implement the search algorithm, which 
consequently saves space at the cost of increased 
computation [18].  

There is also a set of A* variations such as anytime A* 
[20], hierarchical A* [21], MA* [22], and SMA* [23], which 
take the same form f(n) as A* but adapts A* to different 
scenarios to reduce time or space complexity of A*. 

All the f(n)s used in these identified best first searches are 
defined upon a single variable, vertex n, to estimate its 
promise. 

One exact approach uses a Minimum Spanning Tree 
(MST) to provide an admissible heuristic to retrieve optimal 
TSP routes with A* [10]. The algorithm’s performance has 
not been reported since then. A possible reason is that to 
process TSP, existing single-variate best first search is not 
adequate. This is because a vertex must be able to store 
multiple partial paths that traverse different sets of points of 
interest during the search process that a single-variate best 
first search cannot handle. 

Bivariate Best First Searches 
The concept of multivariate best first searches was first 

proposed in [24] to address the deficiency of a single-variate 
best first search to process multiple categories of interest. It 
uses multiple variables to specify a state to be evaluated and 
expanded. L#, a generalized best first search that evaluates 
the promise upon a state in a similar form as A*, was 
proposed, together with a set of novel concepts in best first 
searches, including local heuristic, global heuristic, local 
admissibility, and global admissibility [24]. As an instance of 
L#, the bivariate best-first-search C* was provided to 
processes Category Sequence Traversal Query (CSTQ) in a 
graph, which asks for a minimum cost route that starts from 
a given origin, traverses a set of ordered categories of 
interest that includes multiple objects in each category, with 
one selection from each category, and ends at a given 
destination [24]. In C*, a bivariate state instead of a single-
variate state is evaluated and expanded. The state in C* is 
defined as the combination of a vertex and its VisitOrder, a 
discrete integer variable to indicate the order of a visiting 
category. A vertex may have multiple states in a graph, and 
not all the states of a vertex may be generated and expanded. 
Through its state specification, C* extends the theorems on 
optimality identified in single-variate A*.  

As a bivariate best first search, C* substantially improves 
the ability of best first searches to process more complex 
queries. However, C*’s state specification is still not 
adequate to process OSTQ because it does not consider 
different visit orders of a vertex of interest. Therefore, C* 
cannot be used to process OSTQ.  

Since best first search is supported with solid theories to 
obtain optimally efficient, optimal, and sub-optimal solutions 
and in nature a Branch and Bound approach that is prevalent 
for TSP calculation, a bivariate best first search is proposed 
in this paper to process OSTQ. 

III. O*: A BIVARIATE BEST-FIRST-SEARCH 

APPROACH TO PROCESS OSTQ IN A GRAPH 

This section describes the details of O*, the bivariate best 
first search algorithm to process OSTQs in a graph. First, for 
a state s, O* uses the same-form distance-plus-cost function 
f(s) as C*, shown in equation (1), to determine the order, in 
which the search visits vertices in the graph [24]. Therefore, 
similar to C*, O* is another instance of L#. Second, O* 
assures that its solution traverses all points of interest.  

 
    f(s)=g(s)+h(s)                                                           (1) 
 
where 
f(s) is the estimate to the promise of a state s to be expanded, 
g(s) is the cost from the origin state to the state s, and  
h(s) is the estimation to the actual cost from the state s to the 

final state. 

The lower the f(s), the higher is the priority for a state to 
be expanded. 

In the following subsections, first, a set of best first 
search concepts identified for O* is discussed, followed by 
the presentation of the O* algorithm. Next, how the 
algorithm assures the traversal of all vertices of interest is 
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discussed, followed by the analysis of its completeness. 
Finally, the relationship between different states of a vertex 
is discussed.  

A. Definition 
In O*, a state Si,j is defined as (Vi,VLj), where VLj is an 

ordered list of j vertices of interest that are traversed along 
the path obtained so far at vertex Vi. Since a vertex may have 
multiple states and each state has its own points of interest 
traversed, the ordered list is used to efficiently compare two 
states to remove a state that is not on the target route to be 
retrieved. A state of a vertex n describes the traversed points 
of interest along the partial path from the origin to the vertex 
n. A successor operator Γ is defined on {Si,j}. Its value for 
each Si,j is a set of child states of Si,j. Whenever a Si,j is of a 
vertex of interest, a Ψ operator will transform the state Si,j 
to Si,j+1, (Vi,VLj+1), at no cost by adding the vertex of 
interest to VLj. A state graph SG defined on a graph G is the 
graph G whose vertices are of the same VL. The number of 
state graphs for G is the number of VLs. Since a VL is a 
sorted list storing traversed vertices of interest, in a problem 
with n vertices of interest, the number of state graphs is 2n. 
These state graphs compose the state graph space G, an item-

enumeration graph space. A sub state graph SSG is a portion 
of a state graph SG, and a forest in nature. It is said to be 
implicitly generated by Γ operations in SG. A sub state graph 
space Gs is a set of sub state graphs, i.e., SSGs. In Gs, each 
point represents a sub state graph that contains the expanded 
vertices to each of which the path from the origin has 
traversed the same set of vertices of interest described by an 
item enumeration variable. It is said to be implicitly 
generated if it is initiated with a single source state S0,0 and a 
set of Γ operations and some possible Ψ operations applied 
to it, to its successors, and so forth. A δ sub space graph 
space is a special GS with edge cost always not smaller 
than 0. A path from a source S to a goal D, traversing a set 
of vertices of interest, is an ordered set of states (Vi,VLj). In 
O*, all sub state graphs are generated implicitly. The 
concepts are illustrated by the example in Section IV.B. 

Since OSTQ traverses multiple vertices of interest 
between the origin and the destination, the way to estimate 
its heuristic is similar to in C* but different from that in A* 
that is directly based on the currently generated vertex and 
the destination. Since O* is an instance of L#, the following 
concepts identified for L# [24] are also applicable to O*: 
local heuristic, global heuristic, local admissibility, and 
global admissibility. For these concepts, the only difference 
between in C* and in O* is the state used in their 
corresponding definitions. For example, in O*, a global 
heuristic, hg, is estimated based on the currently generated 
vertex, the remaining vertices of interest to traverse, and the 
final goal, while C*’s global heuristic is estimated based on 
the remaining categories of interest to traverse instead of the 
remaining vertices of interest to traverse [24].  The following 
describes these concepts in O*.  

Local heuristic is the estimate to the actual cost from the 
current vertex to a subgoal, sg. A subgoal is a vertex that is a 
point of interest (PoI). For two vertices n and n’, local 
consistency means the following inequality exists: 

hl(n,sg)<=g*(n, n’)+hl(n’,sg)                         (2)     
 
where 
hl is a local heuristic, and 
g*(n, ,n’) is the actual cost from n to n’ in the graph. 

Global heuristic is the estimate to the actual cost from 
the current state to estimate to the final goal.  

Global admissibility means the global heuristic is not 
larger than the actual cost from the current state to evaluate 
to the final goal state. 

B. The O* Algorithm 
O* incrementally searches all paths leading from the 

starting vertex, traversing the vertices of interest, until it 
finds a path of minimum cost to the goal. It first takes the 
paths most likely to lead towards the goal.  

Similar to C*, O* also maintains a set of partial 
solutions, unexpanded leaf states of expanded vertices. These 
solutions are stored in an open list, also called a priority 
queue, which is a sorted queue based on each element’s 
priority. Same as in C*, the priority is assigned to a state s 
based on the function (1). 

Even though C* and O* use the same-form bivariate 
distance-plus-heuristic function f(s), they use different state 
definitions. 

The lower the f(s), the higher is the priority for a vertex 
to be expanded. Whenever an equal f(s) occurs, the state with 
a larger VisitList will be the next to expand. Otherwise, one 
is randomly selected. State A’s VisitList, vlA, is larger than 
State B’s VisitList, vlB, i.e., vlA>vlB, if the length of vlA is 
longer. In other words, the path from the start state to A 
traverses more vertices of interest than that to B. 

For an N-point traversal problem, O* first generates the 
source state that contains the given vertex and an empty 
VisitList, and puts it into the open list. For all the states in the 
open list, the algorithm expands the state with the lowest f(s) 
value, and its children states are generated. A child state 
always inherits the VisitList of its parent whenever the child 
is not a vertex of interest; otherwise, the child’s VisitList will 
be incremented by adding the vertex to it. The process 
continues until a goal state whose vertex is the final goal and 
VisitList contains all the vertices of interest or no solution is 
found. Once a goal state is reached, it will retrieve the 
obtained path using a data structure called backpointer, the 
combination of vertex identification and VisitList, to 
recursively obtain the parent until the origin state is reached. 

1) O* Pseudo Code 
Given an estimation function for hg(s), the starting vertex 

S, the goal D, and the vertices of interest to visit, the pseudo 
code for O* is provided in Figure 1.  

2) Time and Space Complexity 
In O*, the complexity between a vertex and a subgoal is 

the same as in A*, whose time complexity and space 
complexity are dependent on the heuristic. For A*, in 
general, the time and space complexities are both 
exponential. Assume b is the branching factor, d is the 
largest depth to obtain the shortest path, and then both the 
time complexity and the space complexity are O(bd) [15]. A* 
is sub-exponential only when its heuristic h(x) and the actual 
cost h*(x) satisfies the following condition [15]: 
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Figure 1.             The pseudo code of O*        

   |h(x)-h*(x)|<=O(logh*(x))                                                     (3) 
 
Where  
h(x): the heuristic in A*, i.e., the local heuristic in O*; and 
h*(x): the corresponding actual cost     
For O*, assume b is the branching factor, d is the largest 

depth to obtain the shortest path between two objects 
including the origin, the destination, and the specified 
vertices of interest to traverse, which is named as a section 
path in O*, m is the number of vertices of interest specified 
to traverse, and Fh is the worst time complexity to obtain a 
global heuristic, then the state length is m+1, the number of 
state graphs is 2m. In the worst case, O* requires traverse 
paths resulting from all possible order combinations of 
vertices of interest and storage of all state graphs. Each 
section path is exponential in time and space complexity, and 

the corresponding time complexity is O(m!Fhb
d), and space 

complexity is O(m2mbd).   
To reduce the time complexity to sub-exponential, the 

heuristics used in O* must be sufficiently close to the actual 
cost to reduce the number of candidate order combinations 
from of permutation level to of sub-exponential level.  

3) Traversal Constraints of Vertices of Interest  
The solution from O* must traverse all the vertices of 

interest to be a candidate solution to an OSTQ. 
Lemma 1: The solution from O* satisfies the traversal 

constraint of vertices of interest. 
Proof: 

Use contradiction. 
Assume the solution obtained from O* does not traverse 

at least one vertex of interest.  
Since the solution is obtained, then the search stops. 

According to O*, if a subgoal, a specified vertex of interest, 

is not reached, then it cannot be added to the VisitList of any 

Input: 

Starting vertex S, Goal vertex D, VisitList: a sorted list to store the traversed vertices of interest  

bAdd2PQ=false: Indicator that indicates whether a generated vertex is put into PQ, not be put into PQ by default  

Priority queue PQ(=set of generated (s(vertex,VisitList), f(s),g(s))) begins empty. 

Closed list CL (= set of previously visited (s(vertex,VisitList), backpointer, f(s),g(s))) begins empty.  

Algorithm Process: 

Put (S, VisitList =null), f=hg(S,null), and g(S,null)=0 into PQ  

While (PQ is not empty) 

{       remove the state with the lowest f having the largest VisitList from PQ. Name it n.  

If n is a goal, then  //a goal must be the predefined destination after all  vertices of interest are visited  

{ Succeeded, report the result, and END; 

} 

Else 

{ put n with its f,g,and backpointer in CL  

         For each v' in successors(n.vertex)    

 {        if v’ is an unvisited sub goal, then   

         VisitList’=(n.VisitList).add(v’); // add n to the VisitList    

               Else 

               {       VisitList’=n.VisitList;  

     g(v’,VisitList’)= g(n)+Cost(n.vertex,v’); 

     hg (v’,VisitList’)=calculateGlobalHeuristic(v’,VisitList’);  

          f (v’,VisitList’)=g(v’,VisitList’)+hg(v’,VisitList’) 

       Process((v’,VisitList’), f, g) //decide to place the state in PQ and/or to remove other states from CL/PQ 

               } 

         } 

} 

} 

Process((v’,VisitList’), f, g):             

      bAdd2PQ=true; 

       If v' not seen before, or (v',VisitList’) currently in PQ with f(v',VisitList’)>f Then  

Place/promote (v', VisitList’) on priority queue with f ,g; END; 

       If (v’, VisitList*) is in PQ, Then 

 If(VisitList* is a super set of  VisitList’ && g(v’,VisitList*)<g(v’,VisitList’)) Then 

  bAdd2PQ=false; 

 If(VisitList* is a sub set of VisitList’ && g(v’,VisitList*)>g(v’,VisitList’)) Then 

  Delete (v’,VisitList*) from PQ             

       If(v',VisitList’) previously expanded Then  

      If f(v',VisitList’)<=f Then  

  bAdd2PQ=false; 

                 else  
 Delete (v’,VisitList*) from the closed list 

Else 
        If(v’,VisitList*) is in CL Then 

 If(VisitList* is a super set of  VisitList’ && g(v’,VisitList*)<g(v’,VisitList’)) Then 

  bAdd2PQ=false; 

 If(VisitList* is a sub set of VisitList’ && g(v’,VisitList*)>g(v’,VisitList’)) Then 

  Delete (v’,VisitList*) from CL  

      If(bAdd2PQ) Then Place (v',VisitList’) with f,  and g on priority queue    
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vertex generated by O*, and thus there is no state whose 

VisitList contains the vertex of interest. Consequently, the 

final state will never be reached. In other words, the search 

will not stop to report a solution if there is one. This is 

contradicted with the assumption. So O* does provide a 

solution that satisfies the constraint to traverse the specified 

vertices of interest.  

C. Completeness 
Completeness means that an algorithm finds a solution if 

one exists.  

Theorem 1: O* is complete. 

The algorithm will not stop until either the goal is 
reached or there is no solution to the OSTQ. 

D. Admissibility and Optimality 
Admissibility is important in A* since it guarantees the 

solution is optimal. This is also true in O*.  
Lemma 2: If any global heuristic for any vertex is admissible, 

then the solution is optimal. 
Proof:   

Use contradiction. 
Suppose O* finds a suboptimal path, ending in goal state 

(G1,vlg) where vlg contains all the vertices of interest since 
the search guarantees the solution traverses all the vertices of 
interest, i.e., f(G1,vlg) > f* where f* = hg* (origin state) = 
cost of the optimal path. Let hg*(n,vl) as the actual cost from 
a state (n,vl) (n is the vertex and vl is its VisitList) to the goal 
state. 

There must exist a state (n,vl) that is unexpanded, to which 
the path from the origin state is the start of a true optimal path, and 

f(n,vl) >= f(G1, vlg) (else search would not have ended). 
Also f(n,vl) = g(n,vl) + hg(n,vl)= g*(n,vl) + hg(n,vl)  

because (n,vl) is on the optimal path, 
Since the global heuristic is globally admissible, then 
f(n,vl= g*(n,vl) + hg(n,vl))<= g*(n,vl) + hg*(n,vl)=f*  
So f* >= f(n,vl) >= f(G1, vlg)   
Contradicting the assumption. So the solution is optimal. 
Once the global heuristic is admissible, then the solution 

is optimal. 
An algorithm is defined as admissible if it is guaranteed 

to find an optimal path from s to the goal state for any δ 
graph, traversing at least once for each specified vertex of 
interest.  

Theorem 2: Once any global heuristic is admissible, then O* 
provides the optimal solution to the corresponding OSTQ, i.e., O* 
is admissible. 

Proof: 

First, based on Lemma 1, O* guarantees that each 
specified vertex of interest is traversed at least once. Then 
based on Lemma 2, global admissibility guarantees solution 
optimality. Consequently, an optimal solution that satisfies 
the vertices of interest traversal constraint is the optimal 
solution to the corresponding OSTQ, completing the proof.  

E. Relationship between Different States of a Vertex 
Since in a bivariate best first search, a vertex may have 

multiple states, the relationship between any two of its states 
can be used to prune unnecessary states. 

Theorem 3: For a vertex v,  

If(g(v,VL’)>g(v,VL) AND VL is a super or equal set of 
VL’, then the state (v,VL’) is not on the optimal path. 

Proof:  
Since VL is a super or equal set of VL’, which means VL 

contains at least the same set of traversed vertices of interest 
as VL’, it is clear that g*(v,VL)>=g*(v,VL’). According to 
the given condition, g(v,VL’)>g(v,VL), then 
g(v,VL’)>g*(v,VL), so g(v,VL’)>g*(v,VL’). Consequently, 
(v,VL’) is not on the optimal path. Completing the proof. 

IV. SCDMST: TO PROVIDING A GLOBALLY 

ADMISSIBLE HEURISTIC TO PROCESS OSTQ IN A 

FULLY CONNECTED DIRECTED GRAPH 

According to the time complexity analysis in Section 
3.2.2, it is desirable to reduce the depth to process OSTQ to 
reduce the computation time in the worst case, especially for 
a program within a graph where the majority of the vertices 
are not points of interest. Through Dijkstra, an algorithm 
using polynomial time in terms of all the number of vertices 
in a graph to obtain routes for a single-source multiple-
destination routing problem, it is clear that an OSTQ 
processing in a general graph that contains both vertices of 
interest and general vertices can be efficiently transformed 
into a fully connected graph containing only the points of 
interest plus the origin and the destination. This is also the 
reason that TSP is primarily studied in a fully connected 
graph. In addition, directed graphs are more general in real 
world trip planning. Therefore, this section presents an 
instance of O* that uses a global heuristic to process OSTQ 
processing in a fully-connected directed graph. 

Consider a directed graph, G(V,E), where V and E are the 
set of vertices and edges, respectively, and a starting vertex s 
and an ending vertex e in E. Associated with each edge (i,j) 
in V is a cost c(i,j). Let |V|=n and |E|=m. A semi-connected 
directed spanning tree, SCDST, is defined as a graph that 
connects, without any cycle, all vertices with n-1 arcs, while 
vertex s only has outgoing arcs and vertex e only has 
incoming arcs. It is semi-connected in the sense that it does 
not necessarily connect any two points together. A Semi-
Connected Directed Minimum Spanning Tree (SCDMST) is 
the graph with the minimum total edge cost among all 
SCDSTs. In other words, the problem is to find a SCDST, 
G(V,S) where S is a subset of E, such that the sum of c(i,j) 
for all (i,j) in S is minimized. Figure 2 shows a SCDMST 
example. 

The SCDMST heuristic is globally admissible in a fully 
connected directed graph whose edge costs obey the triangle 
inequality. The property is proved through Theorem 4. 

Theorem 4: A SCDMST heuristic is globally admissible 
in a fully connected directed graph whose edge costs obey 
the triangle inequality. 

Proof: 
Use contradiction. 
Suppose the SCDMST heuristic is larger than the actual 

cost. Therefore, in the SCDMST there must exist at least one 
cost between two points is larger than their actual cost. At 
the same time, since edges obey the triangle equality and an 
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Where 

 S: starting vertex, E: ending vertex.  

The SCDMST tree is highlighted in dark black. The SCDMST 

starts from S, connects vertex 1 and vertex 2, and ends at E. No 

cycle exists. 3 edges are used to connect 4 vertices. Only 

outgoing edges exist for S and incoming edges exist for E. The 

SCDMST is semi-connected since not any two points are 

connected through the tree. For example, 2 and E are not 

connected together in the obtained SCDMST. 

Figure 2.  A SCDMST example 

edge on the optimal path cannot be a directed edge with its 

ending vertex as the starting vertex of the SCDMST tree or 

with its starting vertex as the ending vertex of the SCDMST 

tree, this means an edge with a less cost is not found by the 

SCDMST, which is contradicted with the fact that a 

SCDMST always adopts the edge of the minimum cost 

between two points. Completing the proof. 
The O* algorithm that uses a SCDMST to provide a 

global heuristic is named as O*-SCDMST. 

A. The D-ODPrim Algorithm to Retrieve a SCDMST 

from a Fully Connected Directed Graph 
In this paper, D-ODPrim is proposed to obtain a 

SCDMST from a directed graph. Its pseudo code is provided 
in Figure 3.  

 

Figure 3.  The pseudo code for D-ODPrim algorithm 

D-ODPrim can be regarded as a variation of the Prim 
algorithm that calculates a MST for an undirected graph [25]. 
Similar to Prim’s algorithm, D-ODPrim continuously 
increases the size of a tree starting with the given starting 
vertex until it spans all the vertices.  

Next, we prove the algorithm outputs a SCDMST. 

Proof: 
Four steps are used to prove D-ODPrim outputs a 

SCDMST if a solution exists. 
Assume the number of vertices is N. Name the obtained 

graph as DG. 
Step 1: Prove that DG contains N-1 edges. 
Proof: Every time a new edge connecting to a new vertex 

is added to Enew, until the N-1 points are added to Vnew. 
Consequently, for N vertices, the algorithm will try N-1 
times, thus N-1 edges will be added to form DG.  

Step 2: Prove that DG does not contain a cycle. 
Proof: According to the algorithm, if the edge direction is 

neglected in DG, DG connects any two points together with 
N-1 edges, which is impossible to have a cycle.  So the 
directional DG does not contain a cycle. 

Step 3: Prove that no outgoing edges for the ending 
vertex e and no incoming edges for the starting vertex s. 

Proof: Since the algorithm removes the incoming edges 
of s and the outgoing edges of e from the candidate edge set, 
it is no way to add these edges into DG. 

Step 4: Prove that the total edge cost is the minimum.  
Proof: Use contradiction. Suppose another SCDST, DG1, 

has a smaller total edge cost. Then there must be at least one 
vertex that uses an edge of smaller cost in DG1 than in DG, 
which conflicts the fact that every time the algorithm finds 
the minimum cost edge for a vertex to add it to DG. 

Based on the four steps, it is clear that D-ODPrim 
retrieves a SCDMST, completing the proof. 

For D-ODPrim, the time complexity is O(V2) and space 
complexity is O(V2). 

B. An Example 
To illustrate how O*-SCDMST works, the following 

simple example is provided. Figure 4 shows the fully 
connected directed graph having Cij=Cji where i and j 
represents any two vertices in the graph and Cij represents 
the cost from i to j. The OSTQ ask for a shortest route 
starting from O, traversing vertex 1 and vertex 2, and then 
ending at D. The edge costs in the graph obey triangle 
inequality. Therefore, O*-SCDMST retrieves an optimal 
solution for the OSTQ problem, and its search process in 
also shown in Figure 4. 

The algorithm begins with the starting point O with 
VisitList as null and parent (parentpointer) as null. Its f value 
is 3.5, the cost of SCDMST of O,1,2, and D. The state is put 
into the priority queue. Then, the state of the lowest f value, 
vertex O with VisitList null is expanded first and put into the 
closed list with a null backpointer, and its three children, 1, 2, 
and D, are generated. D is not a subgoal, so its VisitList is 
null, inheriting its parent. Both 1 and 2 are subgoals, so their 
VisitLists are changed accordingly. For each of these three 
vertices, O* calculates its heuristic based on its 
corresponding SCDMST, and then calculates its f value. All 
generated states are put into the priority queue. 

Next, since state (1,(1)) has the lowest f, 3.5, it is 
expanded and put into the closed list with a backpointer 
pointing to (O,null), and its children O,2,and D are generated. 
Neither O nor D is a subgoal, so their VisitLists are (1). 2 is a 
subgoal, so its VisitList is changed to (1,2). The generated 
three states are put into the open list.  

Input: A connected directed weighted graph with vertices V 

         and edges E, the starting vertex s, and the ending vertex e. 

Initialize: Vnew = {x}, where x is the starting vertex from V,  

     Enew = {} 

Remove incoming edges of s and outgoing edges of e in E 

Repeat until Vnew = V:  

    Choose edge (u,v) from E with the minimal weight such that 

           one vertex is in Vnew and the other is not  

(if multiple edges with the same weight exist, choose 

arbitrarily) 

    Add v to Vnew, add (u, v) to Enew 

Output: Vnew and Enew describe a semi-connected directed    

minimal spanning tree 
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Figure 4.  The OSTQ problem and O*-SCDMST search process to 

retrieve an optimal solution 

Now (2,(1,2)) has the lowest f, but it does not reach the 
goal state yet. So (2,(1,2)) is expanded. Its children, O,1, and 
D, are generated. Now D is the final goal since the partial 
path traverses 1 and 2. Neither O nor 1 is a subgoal in this 
case. Again, these generated states are put into the open list.  

Again, based on the lowest f, (D,(1,2)) is the next to be 
expanded. Since it is a final goal, the search stops and reports 
the optimal solution is O->1->2->D with 3.5 as the minimum 
cost.  

In Figure 4, the elements in normal style are in the open 
list; those in italic style were in the open list first, and then 
moved to the closed list. The closed list in Figure 4 is its 
snapshot after the final goal state is expanded by O*-
SCDMST. Through this example, it is clear that O*-
SCDMST must store multiple states for a vertex, which a 
single-variate best first search cannot handle. 

Figure 5 shows the corresponding sub-state-graph space 
representing the search space that O*-SCDMST explores to 
retrieve the optimal route for the OSTQ . The sub-state-graph 
space is composed of 2n sub state graphs where n is the 
number of PoI and n=2. Note that in this example the sub-
state graph with point of interest (PoI) 2 traversed has no 
states. The green arrow represents the Ψ operation that 
transforms the search space from one sub state graph to 
another without any cost. Each sub-state-graph is a sub graph 
of the original graph, with a certain set of traversed points of 
interest. Within each sub-state-graph, O* starts the search 
with a point of interest instead of the origin, O. Each PoI is 
traversed following a best first way. Vertices, including O, 1, 
2, and D, have multiple states. These scenarios presented in 
O* are clearly different from the traditional single-variate 
best first search. 

O* was implemented with C#. The experiments were 
performed on a Toshiba Satellite A215 Laptop with 2.0GB 
memory (RAM), AMD Turion™ 64*2 Mobile Technology 

TL-56 1.80HZ processors, and Windows Vista™ Home 
Premium operating system. 
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Figure 5: The sub-state-graph Space 

V. EXPERIMENTS 

The purpose of the experiments is to test the performance 
of O*-SCDMST to calculate the global heuristics in a FDG. 
O*-Dijkstra, a special case of O* when no heuristic is 
adopted, is used as the baseline.  O*-Dijkstra is a consecutive 
network expansion algorithm to traverse multiple points of 
interest. 

A. Data Set 
An asymmetric TSP problem (Fischetti) with 34 points of 

interest [26], corresponding to vertices of interest in O*, is 
used as the data set for this experiment. The problem is a 
special case of Vehicle Routing Problem, and thus an 
asymmetric TSP [26]. The data set contains the edge costs 
between any two points. In this experiment, a set of OSTQ 
problems is generated from this data set. First, the number of 
points of interest consecutively changes from 2 to 15. 
Second, for each number of points of interest, 30 problem 
samples are randomly generated, i.e., the origin, the 
destination, and the points of interest in each problem sample 
are randomly selected from the 34 points. Consequently, a 
set of 420 problems is generated. The whole problem set is 
used for O*-SCDMST, the partial set with up to 12 points of 
interest is used for O*-Dijkstra. 

B. Performance Measures 
To study the performances of the two algorithms, the 

following performance measures are identified. 
Minimum Process Time (MinPT): the minimum time 

required to obtain a solution for each number of points of 
interest (seconds); 
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Maximum Process Time (MaxPT): the maximum time 
required to obtain a solution for each number of points of 
interest (seconds); 

Average Process Time (APT): the average time required 
to process a query over all runs (seconds). 

C. Results and Discussion 
The results are presented in Table 1. O*-S represents O*-

SCDMST, O*-D represents O*-Dijkstra, and NPoI 
represents the number of points of interest, i.e., the number 
of cities to traverse. The “-” indicates that a value is not 
available since the time to obtain a result exceeded a 
reasonable expected solution time. 

Figure 6 through Figure 8 are provided to visualize the 
performance measures provided in Table 1. 

Based on MinPT, O*-SCDMST can retrieve the optimal 
solution within 4 seconds for an OSTQ of 15 NPoI. 
However, based on MaxPT, it may still require 20,858 
seconds for another query with the same number of points of 
interest. This implies that O*-SCDMST’s performance 
depends on how closely the selected SCDMST heuristic 
approaches to the actual cost. 

Based on MinPT shown in Figure 6, O*-SCDMST 
outperforms O*-Dijkstra over all runs. 

Based on MaxPT shown in Figure 7, O*-SCDMST 
outperforms O*-Dijkstra when NPoI larger than 2. This is 
due to the fact that O*-SCDMST requires additional time to 
compute the SCDMST heuristic, and when NPoI becomes 
larger, this additional time is no longer a dominant factor, 
instead, the obtained heuristic expedites the overall search 
process. 

TABLE 1: PERFORMANCE RESULTS FOR O*-SCDMST, AND O*-DIJKSTRA 

(IN SECONDS) 

NPoI 

MinPT MaxPT APT 

O*-S O*-D O*-S O*-D O*-S O*-D 

2 0.00 0.00 0.04 0.02 0.00 0.00 

3 0.00 0.00 0.00 0.00 0.00 0.00 

4 0.00 0.00 0.01 0.01 0.00 0.01 

5 0.00 0.00 0.03 0.06 0.01 0.03 

6 0.00 0.02 0.15 0.28 0.04 0.14 

7 0.00 0.09 0.77 1.51 0.17 0.59 

8 0.05 0.23 2.21 7.31 0.53 2.29 

9 0.05 0.68 7.62 45.61 1.78 9.26 

10 0.04 3.12 51.96 215.84 5.63 41.11 

11 0.18 4.29 314.78 786.55 29.03 137.43 

12 0.39 34.10 234.94 1479.48 66.82 356.69 

13 3.54  - 1109.16  - 245.07 -  

14 2.06  - 3900.67  - 548.08  - 

15 3.37  - 20857.75 -  2204.14  - 

 

 

 

 

 

 

 

 

 

Figure 6: Minimum process time over different number of traversed points 

of interest:  O*-SCDMST versus O*-Dijkstra 

 

 

 

 

 

 

 

 

 

Figure 7: Maximum process time over different number of traversed points 

of interest:  O*-SCDMST versus O*-Dijkstra 

 

 

 

 

 

 

 

 

Figure 8: Average process time over different number of traversed points of 

interest:  O*-SCDMST versus O*-Dijkstra 

Based on APT shown in Figure 8, O*-Dijkstra 
outperforms O*-Dijkstra by an order of magnitude. On 
Average, O*-SCDMST can process OSTQ of up to 14 NPoI 
within 10 minutes. 
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In Figure 6 through Figure 8, it is noticeable that both 
O*-SCDMST and O*-Dijkstra are sub-exponential in time 
complexity.  

VI. CONCLUSION 
The contribution of this paper includes four components: 

1) this paper proposes a novel query in a graph, OSTQ, 
which determines the minimum-cost path with a predefined 
origin-destination pair, traversing a set of vertices of interest, 
and provides O*, an instance of L#, to process the query in a 
heuristic way without explicit consideration of the order 
permutation; 2) A SCDMST heuristic is developed to 
calculate the global heuristics in O* to process OSTQ in a 
fully connected directed graph; 3) D-ODPrim is provided to 
retrieve a SCDMST for a directed connected graph; 4) The 
SCDMST heuristic is proved to be globally admissible if the 
edge costs of a fully connected directed graph obey the 
triangle inequality; 5) the corresponding O*-SCDMST’s 
performance is statistically studied using a real data set. 
Based on the result, O*-SCDMST can retrieve an optimal 
solution for an OSTQ of 15 points of interest within 4 
seconds at best and of 14 points of interest in 10 minutes on 
average. O*-SCDMST is always faster than O*-Dijkstra 
when the number of points of interest is larger than 2. On 
average, O*-SCDMST reduces the computation time by one 
order of magnitude compared to O*-Dijkstra.  
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