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Abstract—Levels of effort and timetable posits for the 
development and operationalization of System Transparency, 
Explainability, and Accountability (STEA)-centric Artificial 
Intelligence (AI) Systems (AIS) are beset by underestimation in 
often overlooked areas, such as the “Optimizing” facet of the 
“Deploying and Optimizing” phase of the AI Development Life 
Cycle, among others. This is a high derailment factor in 
conceptual estimating, particularly for those mission-critical 
AIS that do not well consider biases stemming from the 
broader Socio-Technical System (STS), which impact 
Interpretability & Explainability (I&E). In furtherance of bias 
mitigation and AIS whitening — STS-STEA-I&E (SSI) — an 
amalgam construct for facilitating/discerning a Fugacity Phase 
Transition (FPT) and Hyper-Heuristics (HH) convergence, 
segueing to an enhanced SSI contribution, is delineated. 

Keywords-AI Development Life Cycle; interpretability; 
explainability; justification logic; decision engineering. 

I.  INTRODUCTION  
The development and deployment of Artificial 

Intelligence (AI) Systems (AIS) is on the rise, and the rapid 
growth in market size for AIS and related supply chains have 
been abundantly memorialized; Compound Annual Growth 
Rates (CAGR), such as 36.6% from 2024 to 2030, have been 
reported [1]. Cisco’s 2024 AI Readiness Index asserts that 
“nearly all companies (98%) report that the urgency to 
deploy AI has increased in the last year” [2]. Rough Order of 
Magnitude (ROM) cost estimates for Levels of Effort 
(LOEs) and the associated timetables for the 
design/development and operationalization of these AIS are 
being requested in a torrential fashion to keep pace with the 
escalating demand/adoption rate [3][4]. This is buttressed by 
Stanford University’s AI Index Report 2024, which notes a 
dramatic increase of interest in GitHub AI projects (more 
than doubling between 2022 to 2023) [5]. Simply, AIS are in 
high demand. 

Despite the $184 billion market size for AI as of 
November 2024, the anticipated $826 billion market size by 
2030, and the rising price tags for AIS deployments, 
conceptual estimating (e.g., positing ROMs prior to the 
substantial completion of the involved architecture/design) 
has not yet become sufficiently mature and/or robust; these 
ROMs are often far off target with a plethora of 
cost/schedule overruns and project failures populating the 
landscape [6][7][8][9]. Generally speaking, cost estimates 
are typically predicated upon the historical costs of 

successfully completed projects, and since the corpus of 
historical data is still quite limited in this arena, a myriad of 
conceptual estimating and cost estimator issues have arisen; 
ROMs are often erroneous.  

To aggravate matters, not all AIS are equal. By way of 
example, a number of the earlier AIS had been withdrawn 
from the market due to their problematic “black box” 
architectures and prospective biases (e.g., algorithmic), 
which had not been well accounted for during their 
architectural/design phases [10]. Since that time, the AI 
ecosystem has progressively moved toward a paradigm of 
System Transparency, Explainability, and Accountability 
(STEA) for the prototypical stages/phases of the AI 
Development Life Cycle (ADLC) (as pertains to the 
development and operationalization of an AIS). The number 
of phases varies depending upon organizational preference 
and model selection — e.g., 3, 5, 6, 8, etc.; for simplicity, 3 
phases will be considered herein; of the 3 basic phases — (1) 
Planning & Collection, (2) Designing & Training, and (3) 
Deploying & Optimizing — the “Optimizing” facet (a 
substantive contributor towards the success of the AIS) of (3) 
constitutes a formidable STEA challenge. Without careful 
consideration, the STEA treatment for “Optimizing” can 
dramatically increase the required LOEs and potentially 
derail any posited ADLC timetable for the STEA-centric AIS. 

 Yet, without even considering the STEA complexities 
and requisite mitigations against biases stemming from the 
larger Socio-Technical System (STS) rubric, which includes 
the ecosystem of “humans, technology, and the environs,” 
there are a variety of staggering statistics to consider: (1) the 
Project Management Institute has reported that “almost half 
of business projects fall behind schedule, and up to a third 
are not completed at all,” (2) a Boston Consulting Group 
(BCG) survey reports that “nearly half of all respondents 
said that more than 30% of their organization’s technology 
development projects were over budget and late,” (3) 
McKinsey & Company (McK), in collaboration with the [BT 
Group plc, formerly British Telecom] BT Centre for Major 
Programme Management at the University of Oxford, reports 
that “on average, large [Information Technology] IT projects 
run 45 percent over budget and 7 percent over time, while 
delivering 56 percent less value than predicted” while 
McKinsey further reports that “software projects run the 
highest risk of cost and schedule overruns,” (4) [Research & 
Development] RAND Corporation notes that, “by some 
estimates, more than 80 percent of AI projects fail — twice 
the rate of failure for information technology projects,” and 
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(5), The Computing Technology Industry Association 
(CompTIA) notes that “nearly 80% of the AI projects 
typically don’t scale beyond a [Proof of Concept] PoC or lab 
environment” [11]-[16]. Against this backdrop, when the 
complexities of IT/AI projects are conjoined with the cited 
STEA and STS complexities, it becomes clear that the 
devising of a robust STS/STEA-centric AIS architecture is 
non-trivial. Accordingly, four central aspects, among others, 
need to be well considered for an STEA-centric AIS 
architecture prior to providing a ROM.  

The first is the desired level of transparency. The 
literature describes the principal variations in AIS 
architecture — “black-box,” “gray-box,” and “white-box — 
as being distinguished by gradations in transparency (most 
opaque to most transparent). The second is the desired level 
of interpretability, which centers upon the AIS’s Decision 
Engineering/Decision-Making (DE/DM) processes. The third 
is the desired level of explainability, which centers upon the 
rationale/underlying  logic employed to arrive at the, 
hopefully, non-biased and reasonable outcomes [17]; the 
University of Toronto’s Schwartz Reisman Institute for 
Technology & Society and others further distinguish 
between Explainable AI (which centers upon “fact”) and 
Justifiable AI (a.k.a., justifiability) (which centers upon 
“judgment”) [18]. The fourth is the degree of accuracy 
(ACC) desired. For the second and third aspects, 
interpretability describes how the AIS formulates certain 
posits (e.g., the DE/DM processes), and explainability 
describes why the AIS made certain posits (e.g., the 
justification logic). These (i.e., Interpretability and 
Explainability) are often referred to as I&E, and along with 
the fourth aspect, there is an ongoing dialectic in the 
literature regarding the trade-off between ACC and I&E. 
Some argue that reduced ACC AIS are more readily 
interpreted; along this vein, some argue that enhanced ACC 
AIS are less able to be interpreted in an intuitive fashion 
[19][20]. A similar argument has been made regarding 
explainability [21][22]. Amidst this backdrop, researchers 
have endeavored to achieve high-performance AIS that still 
have high I&E [23]. Suffice it to say, this arena constitutes a 
challenging study space.  

In the interim, research forays have trended towards more 
transparent white-box (a.k.a., glass-box) architectures, which 
reputedly have better I&E-by-design [24]. However, the 
performance tends to, as reported by some, lag behind the 
more translucent/opaque black-box architectures [25]. 
Accordingly, researchers have actively investigated the 
feasibility of middle-ground gray-box architectures. Along 
the vein of the previously discussed AIS project 
cost/schedule overruns, the initial development time for a 
high-performance STS/STEA/I&E (SSI)-centric AIS 
architecture can vary greatly (e.g., from months to years), 
and Gartner notes that, generally, “organizations” take about 
“7 months to develop AI initiatives, with 47% of the 
surveyed companies taking between 6 to 24 months from 
prototype to production”  [12][26][27]; some AIS 
implementers assert that SSI-centric AIS architectures can 
take several years to devise and realize. The testing times can 
also vary greatly. Generally speaking, black-box testing can 

require less time than white-box testing since the latter 
would require additional LOEs (i.e., an increased amount of 
time) to comprehend the DE/DM pathways and logic 
employed. The AIS model training time/cost is also highly 
variable, as the training data needs to be refreshed in an 
ongoing fashion, particularly for Real World Scenario 
(RWS) AIS applications. With regards to the “Optimizing” 
facet of (3) of the ADLC, the degree of ACC (versus I&E) 
needs to be specified, and the various involved optimizations 
(e.g., pertaining to the involved computational resources, 
quantity/quality of the training data, heuristics/algorithms 
employed, tuning/fine-tuning efficacy for [e.g., Deep Neural 
Network or DNN] weights/hyperparameters, complexity of 
the AIS model and AIS architecture/design, etc.) is central. 
Stanford University and Epoch AI (a multidisciplinary 
research institute that investigates the arc of AI) reviewed AI 
model training cloud compute times/costs, and MIT 
Technology Review noted that “the process used to build 
most of the… [AI] models we use today can’t tell if they will 
work in” RWS, “and that’s a problem” [28][29][30]. Some 
AIS implementers argue that the greater the desired level of 
SSI, the “more time-consuming and resource-intensive” the 
processes can be — with an ensuing increase to Capital 
Expenditures (CAPEX). Over time, the seeming CAPEX 
advantage of “black-box” over “white-box” architectures 
may potentially be offset by ever-escalating Operational 
Expenditures (OPEX) related to brittleness and obsolescence 
issues (e.g., undetected issues, such as data drift may result 
in dramatic performance degradation) that often beset black-
box architectures; in other words, the downstream OPEX-
related disadvantages may offset the initial CAPEX 
advantages of the earlier developmental and testing phases. 
Gray-box architectures seem to constitute a middle-ground. 

Certain SSI challenges that beset the ADLC are 
illuminated within this paper, such as at the “Optimization” 
facet of (3) of the ADLC. To assist the reader, a table of 
acronyms is provided in Table I below.  

TABLE I.  TABLE OF ACRONYMS 

Acronym Full Form 
ACC Accuracy 
ACM Association for Computing Machinery 
AdapHH Adaptive selection Hyper-Heuristics 
ADLC AI Development Life Cycle 
AI Artificial Intelligence  
AIS Artificial Intelligence System  
ALGB-WG Algorithmic Bias Working Group 
BCG Boston Consulting Group 
CAGR Compound Annual Growth Rate 
CAPEX Capital Expenditure 
CompTIA Computing Technology Industry Association 
CRITIC CRiteria Importance through Intercriteria Correlation 
CWA Connection Weights Algorithm 
DE Decision Engineering 
DM Decision-Making 
DNN Deep Neural Network 
EO Expert Opinion 
FPT Fugacity Phase Transition 
GA Garson’s Algorithm 
GI Gini Importance 
HH Hyper-Heuristic 
HH-CF Choice-Function-based Hyper-Heuristic 
HH-R Reward-based Hyper-Heuristic 
HH-SF Statistical Frequency-based Hyper-Heuristic 
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I&E Interpretability & Explainability  
IEEE Institute of Electrical and Electronics Engineers 
LOE Level of Effort 
MADM Multi-Attribute Decision-Making 
MAE Mean Absolute Error 
MAPE Mean Absolute Percentage Error 
MCDM Multi-Criteria Decision-Making 
McK McKinsey & Company 
MDA Mean Decrease in Accuracy 
MDI Mean Decrease in Impurity 
MLR Multiple Linear Regression 
MODM Multi-Objective Decision-Making 
NIST National Institute of Standards and Technology 
OA Olden’s Algorithm 
OM Objective Measure 
OPEX Operational Expenditure 
OPH Operator/Procedure/Heuristic 
PLSR Partial Least Squares Regression 
POC Proof of Concept 
PROMETHEE Preference Ranking Organization Method for Enrichment 

Evaluation 
PSO Particle Swarm Optimization 
QoS Quality of Service 
QR Quantile Regression 
RAND Corp. Research & Development Corporation 
RMSE Root Mean Square Error 
ROM Rough Order of Magnitude 
RR Ridge Regression 
RWS Real World Scenario 
SM Subjective Measure 
SSHH Sequence-based Selection Hyper-Heuristic 
SSI Socio-Technical System-System Transparency, 

Explainability, and Accountability-Interpretability & 
Explainability 

STEA System Transparency, Explainability, and Accountability 
STS Socio-Technical System 
TransE Translating Embeddings 
WIP Work-in-Progress 
XAI Explainability in AI 

 
Section I delineates the impetus of the paper — the 
illumination and consideration of certain SSI-related 
derailment facets that may dramatically increase the 
required LOEs and potentially derail posited ADLC 
timetables for the SSI-centric AIS. Section II provides 
pertinent background information regarding: (1) STS/STEA 
(in general) and I&E (in particular) (collectively, “SSI”) for 
certain facets of the ADLC for an AIS, (2) the “Fugacity 
Phase Transition” (FPT) (e.g., the series of deviations 
between the “ideal” training data and the “actual” observed 
data), and (3) certain other key considerations (e.g., the SSI 
aspects of the utilized Hyper-Heuristics or HH) that are 
critical to consider prior to putting forth conceptual 
estimating ROMs for an SSI-centric AIS. Section III 
delineates the presets & theoretical foundations as well as 
benchmarking & insights related to the involved HH/FPT 
experimentation. Section IV concludes and presents some 
prospective future work. 

II. BACKGROUND 

A. The Import of SSI for AIS 
In these contemporary times, there is a heightened 

expectation for SSI-centric AIS, particularly with regards to 
I&E. Winfield and others have remarked on various STEA-
centric Work-in-Progress (WIP) standards, as well as actual 
standards that have buttressed the Explainability in AI (XAI) 

movement; these WIPs/standards include, among others, the 
U.S. National Institute of Standards and Technology (NIST) 
Special Publication 1270 “Towards a Standard for 
Identifying and Managing Bias in Artificial Intelligence,” the 
Association for Computing Machinery (ACM)  “Principles 
for Algorithmic Transparency and Accountability,” and the 
Institute of Electrical and Electronics Engineers (IEEE) 
Standard for Transparency of Autonomous Systems (P7001), 
among others. There are also a range of engaged working 
groups, such as the IEEE Algorithmic Bias Working Group 
(ALGB-WG) (P7003). On the topic of bias, NIST has opined 
that certain AI biases (e.g., “human biases and systemic, 
institutional biases as well”) may stem from the larger STS 
rubric [31]. This includes the involved corpus of data, which 
may, potentially, derive from problematic “facts,” 
“assessment surveys,” and other bias-related problems from 
the “Collection of Data” facet of (1) of the ADLC [32][33].  

Traditionally, it has been opined that, for the ADLC, 
approximately “80% time” is spent on (1) [34]. For the 
“Collection of Data” facet of (1) of the ADLC, Westland 
has noted that the “bias and informativeness” of Subjective 
Measures (SMs) (e.g., Likert-type measurements) “have 
been the center of recent” dialectic [35][36]. From an SSI 
perspective, STS-related biases, such as from a variety of 
assessment data utilized as input to the AIS (e.g., from 
surveys) has recently been illuminated as a prospective 
Achilles heel for AIS. For example, McLeod informs us that 
“prior research has shown that using Likert scales can be 
problematic,” via a variety of biases (e.g., “social 
desirability bias, acquiescence bias,” central tendency bias, 
etc.) [37]. Taherdoost affirms this by noting that Likert 
“scale validity may be difficult to demonstrate[,] and there 
is a lack of reproducibility” [38]. To further underscore the 
aforementioned, Louangrath’s experimentation reports on 
the higher reliability levels of non-Likert scales (e.g., 
“92%”) over Likert-type scales (e.g., “90, 89, and 88% 
reliability”) as well as higher validity levels of non-Likert 
scales (e.g., “93%”) over Likert-type scales (e.g., “89, 61, 
and 57%”) [39]. Hence, the formulation/implementation of 
enhanced assessments (e.g., STS-related surveys) for the 
“Collection of Data” facet of (1) of the ADLC, which is a 
key part of the STS rubric, will likely increase the time 
needed for formulating and instantiating SSI-centric AIS 
architectures.  

B. The Fugacity Phase Transition (FPT) between Phases 
(2) and (3) of the ADLC 
With regards to the AIS architecture’s DE/DM apparatus, 

Fattoruso depicts Multi-Criteria Decision-Making (MCDM) 
as being comprised of Multi-Attribute Decision-Making 
(MADM) and Multi-Objective Decision-Making (MODM) 
[40]. Generally speaking, while MODM concurrently 
addresses a range of objectives (“and endeavors to determine 
an optimal solution set among “undetermined continuous 
alternatives”), MADM addresses a single objective and 
“organizes/sorts/ranks” (in the endeavor to ascertain the 
optimal solution among “a finite set of discrete alternatives”) 
[41]. For the “Collection of Data” facet of (1) of the ADLC, 
a more robustly counterpoised MADM/MODM 
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SM/Objective Measures (OM) construct is crucial for 
facilitating SSI robustness, as it can better contend with the 
issue of AIS model drift (a.k.a., model decay) (i.e., shifts in 
the involved data/relationships that can result in AIS model 
performance degradation, wherein the posits become 
increasingly less effective), particularly in situations for 
which the RWS data encountered is far different “from the 
data it was trained to recognize or handle” [42]. Generally 
speaking, it can be easier to discern this drift within a higher 
SSI-centric than a lower SSI-centric AIS architecture. To 
assist in contextualizing/delineating this paradigm, the term 
“fugacity” (an apropos term utilized by Dreyfus-Schmidt-
DuPhan-Desfontaines that nicely references the “tendency… 
to escape from one phase to another”) is utilized; “‘fugacity’ 
measures the difference between the expected ‘ideal’ data… 
[that the AIS] model was trained on and the observed ‘real’ 
data” that the AIS model encounters (i.e., the distinction 
between the “reference distribution” and the “prediction 
distribution”) [43][44][45]. The indicators of low drift and 
low fugacity can be utilized in ascertaining when a 
transitioning from phase (2) to (3) of the ADLC (i.e., FPT) is 
prudent. It should be noted that the FPT is not a singular 
punctuating event/milestone; rather, it denotes a fairly 
steady-state paradigm, wherein the fugacities for the 
successive states of dynamically updated AIS heuristics 
(acting in conjunction with the involved AIS algorithms) are 
low enough to be of satisfactory utility for the involved RWS 
AIS application. The monitoring of the involved AIS model 
(and encompassing AIS architecture) will require a sufficient 
temporal span given the SSI-centric AIS architectural 
requirement. 

C. Potential ADLC pitfalls (e.g., HH) and I&E Robustness 
for the “Optimization” Facet of the ADLC  
As alluded to in Section I and Section IIA, the requisite 

time to develop a sufficiently robust performance SSI-centric 
AIS architecture can vary greatly. It consists of the (1), (2), 
and (3) phases referenced in Section I, as well as various 
facets, such as that of “Optimization.” Within the phases of a 
3-phase ADLC, the “Collection of Data” and 
“Training/Inferencing” (e.g., which might be subject to the 
prospective inversion of the classical training:inferencing 
ratios) facets, as discussed in [46], are noteworthy, for they 
need to be well considered prior to positing LOEs and their 
associated timetables for an SSI-centric AIS (i.e., conceptual 
estimating).  

The counterpoising of SM and OM (for MADM and 
MODM), such as for the “Collection of Data” facet of (1) of 
the ADLC is non-trivial. This is further complicated with the 
need to appropriately weight and “organize/sort/rank,” which 
may be accomplished via the utilization of various OM 
combinatorials; this includes the leveraging of OM methods, 
such as the CRiteria Importance through Intercriteria 
Correlation (CRITIC) OM for the ascertainment of apropos 
weights and the Preference Ranking Organization Method 
for Enrichment Evaluation (PROMETHEE) OM for the 
ensuing ranking. The apropos selection and testing of more 
SSI-oriented OM (as well as SM) combinatorials will also 

likely increase the time needed for SSI-centric AIS 
architectures. 

Moreover, there is a fundamental distinction between the 
paradigm of static weights and that of dynamically updated 
weights. The literature is abundant with regards to the 
criticality of a dynamic weighting strategy for the 
“Training/Inferencing” facet [47]. Along this vein, 
oftentimes, heuristic approaches are leveraged to 
complement algorithmic approaches, particularly for RWS 
AIS applications. After all, the amalgam of heuristics and 
algorithms lend to numerical methods implementations of 
higher efficacy, and a dynamically updated heuristic model 
lends to more optimal convergence for a “better-fit” or 
“best-fit” approximation, etc. (e.g., the robust convex 
relaxation discussed in [48]). The SSI-related issue is that 
while algorithms have received increasing SSI attention, the 
myriad of static/brittle heuristics populating the AIS 
landscape has not received comparable SSI attention; this is 
an area that can increase the ADLC time needed.  

Beyond the “Collection of Data” and the 
“Training/Inferencing” facets, the “Optimization” facet of 
the ADLC (e.g., optimizing the involved AIS model) is 
critical, for it facilitates more accurate and efficient 
predictions, which segues to enhanced performance, 
decreased OPEX, and higher practicality/applicability for 
RWS. In particular, optimization (e.g., such as with regards 
to AIS model size, complexity, etc.) can facilitate more rapid 
inferencing with less computational resources (e.g., energy 
consumption) and lend toward scalability (e.g., optimized 
AIS models are more readily deployed). By way of context, 
the heuristic problem-solving approach is geared for 
ascertaining a “good enough” solution within a bounded 
period of time, but there is no certainty that it will provide an 
optimal solution; in contrast, certain algorithmic approaches 
are favored for ascertaining an optimal solution, but the 
“runtimes” may vary greatly. To date, “research in the 
explainability of optimisation techniques has largely focused 
on meta-heuristics” (which “directly search the solution 
space of a problem”) [49][50]. There has been far less 
research on HH (higher-level Operator/Procedure/Heuristic 
(OPH) methods that “operate on a search space of low[er]-
level heuristics…rather than solutions directly”), which can 
pose herculean SSI challenges due to the use of a plethora of 
lower-level OPHs, which complicates matters [51]. There 
have been some notable SSI-related explorations that have 
shown promise with regards to SSI, such as Misir’s Adaptive 
selection HH (AdapHH) and Drake’s Sequence-based 
Selection HH (SSHH) (which leverages probability matrices 
to facilitate I&E) [49][51]. By leveraging these lessons 
learned as well as the presets delineated in Section IIIA, a 
more SSI-centric HH paradigm can be leveraged. 

14Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-259-3

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

FUTURE COMPUTING 2025 : The Seventeenth International Conference on Future Computational Technologies and Applications



III. EXPERIMENTATION 

A. Presets & Theoretical Foundations 
Ali, Piccialli, and others have noted that a substantive 

portion of AI researchers opine that “a deeper network is 
better for decision-making than a shallow network” [24]. 
Yet, the prototypical DNNs are increasingly more difficult to 
examine at the deeper layers given the increasingly complex 
patterns/abstractness (as contrasted to the more 
straightforward patterns residing at the more shallow/earlier 
layers). From an SSI perspective, this makes certain 
reportage of DNN usage for mission-critical HH of even 
greater import [52].  For the experimentation herein, a preset 
(i.e., a precursor experimental construct) leveraged was in 
the form of an RWS-oriented Particle Swarm Optimization 
(PSO)-based Meta-Heuristic approach, as depicted in [53]. 
Another preset centered upon the selection of MODM OMs, 
such as CRITIC and PROMETHEE as well as those 
delineated in [54]. These presets are reflected in Figure 1 in 
bright red; the critical counterpoisings shown in lavender are 
supported by these presets. The focus of the experimentation 
is at the “Optimization” nexus of FPT/HH (denoted in brick 
red). 
 

 
Figure 1.  ADLC with the experimental focus, as indicated in brick red. 

Drake asserts that there are two types of HHs: (1) 
selection HH that select a sequence of Low[er]-Level 
Heuristics (LLHs), and (2) generation HHs that spawn 
LLHs [51]. From an SSI perspective, the degree of I&E 
depends upon the involved mechanism; for example, 
Maashi’s Choice-Function-based HH (HH-CF) facilitates 
the examination of LLHs, as LLHs are designated with a 
score/normalized score based upon prior performance and 
chosen accordingly. Qu’s Statistical Frequency-based HH 
(HH-SF) can reveal LLH sequences that relate to the more 
optimal solutions (thereby making I&E more self-evident). 

Kheiri’s Reward-based HH (HH-R) leverages LLH usage 
and transitions among LLH to yield transition probabilities 
for enhanced I&E [49].  

B. Benchmarking & Insights 
For the purposes herein, operators will be construed as: 

(1) diversification, (2) intensification, and (3) perturbation,  
Typically, (1) will leverage randomness to induce a 
substantive variation (e.g., to avoid stagnation at local 
optima) to expand the search space (e.g., progress to 
unexplored areas), (2) will spawn solution variations in high 
potential areas of the search space, and (3) will induce 
minute variations (e.g., to facilitate the gauging of LLH 
performance). In some cases, the sequencing of (1), (2), and 
(3) is effective; in other cases, (3), (1), and (2) may have 
efficacy. Our experimentation finds that the (1), (2), (3), (2) 
sequence has high efficacy; our findings are consistent with 
Drake’s reportage that LLHs/LLH sequences “which are 
ineffective at the start of the search process prove to be 
highly effective at the end, and vice versa” [51]. In essence, 
the efficacy of LLHs/LLH sequences and their concomitant 
HHs need to be gauged over time. For this temporal 
consideration, the assessment of the LLHs/HHs also needs 
to include consideration of the long-tail (part of the 
[statistical distribution], which is far afield from the head 
and centroid) phenomena prevalent in RWS; Samuel reports 
that “strongly unbalanced data with a long-tail is ubiquitous 
in numerous domains and problems” and “learning [over 
time] with unbalanced data causes models to favor head 
classes” [55][56]. Various techniques (e.g., based upon 
Wang’s Translating Embeddings or TransE) for better 
balancing across both head and tail classes are discussed in 
[57]. There is also the matter of AIS model drift over time. 
Along this vein, HHs can be leveraged to avoid a high drift 
paradigm (i.e., a drift score closer to 1), such as for the case 
where the features underlying the AIS model drift are of low 
significance; HHs can also be leveraged to lower the drift 
paradigm (e.g., moving the drift score closer to 0) by 
recognizing features of high significance, whose removal 
would dramatically degrade the AIS model performance. 
Interestingly, the challenge of feature significance 
determination centers upon the fact that features are not 
independent; actually, a substantive portion of features are 
highly correlated (a.k.a., collinear features). Spearman’s and 
Pearson’s correlation [coefficient] (R) can be used to gauge 
collinearity (e.g., a high R indicates collinearity), and given 
the plethora of collinear features, the notion of feature 
families becomes quite useful. Given a high R2 (a value 
closer to 1, which implies a perfect fit), wherein R2 = 1 – 
Sum Squares of Error or SSE/Total Sum of Squares or SST, 
the removal of a high dependency feature will likely not 
have a significant impact upon ACC for the feature family; 
on the other hand, a lower Root Mean Square Error (RMSE) 
(square root of the average squared differences between the 
measured values and actual values) and Mean Absolute 
Error (MAE) (average of the absolute differences) implies a 
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better fit. As Matel notes, “the larger the drop in R2 when a 
variable [/feature] is removed…, the more important it is 
assumed to be” [58]. This is affirmed by Gini Importance 
(GI), Mean Decrease in Impurity (MDI), and Mean 
Decrease in Accuracy (MDA) (a higher GI, MDI, and MDA 
indicates higher variable/feature significance). In essence, 
the involved RWS AIS evaluation was conducted over time 
(i.e., the FPT). 

Matel’s experimentation was utilized for benchmarking 
purposes, as Matel had reported that his conceptual 
estimating model exhibited “a 14.5% improvement in the 
accuracy” over Hyari’s model when considering Mean 
Absolute Percentage Error (MAPE) [58]. Matel’s findings 
are as follows: (1) for the Connection Weights Algorithm 
(CWA), “the lowest MAPE with all 16 variables was 
50.36%,” but the MAPE dropped “to 27.41%” “when only 
the top 5 variables were used,” (2) for Multiple Linear 
Regression (MLR), “when [only] the top 5 to 7 variables” 
were used, the MAPE was “42.47%,” and (3) for Expert 
Opinion (EO), when only “the top 5 variables” were used, 
the “MAPE was 93.25%” [58]. Hence, in terms of efficacy, 
CWA >> MLR >>> EO; this should be no surprise, for 
while CWA can accommodate non-linear relationships, 
MLR is not able to. For the case herein, Matel’s 
experimentation was reiterated with HH utilized for 
determining the top variable/features, and the results were 
somewhat comparable. The results are shown in Figure 2, 
which also incorporates Garson’s Algorithm (GA) and 
Olden’s Algorithm (OA) as alternatives to CWA as well as 
Partial Least Squares Regression (PLSR), Quantile 
Regression (QR), and Ridge Regression (RR) as alternatives 
to MLR. 

 

 
Figure 2.  Benchmarking of Section III with Matel’s Experimentation 

CWA tends to outperform GA, and OA (as an 
implementation of CWA) is more nuanced than the plain 
vanilla CWA. PLSR is better suited for multi-collinearity 
than MLR, and QR can better handle outliers than MLR. 
Apart from that, the principal distinction was that of a 
steady-state convergence that was obtained with the 
amalgam of: (1) low drift, (2) low RMSE and MAE 

reflecting low fugacities/a more narrow FPT, (3) high GI, 
MDI, and MDA affirming variable/feature significance, (4) 
high R (reflecting collinearity) and a high R2 (wherein the 
removal of high dependency features did not have a 
substantive ACC impact), and (5) high efficacy HH 
ascertainment at 8 variables/features. This logical 
progression through the amalgam composition and FPT/HH 
convergence should make clear the FPT/HH SSI 
contribution. 

IV. CONCLUSION 
The use of heuristics, to assist with algorithmic 

convergence for RWS AIS applications, is on the rise. These 
applications are likely to have specific stringent RWS timing 
requirements (e.g., pursuant to the involved Quality of 
Service or QoS). The adherence to these stringent RWS 
timing requirements constitutes a key facet of why the 
dynamically updated heuristic model (e.g., via HH) tangibly 
contributes towards the utility/practicality expected for RWS 
applications. Hence, HHs become critical to the equation, 
and their SSI orientation becomes central; it should be noted 
that HH has gained traction “in addressing NP-hard 
optimisation problems because it generalises well across 
problem domains” [59]. This paper presented an FPT/HH 
convergence approach (i.e., low drift, narrow FPT, and high 
efficacy HH) that would lend to a more SSI-centric 
optimization facet of the ADLC; accordingly, conceptual 
estimating and cost estimator ROMs can be made more 
robust. To conclude, this paper explores the development 
and implementation of improved assessment methods, such 
as STS-oriented surveys, for the “Data Collection” process 
within ADLC, a key component of the STS framework. The 
study highlights how these enhancements may impact the 
creation and deployment timelines of AIS architectures 
focused on SSI. By refining evaluation approaches, the 
research aims to improve the efficiency and effectiveness of 
data-driven decision-making within STS-based 
systems. Future work will involve more quantitative 
experimentation and benchmarking. 
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