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Abstract—This paper describes an Artificial Intelligence (AI)-
based Construct Validity Verification Methodology (CVVM) 
being advanced. The proposed methodology includes an 
amalgam utilization of temporal-centric Finite-Change 
Shapley-Owen values along with, among others, Generic 
Shapley-Owen values and Variance-Based Shapley-Owen 
values (i.e., a bespoke SHAP amalgam or b-SHAP 
implementation), CRiteria Importance through Intercriteria 
Correlation (CRITIC), and Preference Ranking Organization 
Method for Enrichment Evaluation (PROMETHEE) for 
enhancing the interpretability of not only the machine learning 
constituent components of an AI system, but also the interstices 
(e.g., between/among individual components as well as 
amalgams/clusters of components locally/globally). This 
approach extrapolates upon and furthers current proposals for 
the utilization of SHAP in local, global, and glocal (a 
hybridized intermediary of local and global) contexts. It turns 
out that this Interstitial SHAP-centric Amalgam (ISA), by 
better correlating features with each interim intended 
construct, potentially segues to better interpretability and 
construct validity at the component, interstitial, and overall 
system level, particularly when ISA is conjoined with a well-
counterpoised Multi-Attribute Decision-Making 
(MADM)/Multi-Objective Decision-Making (MODM) 
Subjective Measures (SM)/Objective Measures (OM) 
paradigm and a modified Constriction Factor (CF)-Particle 
Swarm Optimization (PSO)-Robust Convex Relaxation (RCR)-
Long Short-Term Memory (LSTM)-Deep Convolutional 
Neural Network (DCNN) (CPRLD) metaheuristic architectural 
construct. 

Keywords-artificial intelligence systems; machine learning; 
construct validity; explainability; interpretability. 

I.  INTRODUCTION  
The impact of AI within the industrial sector and 

business, in general, should not be underestimated. 
Subhadra and others underscore the “rise of AI in business 
and industry” [1]. As AI is a transformative technology, it is 
envisioned to spur innovation and revolutionize various 
industries [2]. Honeywell’s Industrial AI Insights report 
notes that, for the majority of cases, the “C-Suite has 
already decided to expand AI use,” and in 91% of the cases, 
new use cases are brought to light “during AI 
implementation” [3]. Hence, AI forays are begetting further 
AI forays. These implementations involve AI software 
engineering, which leverages Machine Learning (ML) 
models and techniques to automate various tasks. The ML 

models of these AI Systems (AIS) are being increasingly 
relied upon to process/interpret Big Data so as to put forth 
meaningful forecasts/posits, thereby enhancing and 
illuminating certain Decision Engineering (DE) pathways so 
as to inform Decision-Making (DM).  

A. The Criticality of Construct Validity 
To ensure that the AIS ML models are robustly depicting 

the Real-World Scenarios (RWS), which they are tasked to 
emulate, the notion of construct validity becomes central. 
Sjoberg depicts construct validity as being “concerned with 
whether one can justifiably make claims at the conceptual 
level that are supported by results at the operational level” 
[4]; Sjoberg had conducted a Software Engineering (SE)-
centric Systematic Literature Review (SLR) for the years 
2000 through 2019 and determined that over this period of 
time, the prominence of the construct validity term rose by 
“sevenfold” [4]. Zhou affirms the criticality of validity 
within the SE sector and noted, comparatively speaking, the 
lack of research regarding the challenges related to construct 
validity [5]. Hence, despite the “sevenfold” increase, Deets 
and others find that the notion of construct validity is still 
“underdiscussed” [6]. As the ML models for AIS evolve, 
construct validity becomes particularly important to ensure 
that the involved progression leads to the intended construct. 
For example, construct validity can help ensure that the 
feature set aligns with the intended construct (i.e., feature 
alignment); also, given the understood constraints of the 
Shannon-Weaver model in communications theory, 
consideration of construct validity can help to avoid 
misinterpretation of the AIS ML model’s posits (i.e., more 
robust interpretation). In essence, failure modes/blindspots 
and bias can be more readily identified and mitigated 
against.  

B. Transparency, Explainability, and Accountability (TEA) 
Evaluation & Testing for Enhanced Construct Validity 
Evaluation/testing (which ensures that the ML model 

well handles unseen data) and fine-tuning (which ensures 
that the ML model is optimized for a winnowed subset of 
data or particular task) are both integral for the enhancement 
of the involved AIS. The evaluation/testing of ML models 
involves both construct validity, as well as performance 
metrics to capture the intended construct and generalize well 
upon unseen data, respectively. The distinction is often not 
made, but evaluation and testing are quite marked and 
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disparate. For example, with regards to performance metrics, 
evaluation tends to encompass accuracy, precision, recall, F1 
score (determined by the precision and recall scores), Area 
Under the Receiver Operating Characteristic (AUC-ROC), 
cross-validation, etc. However, these types of evaluation do 
not provide insight into particular behaviors and/or potential 
Root Cause Analysis (RCA), which resides more in the 
realm of testing; while evaluation tends to focus upon 
performance of the model in its entirety, testing tends to 
focus upon the performance intricacies of the constituent 
components of the ML model. In the case of this paper, it is 
posited that the testing paradigm should also be extended to 
the interstices (e.g., interstitial areas between/among 
individual/amalgam of components, particularly in a glocal 
context). In any case, the evaluation/testing and fine-tuning 
paradigms are complicated enough for a single AIS, but in a 
System-of-Systems (SoS) (wherein constituent systems 
support the overarching function of the larger system) 
paradigm (wherein the incorrect testing and/or fine-tuning of 
one AIS may adversely impact another AIS), the notion of 
construct validity is crucial. The improving of AIS TEA at 
the component/interstitial areas can lead to enhanced 
construct validity, as feature alignment, more robust 
interpretation, etc. can likely be more readily achieved.  

C. Enhancing TEA for Enhanced Construct Validity 
Pathways for the advancement of System TEA (STEA) 

include a better understanding of the influence of Higher-
Order Network (HONs), a finer-tuned Dynamic Assessment 
and Weighting System (DAWS) (wherein more apropos 
weights can be derived), as well as a more 
understandable/interpretable corpus of experience such that it 
can be better leveraged in a Lower Ambiguity (wherein the 
repertoire of experience suffices) Higher Uncertainty 
(LAHU) situation (given a sufficient repertoire of 
experience, the tolerance for uncertainty is higher, such that 
a decision can be made without, necessarily, the need for 
more Big Data) when time is of the essence. In addition, 
STEA-related SoS boundary areas also need to be taken into 
consideration as ML of ML becomes increasingly prevalent. 
After all, ML algorithms have a propensity to spawn “non-
monotonic, non-polynomial [unable to be captured as a 
summation of terms], and even non-continuous functions” 
[7]. This is not dissimilar to the paradigm, wherein the 
transformation of “non-convex Mixed Integer Non-Linear 
Programming (MINLP) to convex problems, often 
spawn[ed] further non-convex MINLP problems” that 
necessitated further handling [8]. The enhancement of STEA 
can lead to better discernment of problematic constituent 
components (e.g., those exhibiting issues with feature 
alignment, robust interpretation, selection bias, etc.); this 
segues to enhanced construct validity. 

Accordingly, this paper describes an AI-based Construct 
Validity Verification Methodology (CVVM) (i.e., the extent 
to which the AIS is accurately gauging the actual underlying 
concept/intended theoretical construct) being advanced. To 
assist the reader, a table of acronyms is provided in Table I 
as follows.  

 

TABLE I.  TABLE OF ACRONYMS 

Acronym Full Form 
ACM Association for Computing Machinery 
ADMB Automatic Differentiation Model Builder 
AI Artificial Intelligence 
AIS Artificial Intelligence System 
AUC-ROC Area Under the Receiver Operating Characteristic 
c-SHAP Classical Shapley Additive exPlanation 
C2 Command and Control 
CF Constriction Factor 
CNN Convolutional Neural Networks 
CPRLD Constriction Factor-Particle Swarm Optimization-

Robust Convex Relaxation-Long Short-Term 
Memory-Deep Convolutional Neural Network 

CRITIC CRiteria Importance through Intercriteria Correlation 
CVVM Construct Validity Verification Methodology 
CWT Continuous Wavelet Transform 
DAWS Dynamic Assessment and Weighting System 
DCGAN Deep Learning Convolutional Generative Adversarial 

Network 
DCNN Deep Convolutional Neural Network 
DE Decision Engineering 
DeepLIFT Deep Learning Important FeaTures 
DL Deep Learning 
DM Decision-Making 
E Execution Time 
ELECTRE ÉLimination Et Choix Traduisant la REalité 
FCSO Finite-Change Shapley-Owen 
GAN Generative Adversarial Network 
GNU GNU’s Not Unix 
GPL General Public License 
Grad-CAM Gradient-weighted Class Activation Mapping 
GSO Generic Shapley-Owen 
HON Higher-Order Network 
I Interpretability 
IEC International Electrotechnical Commission 
IEEE Institute of Electrical and Electronics Engineers 
IPOPT Interior Point OPTimizer 
ISA Interstitial SHAP-centric Amalgam 
ISO International Organization for Standardization 
LAHU Lower Ambiguity Higher Uncertainty 
LIME Local Interpretable Model Agnostic Explanations 
LSTM Long Short-Term Memory 
MA Model Agnostic 
MADM Multi-Attribute Decision-Making 
MINLP Mixed Integer Non-Linear Programming 
ML Machine Learning 
MODM Multi-Objective Decision-Making 
MS Model Specific 
NP-hard Non-deterministic Polynomial-time Hardness 
OM Objective Measure 
OSNS Optimal Shapley-Nondominated Solution 
OSONS Optimal Shapley-Owen-Nondominated Solution 
PROMETHEE Preference Ranking Organization Method for 

Enrichment Evaluation 
PSO Particle Swarm Optimization 
RCA Root Cause Analysis 
RCR Robust Convex Relaxation 
RR Rank Reversal 
RWS Real-World Scenarios 
S Sensitivity 
SDP Semi-Definite Programming 
SE Software Engineering 
SHAP Shapley Additive exPlanation 
SLR Systematic Literature Review 
SM Subjective Measure 
SNOPT Sparse Nonlinear OPTimizer 
SoS System-of-Systems 
SQP Sequential Quadratic Programming 
STEA System Transparency, Explainability, and 
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Accountability 
TEA Transparency, Explainability, and Accountability 
TOPSIS Technique for Order Preference by Similarity to Ideal 

Solution 
U Performance under Uncertainty 
V Validity 
VBSO Variance-Based Shapley-Owen 
VC-dim Vapnik-Chervonenkis dimension 
XAI Explainable AI 
 

Section I provided an overview, which underscored the 
criticality of the notion of construct validity. The remainder 
of this paper is organized as follows. Section II reviews the 
notion of AI SoS ML on ML and the need for STEA 
(particularly interpretability as an actualizing agent for 
enhanced STEA) to facilitate viable ML of ML. Section III 
presents theoretical foundations, the experimental testbed, 
and the experimental construct for addressing the challenge 
of AI-based CVVM. Section IV provides some concluding 
remarks and puts forth some future work.   

II. BACKGROUND 

A. AI System of Systems (SoS) 
The notion of SoS is well-known; it is then axiomatic 

that an AI-related SoS is comprised of subordinate AIS. In 
theory, the involved ML at the top-tier AIS should be able to 
leverage the experiential base (e.g., lessons learned) of the 
lower-tier ML; in essence, the upper echelon ML should be 
able to enhance its efficacy by “learning” from the 
“successes” and “failures” of the lower echelon ML systems. 
This “learning” is effectuated by way of, among other types: 
(1) Collaborative learning (wherein ML systems collectively 
address a problem, such as in an ensemble and/or federated 
fashion, via learning from each other’s discernments and 
approaches), (2) Multi-agent reinforcement learning 
(wherein ML system learnings can inform the subsequent 
pathways undertaken by other AIS to achieve more optimal 
results), (3) Coopetition (a portmanteau of “cooperation” and 
“competition”) learning, such as in the case of Generative 
Adversarial Networks (GANs), wherein two AIS (e.g., 
generator and discriminator) engage in an “adversarial 
process” that segues to a win-win cooperative paradigm, (4) 
Transfer learning (e.g., wherein a pre-trained ML, with 
certain learnings already incorporated, can be fine-tuned and 
leveraged to undertake other tasks or wherein a distillation 
ML can transfer knowledge in a condensed form, thereby 
quickly enhancing efficacy and efficiency). However, to 
ascertain whether the learnings (e.g., employed approaches) 
are “effective” (or not) necessitates an AIS SoS ML on ML 
architecture that is more “white box” (e.g., wherein there is a 
higher degree of interpretability, such that the influencing 
variables are readily identifiable and the process — the 
involved model by which posits are generated — is more 
readily discernable) than “black box” (e.g., wherein 
opaqueness and/or translucency abounds); in other words, 
the desired “white box” AIS SoS ML on ML architectures 
need to have higher STEA (particularly interpretability). 

B. AI-centric STEA and its Criticality for ML on ML 
Along this vein, International Organization for 

Standardization (ISO)/International Electrotechnical 
Commission (IEC) 42001 focus upon AIS STEA; likewise, 
the Association for Computing Machinery (ACM) 
“Principles for Algorithmic Transparency and 
Accountability,” Institute of Electrical and Electronics 
Engineers (IEEE) Standard for Transparency of Autonomous 
Systems (P7001), and others follow suit. Addressing the “T,” 
a key factor for AIS architecture (e.g., “black-box,” “gray-
box,” and “white-box”) is in the form of transparency (e.g., 
opaque, translucent, and fully transparent). Addressing the 
“E,” McKinsey portrays it as the “capacity to express why an 
AIS reached a particular decision, recommendation, or 
prediction” [9]; this tracks with prevailing definitions within 
the Explainable AI (XAI) field. Addressing the “A,” it 
involves the prior “T” and “E,” as the justification logic 
employed needs to be articulated; on this point, there is a 
nuance. While explainability and interpretability are often 
treated synonymously within the literature, perhaps they 
should be better distinguished. While explainability focuses 
upon why the AIS made certain posits, interpretability 
focuses upon how the AIS formulated its posits; restated, the 
latter delves into the AIS’s DE/DM processes to derive 
insights into the pathways for the justification logic involved. 
Together, interpretability & explainability are referred to as 
I&E, and I&E is a lynchpin for operationalizing effective 
ML of ML. 

C. Interpretability and AIS SoS ML on ML Architecture 
For the dual pillars of I&E, interpretability turns out to be 

paramount. Yet, despite its criticality, interpretability tends 
to be challenged by the degree of complexity of the involved 
AIS architecture. For example, Table I presents degrees of 
interpretability (wherein green denotes high, yellow denotes 
medium, orange denotes medium/low and red denotes low) 
for various complexities; there is a column “Monotonic” 
denoting when the ML model is monotonically constrained 
(wherein a change at the input variable segues to a change at 
the response function output), and there is a row “Linear” to 
indicate when the output is proportional to the input as well 
as a row “Non-linear” to denote when the relationship is 
more complex (e.g., convoluted interplays among features, 
ambiguous boundary areas, intricate sequences of local, 
glocal, and global transformations, etc.). Table I is 
rudimentary since, as noted in Section I, the spawning of 
“non-monotonic, non-polynomial,  and even non-continuous 
functions” is not infrequent [7]; this greatly complicates 
matters, and gauges for interpretability are often tied to 
“measure[s] of model complexity,” such as “the Vapnik-
Chervonenkis dimension (VC-dim)” [10]; the VC-dim can, 
by way of example, be indicative of the number of weights, 
rules, etc., (but does not equate to them). 

TABLE II.  EXEMPLAR ML MODEL PROCESS INTERPRETABILITY 
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To date, STEA Efforts have tended to be on the post-side 
(e.g., Model Agnostic or MA), and those on the pre-post- 
side (e.g., Model Specific or MS) have had varied 
limitations. Exemplars of MA (e.g., Local Interpretable MA 
Explanations or LIME, Shapley Additive exPlanations or 
SHAP, etc.) and MS approaches (e.g., Gradient-weighted 
Class Activation Mapping or Grad-CAM, which is geared 
more for Convolutional Neural Networks or CNNs; Deep 
Learning Important FeaTures or DeepLIFT, which is geared 
for Keras and TensorFlow implementations; etc.) — the 
latter being constrained to a more limited set of ML models 
— are shown in Table II. 

TABLE III.  ML MODEL TYPES WITH EXEMPLAR I&E TOOLS 

 
 
On the MS side, since the LR coefficients “directly represent 
the influence of each feature on the prediction,” LR is 
construed as green when compared to the yellow of DT 
(which may have a complicated branching structure), the 
orange of NN (which may have complex internal workings, 
as contrasted to the more simplistic rules of DT), and the red 
of DL (which typically has a far greater number of layers 
than NN) [11]. On the MA side, LIME is oriented for more 
localized and individualized instances while SHAP 
capabilities extend beyond local and can well contribute 
towards a more global perspicacity across a gamut of 
instances; SHAP is well-suited to ascertain the more 
impactful features (i.e., as each feature will have a SHAP 
value to signify the impact on the posit, the features of 
import can be ascertained, and feature combinations that are 
able to maintain posit accuracy can be formulated while also 
considering the non-dominance principle, wherein no other 
feature combinations can provide posits without a 
degradation of efficacy in another facet) at the local, glocal, 
and global levels.  

D. Optimal Shapley-Owen-Nondominated Solution 
(OSONS) for Enhanced STEA and Construct Validity 
The Optimal Shapley-Nondominated Solution (OSNS) 

paradigm of Section IIC was explored as shown in Table III.  

TABLE IV.  EXEMPLAR DIGITAL OBJECT IDENTIFIERS (DOI) FOR 
VARIOUS FACETS OF OSNS  

OSNS context Facet DOI 
STEA In 

general: 
• 10.1109/AIIoT61789.2024.10579033 
• 10.1109/OETIC57156.2022.10176215 

HON • 10.1109/AIIoT61789.2024.10579029 
• 10.1109/IBDAP62940.2024.10689701 

DAWS • 10.1109/ICPEA56918.2023.10093212 
• 
10.1109/ICSGTEIS60500.2023.10424230 

LAHU • 10.1109/GEM61861.2024.10585580 
STEA-related 

SOS 
boundary 

areas 

C2 of C2 • 10.1109/IEMCON.2019.8936241 
• 10.1109/IAICT62357.2024.10617473 

ML of 
ML 

This paper 

In essence, it delineates prior work in the context of: (1) 
enhanced STEA, which facilitates a better understanding of 
the influence of HON-related drivers, a finer-tuned and more 
robust DAWS, and a more readily interpretable/leverageable 
repertoire of experience for a LAHU situation, as well as (2) 
STEA-related SoS boundary areas, such as those related to 
Command and Control (C2) of C2 (i.e., now ML of ML). 
For this paper, the notion of OSNS is expounded upon, as 
varied SHAP approaches differ in their local and global 
efficacies. By way of background, Borgonovo had referred 
to this hybridized efficacy as “glocal” (a portmanteau of 
“global” and “local”). Among other contributions, as a gauge 
of feature import (a key tasking of construct validity), SHAP 
values can be invaluable; Lundberg had advocated for SHAP 
to “explain various machine learning [ML] algorithms” [12]. 
With regards to the previously discussed (1) of this Section 
IID, Balog affirms the import of STEA-related HON-related 
drivers, and Sundararajan reinforces this perspective 
[13][14]. Kwon addresses the import of STEA-related 
DAWS, introduces “WeightedSHAP,” and distinguishes it 
from the standard SHAP, which “uses the same weight for 
all marginal contributions;” Kwon also “demonstrates that 
the influential features identified by WeightedSHAP are 
better able to recapitulate the model’s predictions compared 
to the features identified by the [classical] Shapley value” 
[15]. Addressing the matter from a different vantage point, 
Kotthoff raises the significance of utilizing the temporal-
sensitive/temporal-centric (as contrasted with the classical) 
Shapley value, and the temporal-centric LAHU notion is 
delineated by the associated DOI shown in Table III [16]. 
With regards to the previously discussed (2) of this Section 
IID, Guidotti affirms the importance of ML model inspection 
at the margins (e.g., STEA-related SoS boundary areas) [17]. 
These SoS boundary areas refer to, among others, regions 
between/among individual/amalgam constituent components 
as well as local/glocal/global interstices. With regards to the 
former, Dhamdhere affirms the notion of “Shapley-Owen 
values” “for the quantification of joint contributions” [18]. 
With regards to the latter, Borgonovo advocates the use of 
Finite-Change Shapley-Owen or FCSO values, such as 
articulated by Dhamdhere), which are well suited for the 
testing facet (e.g., the discussed aspect of Section IB is more 
focused upon local/hyper-local scrutinization of the ML 
model) [18]; in conjunction with this, the Shapley-Owen 
values (generally, the Generic Shapley-Owen or GSO values, 
such as articulated by Grabisch, and more granularly, 
Borgonovo’s suggested Variance-Based Shapley-Owen or 
VBSO values) can well serve in a generalized fashion — 
globally — across the model in its entirety [19][20]. 
Specifically, Borgonovo underscores the fact that FCSO 
values have equivalence to what Mase deemed to be the 
Baseline Shapley (i.e., the average of the FCSO values 
function under uncertainty) [20][21]; this Baseline Shapley 
also relates to the VBSO, since the upstream local finite-
changes for the FCSO values segues to the Glocal Partial 
Dependence Function (which segues to the Conditional 
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Regression Function and what Mase deemed to be the 
“Squared Cohorts” value function) [20][21]. Borgonovo 
notes that by averaging the “Squared Cohorts” Shapley-
Owen or SCSO values, the VBSO values can be obtained 
[20].  This reflects one of the many interplays among local, 
glocal, and global, and is also indicative of how “additional 
insights into the [ML] model behavior” are possible [20]; 
these supplemental insights segue to enhanced construct 
validity, which provides the basis for more robust ML of 
ML. 

III. EXPERIMENTATION 
ML of ML is a central tenet of this paper. To improve 

upon the ML model and the involved SoS, the need for 
interpretability (and STEA) is paramount. After all, 
constituent component and interstitial analyses is vital for 
determining whether the prospective ML learnings are of 
potential benefit; in some cases, RCA will be needed to 
discern and mitigate against problematic areas affecting 
performance. Borgonovo’s glocal notion can help bridge the 
gap, and the significance of the OSNS segueing to an 
Optimal Shapley-Owen-Nondominated Solution (OSONS) 
paradigm is well articulated by Casajus, Lopez, Beal, and 
others [22][23][24]. In essence, the Owen value (which well 
captures the nuanced interactions between/among the 
members of the feature set) extends the Shapley value 
(which well captures the individual feature contributions) in 
a consistent fashion. However, OSONS is also just a 
precursor, and the utilization of the b-SHAP amalgam (e.g., 
temporal-centric FCSO values, SCSO values, and GSO 
values/VBSP values) is central. In turn, the b-SHAP 
amalgam needs to be leveraged in conjunction with a well-
counterpoised MADM/MODM SM/OM paradigm. Wu, 
Wang and others have advocated for the use of the 
Technique for Order Preference by Similarity to Ideal 
Solution (TOPSIS) OM in conjunction with SHAP [25][26]. 
Meanwhile, Hua and others have advocated for the use of 
the PROMETHEE OM with SHAP (there is a dearth of 
research for SHAP with other OMs, such as ÉLimination Et 
Choix Traduisant la REalité or ELECTRE) [27]. The 
experimentation evaluated both of the former cases, and a 
finding, among others, is that of utilizing an OM (e.g., 
CRITIC) to first, derive the criteria weights and second, use 
a complementary pairing for the ensuing ranking (e.g., 
TOPSIS, PROMETHEE).  

A. Theoretical Foundations 
As described in the last paragraph of Section I, the issue 

of Non-deterministic Polynomial-time Hardness (NP-hard) 
problem spawning is problematic, such that Spawn 
Reduction becomes critical [8]. The involved optimization 
problem transformation pathways, such as those shown in 
Figure 1, strive to effectuate the non-convex to convex 
transmogrification.  

 
Figure 1.  Non-convex to convex Transformation Pathways (e.g., non-

convex discontinuous non-linear MINLPs to convex form) 

A similar phenomenon is shown in Figure 2; after all, 
ML algorithms have a propensity to spawn “non-monotonic, 
non-polynomial, and even non-continuous (i.e., 
discontinuous) functions” [7]. Of note, the transformation of 
non-convex to convex can often inadvertently spawn further 
NP-hard problems. However, once in a convex form, a 
variety of Semi-Definite Programming (SDP) solvers can be 
employed to resolve the optimization problems in 
polynomial time [28].  

 
Figure 2.  Non-convex to convex Transformation Pathways (e.g., non-

convex [non-monotonic, discontinuous] non-polynomial MINLPs to 
convex form) 

B. Experimental Testbed 
Taking the case of NN, as depicted in Table II of Section 

II, the interpretability is in the orange (medium/low 
interpretability), as NN is more complex that DT and LR. 
However, for an enhanced STEA/construct validity-centric 
paradigm, a tasked ML can well learn atop the other MLs, 
adjust the involved ML model[s], and ascertain ways to 
mitigate against/lower the inadvertent spawning (i.e., Spawn 
Reduction). For this reason, the testing facet (at the 
constituent component level and interstices) of the 
performance metrics conjoined with construct validity 
considerations become central to the ML of ML task for the 
reduction of the spawning of further non-convex MINLP 
(e.g., from the transformation pathways of non-convex 
MINLP to convex MILP). In this case, the testing facet 
mechanisms and the utilized SDP solvers were implemented 
aboard GNU’s Not Unix (GNU) Octave (a “numerical 
computation platform” that is “under the GNU [General 
Public License] (GPL) v3 license” and is generally 
“compatible with the likes of MATLAB”) along with a 
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myriad of Octave Forge packages [28]. As noted in [28], 
“the source code was modified in the lab environment” so as 
to implement accelerants for the referenced SDP solvers to 
quickly address the various involved convex optimization 
problems described herein. Also, as noted in [28], “GPLv3 
avoids the issue of tivoization (the instantiation of a system 
that incorporates software under the terms of a copyleft 
software license but leverages hardware restrictions or 
digital rights management to prevent users from running 
modified versions of the software on the involved 
hardware)” [28]. Testing was conducted using a variety of 
open-source software packages, such as Automatic 
Differentiation Model Builder (ADMB) (for non-linear 
statistical modeling) and Interior Point OPTimizer (IPOPT) 
(for large-scale nonlinear optimization) [28]; other 
promising software packages, such as LOQO (like IPOPT, it 
is based upon the interior-point method) and Sparse 
Nonlinear OPTimizer (SNOPT) (it leverages Sequential 
Quadratic Programming or SQP for resolving large-scale 
non-linear optimization problems) were examined, but they 
were not utilized given their licensing caveats.  

It had been discussed in [8] that a particular numerical 
implementation of Continuous Wavelet Transforms 
(CWTs), aboard a CPRLD architectural paradigm, well 
contributes to STEA by way of the intrinsic “successive 
convolutional layers (which contain the cascading of ever 
smaller ‘CWT-like’ convolutional filters)” [8]. The 
referenced CPRLD construct handled the various 
transformation pathways delineated in Figures 1 and 2 (e.g., 
convex approximations, series of convex relaxations, etc.), 
and the architectural implementation for this paper was 
unique in that a ML of ML paradigm was implemented for 
Spawn Reduction (SR2 on SR1), such as shown in Figure 3.  

 

 
Figure 3.  CPRLD Architectural Construct with a ML of ML (SR2 on SR1) 

Spawn Reduction paradigm 

In terms of implementation details, a DCNN-centric 
instantiation was chosen for the requisite sufficient balance 
of reduced computational complexity along with sufficient 
robustness to be fit for purpose. The assigned tasks of the 
various DCNN are labeled accordingly in Figure 3. For 
example, as DCNN-1 was tasked with being the key solver 
for the involved convex optimization problems, it required a 
high degree of numerical stability, and PyTorch version 
0.4.1 was selected; DCGAN-1 leveraged a “forward stable” 
TensorFlow-based DL Convolutional GAN (DCGAN) 

implementation to be able to well address the potentiality of 
mode collapse/mode failure (a phenomenon that may occur 
when adversarial GANs, which are being trained in tandem, 
are either unable to converge or undergo an anomalous 
convergence) [8]. 

C. Experimental Construct 
With regards to the involved experimental construct, as 

can be seen in Figure 4, prior experimentation aspects used 
as presets are reflected in blue font while current 
experimental elements are shown in purple font. The “t-” 
elements (e.g., f-FCSO, t-SCSO, t-GSO, t-VBSO) of b-
SHAP are extrapolations of Borgonovo’s work (previously 
discussed in Section IID) that more fully consider 
Kotthoff’s emphasis on temporal-sensitive/temporal-centric 
Shapley values [20]. STEA-related experimental forays for 
various OM were conducted. The OM of CRITIC was 
utilized as a preset for deriving the criteria weights, and the 
OMs of PROMETHEE, TOPSIS, and ELECTRE were 
utilized for the subsequent rankings. Initial selections and 
avoidances, among others, were based upon the following 
rationale. For example, PROMETHEE was known to be 
“easily… understood” and interpretable, so it was selected 
for testing [29][30]. Along this vein, [fuzzy] VIKOR was 
not selected, as it was known to be less interpretable and 
“less explainable than other more intuitive methods” [31]. 

 

 
Figure 4.  AI-based CVVM (ISA) Experimentation Aspects 

Overall, selections were made to improve STEA/I&E. Yet, 
there were other technical considerations as well. A number 
of methodologies are subject to a phenomenon known as 
“Rank Reversal” (RR), wherein ranking results might 
change when the method changes or when the set of 
alternatives changes (leading to inconsistent and/or 
inaccurate results). The select OMs experimented with were 
known to be the most resistant to RR (yet are still subject to 
the phenomenon), and preliminary results are shown in 
Figure 5 below [32]. The key for the chart is as follows. 
First, the referenced “select OMs” of this Section IIIC are 
self-evident: ELECTRE, TOPSIS, and PROMETHEE. 
Second, these “select OMs” were benchmarked by 
execution time (E), sensitivity (S), performance under 
uncertainty (U), validity (V), and interpretability (I). Third, 
the aforementioned were benchmarked against classical 
SHAP (c-SHAP), as well as the b-SHAP approach 
described within this paper. Using the CPRLD as a preset, 
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collectively, this forms the basis of the ISA described 
herein. The relative values were normalized against a scale 
of one to ten for ease of comparison. 

 
Figure 5.  Preliminary Results from b-SHAP/select OM Benchmarking 

The V and I were higher for PROMETHEE than for 
TOPSIS or ELECTRE. The E for TOPSIS was notably 
higher than that of the others, but the computational 
complexity is known to be less, and the performance under 
conditions of U was weaker than that of the others; the 
performance of PROMETHEE under conditions of U were 
seemingly better than ELECTRE and TOPSIS, in that order. 
Overall, the performance of b-SHAP was better than that of 
c-SHAP across the board for the range of E, S, U, V, I (for 
all the “select OMs” of ELECTRE, TOPSIS, and 
PROMETHEE). Hence, the b-SHAP-PROMETHEE 
amalgam (along with the CRITIC, CPRLD, etc. presets) 
exhibits promise. 

IV. CONCLUSION 
In consideration of Abraham Maslow’s notion regarding 

the predilection that follows when there is only one tool to 
utilize, Section IIIC depicted some of the metrics 
underpinning the selection of a variety of methods and the 
comparative performance. For example, with regards to I&E, 
PROMETHEE was initially chosen over [fuzzy] VIKOR. As 
another example, PROMETHEE, TOPSIS, and ELECTRE 
were selected for testing, as they were reported to be more 
resistant to RR than certain other methods. As yet another 
example, Figure 5 depicted the relative performance of the 
methods for E, S, U, V, I; TOPSIS had a comparatively 
better E when E was considered in isolation, but it did not 
fare well under U, and along this vein, PROMETHEE did 
fare reasonably well under conditions of U when compared 
to ELECTRE and TOPSIS, etc. This brings us to the primary 
impetus of this paper, which centered upon enhancing 
robustness of the testing facet (with more granularity) at the 
interstices (e.g., interstitial areas between/among 
individual/amalgam component at the local, glocal, and 
global levels), better illuminating I&E/STEA DE/DM 
pathways, and operationalizing AI-based CVVM for the 
purposes of achieving higher efficacy AI SoS ML on ML for 
RWS. The hitherto lack of methodologies in this regard have 
led to RWS paradigms, wherein AIS adversely impact other 
AIS with the potentiality of cascading failure for the 
involved AI SoS (a.k.a., “near misses”). Moreover, the 

testing facet involves performance metrics conjoined with 
construct validity considerations. On the performance 
metrics front, OSONS was found to have greater efficacy 
than OSNS. Similarly, the b-SHAP (which involves various 
temporal-centric SHAP instantiations for local, glocal, and 
global) and PROMETHEE (along with CRITIC) amalgam 
was found to be more robust than the b-SHAP/TOPSIS or b-
SHAP/ELECTRE amalgams on the interpretability front. 
Also on the performance front, spawn reduction turns out to 
be central, for once in the convex form, a myriad of SDF 
solvers can be leveraged to handle the involved optimization 
problems in polynomial time; otherwise, NP-hard spawn can 
congest matters with an indefinite impasse. The 
advancement of STEA/I&E necessarily involves HONs, 
DAWS, and LAHU, and these presets were discussed; the 
enhanced STEA/I&E discernment segues to more robust 
feature alignment, robust interpretation, etc., which 
constitutes enhanced construct validity. For this reason, it 
seems apropos to have the “Enhancement of an AI-based 
Construct Validity Approach” be the overarching descriptor 
of this paper. Future work will involve more quantitative and 
qualitative experimentation in the aforementioned areas. 
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