
 O*: A Bivariate Best First Search Algorithm to Process Optimal Sequence

Traversal Query in a Graph

Qifeng Lu

MacroSys LLC.

Arlington, United States

qilu1@vt.edu

Kathleen Hancock

Center for Geospatial Information Technology, Virginia

Polytechnic Institute and State University

Alexandria, United States

hancockk@vt.edu

Abstract—An Optimal Sequence Traversal Query is a new

query in a graph typically representing a transportation

network that determines the minimum-cost path with a

predefined origin-destination pair, traversing a set of non-

ordered points of interest, at least once for each point. It has

distinctive applications in the GoeProcessing domain in

transportation where a user may query a shortest route to start

from his/her office, traverse a set of consumer destinations,

and then go home. Optimal Sequence Traversal Query

generalizes TSP in the sense that the origin and the destination

may be different in the former. This paper proposes a bivariate

best first search, O*, to process such a query within a graph.

Two special cases of O*, O*-SCDMST and O*-Dijkstra, are

provided, their performance in a fully connected directed

graph are studied through a set of experiments, and the result

demonstrates that, on average, O*-SCDMST reduces

computation time by one order of magnitude when compared

to O*-Dijkstra.

Keywords- Bivariate Best First Search, Heuristic, Optimal

Sequence Traversal Query, O*, O*-SCDMST

I. INTRODUCTION AND BACKGROUND

The Optimal Sequence Traversal Query (OSTQ) is a
query conducted to find the minimum-cost path that starts
from any given origin, passes through a set of points of
interest, and terminates at a given destination. It has
distinctive applications in the GeoProcessing domain in
transportation where a user may query a shortest route to
start from his/her office, traverse a set of consumer
destinations, and then go home. It may have potential
applications in artificial intelligence where a robot is sent to
collect data from multiple sensors and delivers the data to a
given destination for downloading and analysis. The
traveling salesman problem (TSP) is a special case of OSTQ,
where the given origin and destination are the same [1] [2]
[3] [4] [5] [6].

A graph can conceptually represent a complex network,
such as a transportation network. In this context, a graph G is
defined as a set of vertices, {Vi}, and a set of directed line
segments, {Ei,j}, called arcs. Ei,j is defined such that an arc is
from vertex Vi to vertex Vj, and Vj is a successor of Vi. Each
Ei,j has an associated cost Ci,j. Only graphs with Ci,j>=0 are
considered in this paper. These graphs are referred to as δ
graphs.

In this paper, we propose a new type of query defined in
such a δ graph: Optimal Sequence Traversal Query (OSTQ).
Given a δ graph G with its vertices {Vi} and edges {Eij}, a set
of vertices of interest VI from {Vi} in graph G, a starting

vertex S, and a destination vertex D, an OSTQ retrieves the
minimum-cost path, traversing all vertices of interest, at least
once for each vertex. In such a graph, there may exist normal
vertices that are neither vertices of interest to traverse, nor
the given origin or destination. Within this context, all
necessary sub state graphs are generated implicitly. An
application of this query in the GeoProcessing domain is that
a consumer drives from his/her office, traverses a gas station,
a coffee shop, and a post office, and gets home. Another
application is that a food delivery person starts from the
restaurant he works at, traverses a set of delivery points, and
then returns to the restaurant, a typical example of TSP.

This paper proposes a bivariate best-first search
algorithm, O*, to process OSTQ in a graph. O* is a bivariate
best first search in the sense that it uses two variables to
specify its state. Both theoretical and experimental analyses
of the proposed algorithm are presented.

The paper is organized as follows. First, related work is
discussed in Section II. In Section III, O* is presented.
Section IV provides the SCDMST heuristic, a globally
admissible heuristic for O*. Section V presents a set of
experiments and an analysis of the results. Finally, the
conclusion is presented.

II. RELATED WORK

This section provides a review of the state-of-the-art
research on 1) Traveling Salesman’s Problem (TSP), and 2)
best first searches.

A. Travelling Salesman Problem (TSP)

The earliest research in TSP is in Euclidean space that
searches for a shortest round-trip route to traverse each city
exactly once with all cities directly connected to each other,
forming a fully connected graph. A set of solutions,
including dynamic programming [7], nearest neighbor [8],
iterative algorithms such as 2-OPT, 3-OPT, and n-OPT [9],
best first search [10], ant colony simulation [11], simulated
annealing [12], Branch and Bound approach [13], and so on,
were proposed to resolve this problem, either exactly or
approximately, and the result is a Hamiltonian cycle that
visits each vertex exactly once and returns to the starting
vertex. These algorithms may be adjusted to process OSTQ.

B. Best First Searches

A best first search is a kind of informed search. The
following two subsections provide a review of best first
searches. A best first search is n-variate if it uses n variables
to specify its states.

53

GEOProcessing 2011 : The Third International Conference on Advanced Geographic Information Systems, Applications, and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-118-2

Single-Variate Best First Searches
Single-variate best first search is the existing best first

search that searches a graph by expanding the most
promising vertex chosen according to some rule. It adopts
estimates to the promise of vertex n by a “heuristic
evaluation function f(n) that, in general, may depend on the
description of n, the description of the goal, the information
gathered by the search up to that point, and most important,
on any extra knowledge about the problem domain.” [14],
which is in prevalent used by researchers in Artificial
Intelligence (AI), including Russell & Norvig [15].

Several algorithms, including A* [15][16], Dijkstra
search [17], Greedy search [15], frontier search [18], and so
on, extract the path of minimum cost between a predefined
origin-destination vertex pair in a graph. A* uses a distance-
plus-cost heuristic function as f(n) to determine the order, in
which the search visits vertices in the graph [14]. f(n) is the
sum of two functions: g(n), the path cost function of the path
from the origin to the current vertex n, and h(n), the heuristic
estimate of the distance from the current vertex n to the goal.
For h(n), two important concepts exist. The first is
admissibility. A heuristic is admissible if its value is less than
or equal to the actual cost [15]. The other is consistency. A
heuristic is consistent when the real cost of the path from any
vertex A to any vertex B is always larger than or equal to the
reduction in heuristic [16]. Once a heuristic is consistent, it is
always admissible [15]. A* has been shown to obtain the
optimal solution, i.e., the minimum-cost solution, whenever
the heuristic is admissible [15], and, indeed, is optimally
efficient among all best-first algorithms guided by path-
dependent evaluation functions when the heuristic is
consistent [19]. Additionally, A* is complete in the sense
that it will always find a solution if one exists. The spatial
and time complexity of A* depends on the heuristic and, in
general, is exponential. However, A* is very fast in practice.
Both Dijkstra and the Greedy algorithm can be considered as
a special case of A*. Dijkstra algorithm only considers g(n)
as f(n). The Greedy algorithm only uses h(n) as f(n). Frontier
search is similar to A* except that Frontier search only works
on data sets with consistent heuristic and does not require a
closed-list to implement the search algorithm, which
consequently saves space at the cost of increased
computation [18].

There is also a set of A* variations such as anytime A*
[20], hierarchical A* [21], MA* [22], and SMA* [23], which
take the same form f(n) as A* but adapts A* to different
scenarios to reduce time or space complexity of A*.

All the f(n)s used in these identified best first searches are
defined upon a single variable, vertex n, to estimate its
promise.

One exact approach uses a Minimum Spanning Tree
(MST) to provide an admissible heuristic to retrieve optimal
TSP routes with A* [10]. The algorithm’s performance has
not been reported since then. A possible reason is that to
process TSP, existing single-variate best first search is not
adequate. This is because a vertex must be able to store
multiple partial paths that traverse different sets of points of
interest during the search process that a single-variate best
first search cannot handle.

Bivariate Best First Searches
The concept of multivariate best first searches was first

proposed in [24] to address the deficiency of a single-variate
best first search to process multiple categories of interest. It
uses multiple variables to specify a state to be evaluated and
expanded. L#, a generalized best first search that evaluates
the promise upon a state in a similar form as A*, was
proposed, together with a set of novel concepts in best first
searches, including local heuristic, global heuristic, local
admissibility, and global admissibility [24]. As an instance of
L#, the bivariate best-first-search C* was provided to
processes Category Sequence Traversal Query (CSTQ) in a
graph, which asks for a minimum cost route that starts from
a given origin, traverses a set of ordered categories of
interest that includes multiple objects in each category, with
one selection from each category, and ends at a given
destination [24]. In C*, a bivariate state instead of a single-
variate state is evaluated and expanded. The state in C* is
defined as the combination of a vertex and its VisitOrder, a
discrete integer variable to indicate the order of a visiting
category. A vertex may have multiple states in a graph, and
not all the states of a vertex may be generated and expanded.
Through its state specification, C* extends the theorems on
optimality identified in single-variate A*.

As a bivariate best first search, C* substantially improves
the ability of best first searches to process more complex
queries. However, C*’s state specification is still not
adequate to process OSTQ because it does not consider
different visit orders of a vertex of interest. Therefore, C*
cannot be used to process OSTQ.

Since best first search is supported with solid theories to
obtain optimally efficient, optimal, and sub-optimal solutions
and in nature a Branch and Bound approach that is prevalent
for TSP calculation, a bivariate best first search is proposed
in this paper to process OSTQ.

III. O*: A BIVARIATE BEST-FIRST-SEARCH

APPROACH TO PROCESS OSTQ IN A GRAPH

This section describes the details of O*, the bivariate best
first search algorithm to process OSTQs in a graph. First, for
a state s, O* uses the same-form distance-plus-cost function
f(s) as C*, shown in equation (1), to determine the order, in
which the search visits vertices in the graph [24]. Therefore,
similar to C*, O* is another instance of L#. Second, O*
assures that its solution traverses all points of interest.

 f(s)=g(s)+h(s) (1)

where
f(s) is the estimate to the promise of a state s to be expanded,
g(s) is the cost from the origin state to the state s, and
h(s) is the estimation to the actual cost from the state s to the

final state.

The lower the f(s), the higher is the priority for a state to
be expanded.

In the following subsections, first, a set of best first
search concepts identified for O* is discussed, followed by
the presentation of the O* algorithm. Next, how the
algorithm assures the traversal of all vertices of interest is

54

GEOProcessing 2011 : The Third International Conference on Advanced Geographic Information Systems, Applications, and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-118-2

discussed, followed by the analysis of its completeness.
Finally, the relationship between different states of a vertex
is discussed.

A. Definition
In O*, a state Si,j is defined as (Vi,VLj), where VLj is an

ordered list of j vertices of interest that are traversed along
the path obtained so far at vertex Vi. Since a vertex may have
multiple states and each state has its own points of interest
traversed, the ordered list is used to efficiently compare two
states to remove a state that is not on the target route to be
retrieved. A state of a vertex n describes the traversed points
of interest along the partial path from the origin to the vertex
n. A successor operator Γ is defined on {Si,j}. Its value for
each Si,j is a set of child states of Si,j. Whenever a Si,j is of a
vertex of interest, a Ψ operator will transform the state Si,j
to Si,j+1, (Vi,VLj+1), at no cost by adding the vertex of
interest to VLj. A state graph SG defined on a graph G is the
graph G whose vertices are of the same VL. The number of
state graphs for G is the number of VLs. Since a VL is a
sorted list storing traversed vertices of interest, in a problem
with n vertices of interest, the number of state graphs is 2n.
These state graphs compose the state graph space G, an item-

enumeration graph space. A sub state graph SSG is a portion
of a state graph SG, and a forest in nature. It is said to be
implicitly generated by Γ operations in SG. A sub state graph
space Gs is a set of sub state graphs, i.e., SSGs. In Gs, each
point represents a sub state graph that contains the expanded
vertices to each of which the path from the origin has
traversed the same set of vertices of interest described by an
item enumeration variable. It is said to be implicitly
generated if it is initiated with a single source state S0,0 and a
set of Γ operations and some possible Ψ operations applied
to it, to its successors, and so forth. A δ sub space graph
space is a special GS with edge cost always not smaller
than 0. A path from a source S to a goal D, traversing a set
of vertices of interest, is an ordered set of states (Vi,VLj). In
O*, all sub state graphs are generated implicitly. The
concepts are illustrated by the example in Section IV.B.

Since OSTQ traverses multiple vertices of interest
between the origin and the destination, the way to estimate
its heuristic is similar to in C* but different from that in A*
that is directly based on the currently generated vertex and
the destination. Since O* is an instance of L#, the following
concepts identified for L# [24] are also applicable to O*:
local heuristic, global heuristic, local admissibility, and
global admissibility. For these concepts, the only difference
between in C* and in O* is the state used in their
corresponding definitions. For example, in O*, a global
heuristic, hg, is estimated based on the currently generated
vertex, the remaining vertices of interest to traverse, and the
final goal, while C*’s global heuristic is estimated based on
the remaining categories of interest to traverse instead of the
remaining vertices of interest to traverse [24]. The following
describes these concepts in O*.

Local heuristic is the estimate to the actual cost from the
current vertex to a subgoal, sg. A subgoal is a vertex that is a
point of interest (PoI). For two vertices n and n’, local
consistency means the following inequality exists:

hl(n,sg)<=g*(n, n’)+hl(n’,sg) (2)

where
hl is a local heuristic, and
g*(n, ,n’) is the actual cost from n to n’ in the graph.

Global heuristic is the estimate to the actual cost from
the current state to estimate to the final goal.

Global admissibility means the global heuristic is not
larger than the actual cost from the current state to evaluate
to the final goal state.

B. The O* Algorithm
O* incrementally searches all paths leading from the

starting vertex, traversing the vertices of interest, until it
finds a path of minimum cost to the goal. It first takes the
paths most likely to lead towards the goal.

Similar to C*, O* also maintains a set of partial
solutions, unexpanded leaf states of expanded vertices. These
solutions are stored in an open list, also called a priority
queue, which is a sorted queue based on each element’s
priority. Same as in C*, the priority is assigned to a state s
based on the function (1).

Even though C* and O* use the same-form bivariate
distance-plus-heuristic function f(s), they use different state
definitions.

The lower the f(s), the higher is the priority for a vertex
to be expanded. Whenever an equal f(s) occurs, the state with
a larger VisitList will be the next to expand. Otherwise, one
is randomly selected. State A’s VisitList, vlA, is larger than
State B’s VisitList, vlB, i.e., vlA>vlB, if the length of vlA is
longer. In other words, the path from the start state to A
traverses more vertices of interest than that to B.

For an N-point traversal problem, O* first generates the
source state that contains the given vertex and an empty
VisitList, and puts it into the open list. For all the states in the
open list, the algorithm expands the state with the lowest f(s)
value, and its children states are generated. A child state
always inherits the VisitList of its parent whenever the child
is not a vertex of interest; otherwise, the child’s VisitList will
be incremented by adding the vertex to it. The process
continues until a goal state whose vertex is the final goal and
VisitList contains all the vertices of interest or no solution is
found. Once a goal state is reached, it will retrieve the
obtained path using a data structure called backpointer, the
combination of vertex identification and VisitList, to
recursively obtain the parent until the origin state is reached.

1) O* Pseudo Code
Given an estimation function for hg(s), the starting vertex

S, the goal D, and the vertices of interest to visit, the pseudo
code for O* is provided in Figure 1.

2) Time and Space Complexity
In O*, the complexity between a vertex and a subgoal is

the same as in A*, whose time complexity and space
complexity are dependent on the heuristic. For A*, in
general, the time and space complexities are both
exponential. Assume b is the branching factor, d is the
largest depth to obtain the shortest path, and then both the
time complexity and the space complexity are O(bd) [15]. A*
is sub-exponential only when its heuristic h(x) and the actual
cost h*(x) satisfies the following condition [15]:

55

GEOProcessing 2011 : The Third International Conference on Advanced Geographic Information Systems, Applications, and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-118-2

Figure 1. The pseudo code of O*

 |h(x)-h*(x)|<=O(logh*(x)) (3)

Where
h(x): the heuristic in A*, i.e., the local heuristic in O*; and
h*(x): the corresponding actual cost
For O*, assume b is the branching factor, d is the largest

depth to obtain the shortest path between two objects
including the origin, the destination, and the specified
vertices of interest to traverse, which is named as a section
path in O*, m is the number of vertices of interest specified
to traverse, and Fh is the worst time complexity to obtain a
global heuristic, then the state length is m+1, the number of
state graphs is 2m. In the worst case, O* requires traverse
paths resulting from all possible order combinations of
vertices of interest and storage of all state graphs. Each
section path is exponential in time and space complexity, and

the corresponding time complexity is O(m!Fhb
d), and space

complexity is O(m2mbd).
To reduce the time complexity to sub-exponential, the

heuristics used in O* must be sufficiently close to the actual
cost to reduce the number of candidate order combinations
from of permutation level to of sub-exponential level.

3) Traversal Constraints of Vertices of Interest
The solution from O* must traverse all the vertices of

interest to be a candidate solution to an OSTQ.
Lemma 1: The solution from O* satisfies the traversal

constraint of vertices of interest.
Proof:

Use contradiction.
Assume the solution obtained from O* does not traverse

at least one vertex of interest.
Since the solution is obtained, then the search stops.

According to O*, if a subgoal, a specified vertex of interest,

is not reached, then it cannot be added to the VisitList of any

Input:

Starting vertex S, Goal vertex D, VisitList: a sorted list to store the traversed vertices of interest

bAdd2PQ=false: Indicator that indicates whether a generated vertex is put into PQ, not be put into PQ by default

Priority queue PQ(=set of generated (s(vertex,VisitList), f(s),g(s))) begins empty.

Closed list CL (= set of previously visited (s(vertex,VisitList), backpointer, f(s),g(s))) begins empty.

Algorithm Process:

Put (S, VisitList =null), f=hg(S,null), and g(S,null)=0 into PQ

While (PQ is not empty)

{ remove the state with the lowest f having the largest VisitList from PQ. Name it n.

If n is a goal, then //a goal must be the predefined destination after all vertices of interest are visited

{ Succeeded, report the result, and END;

}

Else

{ put n with its f,g,and backpointer in CL

 For each v' in successors(n.vertex)

 { if v’ is an unvisited sub goal, then

 VisitList’=(n.VisitList).add(v’); // add n to the VisitList

 Else

 { VisitList’=n.VisitList;

 g(v’,VisitList’)= g(n)+Cost(n.vertex,v’);

 hg (v’,VisitList’)=calculateGlobalHeuristic(v’,VisitList’);

 f (v’,VisitList’)=g(v’,VisitList’)+hg(v’,VisitList’)

 Process((v’,VisitList’), f, g) //decide to place the state in PQ and/or to remove other states from CL/PQ

 }

 }

}

}

Process((v’,VisitList’), f, g):

 bAdd2PQ=true;

 If v' not seen before, or (v',VisitList’) currently in PQ with f(v',VisitList’)>f Then

Place/promote (v', VisitList’) on priority queue with f ,g; END;

 If (v’, VisitList*) is in PQ, Then

 If(VisitList* is a super set of VisitList’ && g(v’,VisitList*)<g(v’,VisitList’)) Then

 bAdd2PQ=false;

 If(VisitList* is a sub set of VisitList’ && g(v’,VisitList*)>g(v’,VisitList’)) Then

 Delete (v’,VisitList*) from PQ

 If(v',VisitList’) previously expanded Then

 If f(v',VisitList’)<=f Then

 bAdd2PQ=false;

 else
 Delete (v’,VisitList*) from the closed list

Else
 If(v’,VisitList*) is in CL Then

 If(VisitList* is a super set of VisitList’ && g(v’,VisitList*)<g(v’,VisitList’)) Then

 bAdd2PQ=false;

 If(VisitList* is a sub set of VisitList’ && g(v’,VisitList*)>g(v’,VisitList’)) Then

 Delete (v’,VisitList*) from CL

 If(bAdd2PQ) Then Place (v',VisitList’) with f, and g on priority queue

56

GEOProcessing 2011 : The Third International Conference on Advanced Geographic Information Systems, Applications, and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-118-2

vertex generated by O*, and thus there is no state whose

VisitList contains the vertex of interest. Consequently, the

final state will never be reached. In other words, the search

will not stop to report a solution if there is one. This is

contradicted with the assumption. So O* does provide a

solution that satisfies the constraint to traverse the specified

vertices of interest.

C. Completeness
Completeness means that an algorithm finds a solution if

one exists.

Theorem 1: O* is complete.

The algorithm will not stop until either the goal is
reached or there is no solution to the OSTQ.

D. Admissibility and Optimality
Admissibility is important in A* since it guarantees the

solution is optimal. This is also true in O*.
Lemma 2: If any global heuristic for any vertex is admissible,

then the solution is optimal.
Proof:

Use contradiction.
Suppose O* finds a suboptimal path, ending in goal state

(G1,vlg) where vlg contains all the vertices of interest since
the search guarantees the solution traverses all the vertices of
interest, i.e., f(G1,vlg) > f* where f* = hg* (origin state) =
cost of the optimal path. Let hg*(n,vl) as the actual cost from
a state (n,vl) (n is the vertex and vl is its VisitList) to the goal
state.

There must exist a state (n,vl) that is unexpanded, to which
the path from the origin state is the start of a true optimal path, and

f(n,vl) >= f(G1, vlg) (else search would not have ended).
Also f(n,vl) = g(n,vl) + hg(n,vl)= g*(n,vl) + hg(n,vl)

because (n,vl) is on the optimal path,
Since the global heuristic is globally admissible, then
f(n,vl= g*(n,vl) + hg(n,vl))<= g*(n,vl) + hg*(n,vl)=f*
So f* >= f(n,vl) >= f(G1, vlg)
Contradicting the assumption. So the solution is optimal.
Once the global heuristic is admissible, then the solution

is optimal.
An algorithm is defined as admissible if it is guaranteed

to find an optimal path from s to the goal state for any δ
graph, traversing at least once for each specified vertex of
interest.

Theorem 2: Once any global heuristic is admissible, then O*
provides the optimal solution to the corresponding OSTQ, i.e., O*
is admissible.

Proof:

First, based on Lemma 1, O* guarantees that each
specified vertex of interest is traversed at least once. Then
based on Lemma 2, global admissibility guarantees solution
optimality. Consequently, an optimal solution that satisfies
the vertices of interest traversal constraint is the optimal
solution to the corresponding OSTQ, completing the proof.

E. Relationship between Different States of a Vertex
Since in a bivariate best first search, a vertex may have

multiple states, the relationship between any two of its states
can be used to prune unnecessary states.

Theorem 3: For a vertex v,

If(g(v,VL’)>g(v,VL) AND VL is a super or equal set of
VL’, then the state (v,VL’) is not on the optimal path.

Proof:
Since VL is a super or equal set of VL’, which means VL

contains at least the same set of traversed vertices of interest
as VL’, it is clear that g*(v,VL)>=g*(v,VL’). According to
the given condition, g(v,VL’)>g(v,VL), then
g(v,VL’)>g*(v,VL), so g(v,VL’)>g*(v,VL’). Consequently,
(v,VL’) is not on the optimal path. Completing the proof.

IV. SCDMST: TO PROVIDING A GLOBALLY

ADMISSIBLE HEURISTIC TO PROCESS OSTQ IN A

FULLY CONNECTED DIRECTED GRAPH

According to the time complexity analysis in Section
3.2.2, it is desirable to reduce the depth to process OSTQ to
reduce the computation time in the worst case, especially for
a program within a graph where the majority of the vertices
are not points of interest. Through Dijkstra, an algorithm
using polynomial time in terms of all the number of vertices
in a graph to obtain routes for a single-source multiple-
destination routing problem, it is clear that an OSTQ
processing in a general graph that contains both vertices of
interest and general vertices can be efficiently transformed
into a fully connected graph containing only the points of
interest plus the origin and the destination. This is also the
reason that TSP is primarily studied in a fully connected
graph. In addition, directed graphs are more general in real
world trip planning. Therefore, this section presents an
instance of O* that uses a global heuristic to process OSTQ
processing in a fully-connected directed graph.

Consider a directed graph, G(V,E), where V and E are the
set of vertices and edges, respectively, and a starting vertex s
and an ending vertex e in E. Associated with each edge (i,j)
in V is a cost c(i,j). Let |V|=n and |E|=m. A semi-connected
directed spanning tree, SCDST, is defined as a graph that
connects, without any cycle, all vertices with n-1 arcs, while
vertex s only has outgoing arcs and vertex e only has
incoming arcs. It is semi-connected in the sense that it does
not necessarily connect any two points together. A Semi-
Connected Directed Minimum Spanning Tree (SCDMST) is
the graph with the minimum total edge cost among all
SCDSTs. In other words, the problem is to find a SCDST,
G(V,S) where S is a subset of E, such that the sum of c(i,j)
for all (i,j) in S is minimized. Figure 2 shows a SCDMST
example.

The SCDMST heuristic is globally admissible in a fully
connected directed graph whose edge costs obey the triangle
inequality. The property is proved through Theorem 4.

Theorem 4: A SCDMST heuristic is globally admissible
in a fully connected directed graph whose edge costs obey
the triangle inequality.

Proof:
Use contradiction.
Suppose the SCDMST heuristic is larger than the actual

cost. Therefore, in the SCDMST there must exist at least one
cost between two points is larger than their actual cost. At
the same time, since edges obey the triangle equality and an

57

GEOProcessing 2011 : The Third International Conference on Advanced Geographic Information Systems, Applications, and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-118-2

S

1

E

2

1.5

1

1
.5

1
.6

1

2
.5

Where

 S: starting vertex, E: ending vertex.

The SCDMST tree is highlighted in dark black. The SCDMST

starts from S, connects vertex 1 and vertex 2, and ends at E. No

cycle exists. 3 edges are used to connect 4 vertices. Only

outgoing edges exist for S and incoming edges exist for E. The

SCDMST is semi-connected since not any two points are

connected through the tree. For example, 2 and E are not

connected together in the obtained SCDMST.

Figure 2. A SCDMST example

edge on the optimal path cannot be a directed edge with its

ending vertex as the starting vertex of the SCDMST tree or

with its starting vertex as the ending vertex of the SCDMST

tree, this means an edge with a less cost is not found by the

SCDMST, which is contradicted with the fact that a

SCDMST always adopts the edge of the minimum cost

between two points. Completing the proof.
The O* algorithm that uses a SCDMST to provide a

global heuristic is named as O*-SCDMST.

A. The D-ODPrim Algorithm to Retrieve a SCDMST

from a Fully Connected Directed Graph
In this paper, D-ODPrim is proposed to obtain a

SCDMST from a directed graph. Its pseudo code is provided
in Figure 3.

Figure 3. The pseudo code for D-ODPrim algorithm

D-ODPrim can be regarded as a variation of the Prim
algorithm that calculates a MST for an undirected graph [25].
Similar to Prim’s algorithm, D-ODPrim continuously
increases the size of a tree starting with the given starting
vertex until it spans all the vertices.

Next, we prove the algorithm outputs a SCDMST.

Proof:
Four steps are used to prove D-ODPrim outputs a

SCDMST if a solution exists.
Assume the number of vertices is N. Name the obtained

graph as DG.
Step 1: Prove that DG contains N-1 edges.
Proof: Every time a new edge connecting to a new vertex

is added to Enew, until the N-1 points are added to Vnew.
Consequently, for N vertices, the algorithm will try N-1
times, thus N-1 edges will be added to form DG.

Step 2: Prove that DG does not contain a cycle.
Proof: According to the algorithm, if the edge direction is

neglected in DG, DG connects any two points together with
N-1 edges, which is impossible to have a cycle. So the
directional DG does not contain a cycle.

Step 3: Prove that no outgoing edges for the ending
vertex e and no incoming edges for the starting vertex s.

Proof: Since the algorithm removes the incoming edges
of s and the outgoing edges of e from the candidate edge set,
it is no way to add these edges into DG.

Step 4: Prove that the total edge cost is the minimum.
Proof: Use contradiction. Suppose another SCDST, DG1,

has a smaller total edge cost. Then there must be at least one
vertex that uses an edge of smaller cost in DG1 than in DG,
which conflicts the fact that every time the algorithm finds
the minimum cost edge for a vertex to add it to DG.

Based on the four steps, it is clear that D-ODPrim
retrieves a SCDMST, completing the proof.

For D-ODPrim, the time complexity is O(V2) and space
complexity is O(V2).

B. An Example
To illustrate how O*-SCDMST works, the following

simple example is provided. Figure 4 shows the fully
connected directed graph having Cij=Cji where i and j
represents any two vertices in the graph and Cij represents
the cost from i to j. The OSTQ ask for a shortest route
starting from O, traversing vertex 1 and vertex 2, and then
ending at D. The edge costs in the graph obey triangle
inequality. Therefore, O*-SCDMST retrieves an optimal
solution for the OSTQ problem, and its search process in
also shown in Figure 4.

The algorithm begins with the starting point O with
VisitList as null and parent (parentpointer) as null. Its f value
is 3.5, the cost of SCDMST of O,1,2, and D. The state is put
into the priority queue. Then, the state of the lowest f value,
vertex O with VisitList null is expanded first and put into the
closed list with a null backpointer, and its three children, 1, 2,
and D, are generated. D is not a subgoal, so its VisitList is
null, inheriting its parent. Both 1 and 2 are subgoals, so their
VisitLists are changed accordingly. For each of these three
vertices, O* calculates its heuristic based on its
corresponding SCDMST, and then calculates its f value. All
generated states are put into the priority queue.

Next, since state (1,(1)) has the lowest f, 3.5, it is
expanded and put into the closed list with a backpointer
pointing to (O,null), and its children O,2,and D are generated.
Neither O nor D is a subgoal, so their VisitLists are (1). 2 is a
subgoal, so its VisitList is changed to (1,2). The generated
three states are put into the open list.

Input: A connected directed weighted graph with vertices V

 and edges E, the starting vertex s, and the ending vertex e.

Initialize: Vnew = {x}, where x is the starting vertex from V,

 Enew = {}

Remove incoming edges of s and outgoing edges of e in E

Repeat until Vnew = V:

 Choose edge (u,v) from E with the minimal weight such that

 one vertex is in Vnew and the other is not

(if multiple edges with the same weight exist, choose

arbitrarily)

 Add v to Vnew, add (u, v) to Enew

Output: Vnew and Enew describe a semi-connected directed

minimal spanning tree

58

GEOProcessing 2011 : The Third International Conference on Advanced Geographic Information Systems, Applications, and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-118-2

Figure 4. The OSTQ problem and O*-SCDMST search process to

retrieve an optimal solution

Now (2,(1,2)) has the lowest f, but it does not reach the
goal state yet. So (2,(1,2)) is expanded. Its children, O,1, and
D, are generated. Now D is the final goal since the partial
path traverses 1 and 2. Neither O nor 1 is a subgoal in this
case. Again, these generated states are put into the open list.

Again, based on the lowest f, (D,(1,2)) is the next to be
expanded. Since it is a final goal, the search stops and reports
the optimal solution is O->1->2->D with 3.5 as the minimum
cost.

In Figure 4, the elements in normal style are in the open
list; those in italic style were in the open list first, and then
moved to the closed list. The closed list in Figure 4 is its
snapshot after the final goal state is expanded by O*-
SCDMST. Through this example, it is clear that O*-
SCDMST must store multiple states for a vertex, which a
single-variate best first search cannot handle.

Figure 5 shows the corresponding sub-state-graph space
representing the search space that O*-SCDMST explores to
retrieve the optimal route for the OSTQ . The sub-state-graph
space is composed of 2n sub state graphs where n is the
number of PoI and n=2. Note that in this example the sub-
state graph with point of interest (PoI) 2 traversed has no
states. The green arrow represents the Ψ operation that
transforms the search space from one sub state graph to
another without any cost. Each sub-state-graph is a sub graph
of the original graph, with a certain set of traversed points of
interest. Within each sub-state-graph, O* starts the search
with a point of interest instead of the origin, O. Each PoI is
traversed following a best first way. Vertices, including O, 1,
2, and D, have multiple states. These scenarios presented in
O* are clearly different from the traditional single-variate
best first search.

O* was implemented with C#. The experiments were
performed on a Toshiba Satellite A215 Laptop with 2.0GB
memory (RAM), AMD Turion™ 64*2 Mobile Technology

TL-56 1.80HZ processors, and Windows Vista™ Home
Premium operating system.

O

1

D

2

1.51

2
.5

O

1

D

21

1
.6

1

O

1

D

2

1.5

1

1
.5

(O,null)

(1,(1)) (2,(2))

(O,(1))

(1,(1)) (2,(1,2))

(D,null)

(D,(1))

(O,(1,2))

(2,(1,2))(1,(1,2))

(D,(1,2))

Sub-state graph

without PoI traversed

Sub-state graph with

PoI 2 traversed

Sub-state graph with PoI 1

and PoI 2 traversed

Sub-state graph with

PoI 1 traversed

Figure 5: The sub-state-graph Space

V. EXPERIMENTS

The purpose of the experiments is to test the performance
of O*-SCDMST to calculate the global heuristics in a FDG.
O*-Dijkstra, a special case of O* when no heuristic is
adopted, is used as the baseline. O*-Dijkstra is a consecutive
network expansion algorithm to traverse multiple points of
interest.

A. Data Set
An asymmetric TSP problem (Fischetti) with 34 points of

interest [26], corresponding to vertices of interest in O*, is
used as the data set for this experiment. The problem is a
special case of Vehicle Routing Problem, and thus an
asymmetric TSP [26]. The data set contains the edge costs
between any two points. In this experiment, a set of OSTQ
problems is generated from this data set. First, the number of
points of interest consecutively changes from 2 to 15.
Second, for each number of points of interest, 30 problem
samples are randomly generated, i.e., the origin, the
destination, and the points of interest in each problem sample
are randomly selected from the 34 points. Consequently, a
set of 420 problems is generated. The whole problem set is
used for O*-SCDMST, the partial set with up to 12 points of
interest is used for O*-Dijkstra.

B. Performance Measures
To study the performances of the two algorithms, the

following performance measures are identified.
Minimum Process Time (MinPT): the minimum time

required to obtain a solution for each number of points of
interest (seconds);

59

GEOProcessing 2011 : The Third International Conference on Advanced Geographic Information Systems, Applications, and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-118-2

Maximum Process Time (MaxPT): the maximum time
required to obtain a solution for each number of points of
interest (seconds);

Average Process Time (APT): the average time required
to process a query over all runs (seconds).

C. Results and Discussion
The results are presented in Table 1. O*-S represents O*-

SCDMST, O*-D represents O*-Dijkstra, and NPoI
represents the number of points of interest, i.e., the number
of cities to traverse. The “-” indicates that a value is not
available since the time to obtain a result exceeded a
reasonable expected solution time.

Figure 6 through Figure 8 are provided to visualize the
performance measures provided in Table 1.

Based on MinPT, O*-SCDMST can retrieve the optimal
solution within 4 seconds for an OSTQ of 15 NPoI.
However, based on MaxPT, it may still require 20,858
seconds for another query with the same number of points of
interest. This implies that O*-SCDMST’s performance
depends on how closely the selected SCDMST heuristic
approaches to the actual cost.

Based on MinPT shown in Figure 6, O*-SCDMST
outperforms O*-Dijkstra over all runs.

Based on MaxPT shown in Figure 7, O*-SCDMST
outperforms O*-Dijkstra when NPoI larger than 2. This is
due to the fact that O*-SCDMST requires additional time to
compute the SCDMST heuristic, and when NPoI becomes
larger, this additional time is no longer a dominant factor,
instead, the obtained heuristic expedites the overall search
process.

TABLE 1: PERFORMANCE RESULTS FOR O*-SCDMST, AND O*-DIJKSTRA

(IN SECONDS)

NPoI

MinPT MaxPT APT

O*-S O*-D O*-S O*-D O*-S O*-D

2 0.00 0.00 0.04 0.02 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.01 0.01 0.00 0.01

5 0.00 0.00 0.03 0.06 0.01 0.03

6 0.00 0.02 0.15 0.28 0.04 0.14

7 0.00 0.09 0.77 1.51 0.17 0.59

8 0.05 0.23 2.21 7.31 0.53 2.29

9 0.05 0.68 7.62 45.61 1.78 9.26

10 0.04 3.12 51.96 215.84 5.63 41.11

11 0.18 4.29 314.78 786.55 29.03 137.43

12 0.39 34.10 234.94 1479.48 66.82 356.69

13 3.54 - 1109.16 - 245.07 -

14 2.06 - 3900.67 - 548.08 -

15 3.37 - 20857.75 - 2204.14 -

Figure 6: Minimum process time over different number of traversed points

of interest: O*-SCDMST versus O*-Dijkstra

Figure 7: Maximum process time over different number of traversed points

of interest: O*-SCDMST versus O*-Dijkstra

Figure 8: Average process time over different number of traversed points of

interest: O*-SCDMST versus O*-Dijkstra

Based on APT shown in Figure 8, O*-Dijkstra
outperforms O*-Dijkstra by an order of magnitude. On
Average, O*-SCDMST can process OSTQ of up to 14 NPoI
within 10 minutes.

60

GEOProcessing 2011 : The Third International Conference on Advanced Geographic Information Systems, Applications, and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-118-2

In Figure 6 through Figure 8, it is noticeable that both
O*-SCDMST and O*-Dijkstra are sub-exponential in time
complexity.

VI. CONCLUSION
The contribution of this paper includes four components:

1) this paper proposes a novel query in a graph, OSTQ,
which determines the minimum-cost path with a predefined
origin-destination pair, traversing a set of vertices of interest,
and provides O*, an instance of L#, to process the query in a
heuristic way without explicit consideration of the order
permutation; 2) A SCDMST heuristic is developed to
calculate the global heuristics in O* to process OSTQ in a
fully connected directed graph; 3) D-ODPrim is provided to
retrieve a SCDMST for a directed connected graph; 4) The
SCDMST heuristic is proved to be globally admissible if the
edge costs of a fully connected directed graph obey the
triangle inequality; 5) the corresponding O*-SCDMST’s
performance is statistically studied using a real data set.
Based on the result, O*-SCDMST can retrieve an optimal
solution for an OSTQ of 15 points of interest within 4
seconds at best and of 14 points of interest in 10 minutes on
average. O*-SCDMST is always faster than O*-Dijkstra
when the number of points of interest is larger than 2. On
average, O*-SCDMST reduces the computation time by one
order of magnitude compared to O*-Dijkstra.

REFERENCES
[1] S. Arora. Polynomial Time Approximation Schemes for

Euclidean TSP and Other Geometric Problems. In:

Proceedings of 37th IEEE Symposium on Foundations of

Computer Science, Burlington, 1996, pp. 2-11.

[2] S. Arora. Approximation Schemes for NP-hard Geometric

Optimization Problems: A survey. Mathematical

Programming, Springer, 97 (2003) pp. 43-69.

[3] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook.

The Traveling Salesman Problem: A Computational Study.

Springer, 2007.

[4] N. Christofides. Worst-case Analysis of a New Heuristic for

the Traveling Salesman Problem. Carnegie Mellon

University, Computer Science, Tech Technical report, 1976.

[5] T. Cormen, T. Leiserson, R. Rivest, and T. Stein.

Introduction to Algorithms. The MIT Press, 1997.

[6] A. Dumitrescu and J. S. B. Mitchell. Approximation

Algorithms for TSP with Neighborhoods in the Plane. In:

Proceedings of the 12th annual ACM-SIAM Symposium on

Discrete Algorithms, Washington DC, USA, 2001, pp. 38–46.

[7] M. Held and R. M. Karp. A Dynamic Programming

Approach to Sequencing Problems, Journal of the Society for

Industrial and Applied Mathematics 10(1) (1962): pp. 196–

210.

[8] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis II. An

Analysis of Several Heuristics for the Traveling Salesman

Problem. SIAM Journal on Computing. 6 (1977): pp. 563–

581.

[9] J. L. Bentley. Fast Algorithms for Geometric Traveling

Salesman Problems. ORSA Journal on Computing 4, (1992),

pp. 387-411.

[10] M. Held, and R. M. Karp.The Traveling-Salesman Problem

and Minimum Spanning Trees. Operations Research. 18

(1970), pp. 1138-1162.

[11] Ma. Dorigo. Ant Colonies for the Traveling Salesman

Problem. Université Libre de Bruxelles. IEEE Transactions

on Evolutionary Computation, 1(1) (1997):pp. 53–66.

[12] E.H.L. Aarts, and J. Korst. Simulated Annealing and

Boltzmann Machines: A stochastic Approach to

Combinatorial Optimization and Neural Computing. John

Wiley & Sons, Chichester, 1989.

[13] J. Clausen and M. Perregaard, On the Best Search Strategy in

Parallel Branch-and-Bound - Best-First-Search vs. Lazy

Depth-First-Search, Proceedings of the Parallel Optimization

Colloquium, (1996).

[14] J. Pearl. Heuristics: Intelligent Search Strategies for Computer

Problem Solving. Addison-Wesley, 1984.

[15] S. Russell and P. Norvig. Artificial Intelligence: a Modern

Approach (2nd edition). Prentice Hall, 2002.

[16] P. E. Hart, N. J. Nilsson, and B. Raphael. A Formal Basis for

the Heuristic Determination of Minimum Cost Paths. IEEE

Transactions on Systems Science and Cybernetics SSC4 (2)

(1968) pp. 100–107

[17] E. W. Dijkstra. A Note on Two Problems in Connexion with

Graphs. In Numerische Mathematik, 1 (1959), S. pp. 269–271

[18] R. E. Korf, W. Zhang, I. Thayer, and H. Hohwald. Frontier

Search. Journal of the Association for Computing Machinery.

52(5) (2005) pp. 715-748

[19] R. Dechter and J. Pearl. Generalized Best-first Search

Strategies and the Optimality of A*. Journal of the

Association for Computing Machinery. 32(3) (1985) pp. 505-

536

[20] M. Likhachev, G. J. Gordon, and S. Thrun. Ara*: Anytime A*

with provable bounds on sub-optimality. In. Advances in

Neural Information Processing Systems 16. MIT. Press,

Cambridge, MA, 2004.

[21] A. Botea, M. Muller, J. Schaeffer. Near Optimal Hierarchical

Path-Finding. In Journal of Game Development, volume 1,

issue 1, (2004), pp. 7-28.

[22] S. Russell. Efficient Memory-bounded Search Methods. In

Proceedings of Tenth European Conference on Artificial

Intelligence, pp. 1-5. Chichester, England: Wiley, 1992.

[23] R. Zhou, and E. A. Hansen. Memory-Bounded A* Graph

Search. Proceedings of the Fifteenth International Florida

Artificial Intelligence Research. May 2002.

[24] Q. Lu, and K. Hancock. C*: A Bivariate Best First Search to

Process Category Sequence Traversal Queries in a

Transportation Network. geoprocessing, pp.127-136, 2010

Second International Conference on Advanced Geographic

Information Systems, Applications, and Services, 2010.

[25] M. Fischetti, P. Toth, and D. Vigo. A branch and bound

algorithm for the Capacitated Vehicle Routing Problem on

Directed Graphs. Operations Research, Vol 42, pp. 846-859.

1994.

[26] Robert C. Prim: Shortest connection networks and some

generalizations. In: Bell System Technical Journal, 36, pp.

1389–1401,1957

61

GEOProcessing 2011 : The Third International Conference on Advanced Geographic Information Systems, Applications, and Services

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-118-2

