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Abstract—Dynamic Real World Systems (RWS) must contend 
with the temporal dimension relating to the membership 
function and the associated RWS phenomenon of uncertainty. 
This problem is particularly interesting because it currently 
constitutes an impediment to robust Information Fusion (IF). 
There is a need for a more capable mechanism, pertaining to 
the aforementioned, for IF, forecasting, and decision-making, 
and central to this is the Dynamic Fuzzy List (DFL). 
Historically, a variety of foundational theories and works have 
been considered, but ascertaining the extent of affinity, within 
an acceptable performance time frame, has been an ongoing 
challenge within High Dimensional Data (HDD). This paper 
explored a prospective HDD-centric triumvirate amalgam 
consisting of: (1) an Adaptive Criteria Weighting Methodology 
(ACWM) to derive entropy weights, (2) an Isomorphic 
Comparator Similarity Measure (ICSM) to gauge similitude, 
via the discernment of Very Small/Non-Obvious (VSNO) 
clusters in HDD, and (3) apropos HDD-centric Cluster Validity 
Index (CVI) Measures (HCM) that are data uncertainty-
centric to address the discussed need. The main output of this 
paper is that of an ACWM-ICSM-HCM triumvirate approach, 
as a contribution to the DFL challenge — and the overarching 
complex problem of risk-prediction-decision in advanced 
Artificial Intelligence (AI)/Machine Learning (ML) systems —
by addressing a thematic that is crucial for IF in dynamic 
RWS and well warrants further investigation. 

Keywords-Computational Intelligence Strategies; Future 
Computational Technologies; Artificial Intelligence; High 
Dimensional Data; Isomorphic Comparator; Information 
Fusion; Dynamic Systems; Dynamic Fuzzy List. 

I. INTRODUCTION 
There is an emergent type of dynamic fuzzy set that is 

being looked to by certain organizations. It is, in essence, a 
Dynamic Fuzzy List (DFL), wherein membership is not 
necessarily fixed or certain and may fluctuate temporally. 
Hence, it has characteristics of Zadeh’s Type-2 Fuzzy Set 
(T2FS), wherein membership is both uncertain and fluid, as 
well as that of Yang & Hinde’s Rough (R)-Fuzzy Set (RFS), 
wherein the membership value of the prototypical 
constituent element of the upper bounds “has an affinity, but 
not necessarily absolute inclusion” [1]; it also has 
characteristics drawn from other foundational facets, which 
will be discussed in Section III, but suffice it to say, 
deriving such a DFL is a non-trivial matter. For example, 
candidacy for the DFL can be predicated upon a variety of 

considerations, such as criteria weighting, a particular 
snapshot in time, and/or the discernment of related entities 
(which could affect the membership candidacy). Each of 
these constitutes a considerable challenge. For example, 
first, Keshavarz-Ghorabaee notes that the determination of 
criteria weights “is one of the most critical and complicated 
processes” [2]. Second, as the criteria for membership may 
fluctuate with time and the desire for membership is 
uncertain and fluid, the paradigm at a particular instance in 
time (with its myriad of parameters) should be compared 
against known isomorphic paradigms for Quality 
Assurance/Quality Control (QA/QC) purposes. An 
Isomorphic Comparator Similarity Measure (ICSM) is 
needed to gauge the similarity of the paradigm with prior 
instances. Yet, the resultant of the ICSM may not even be 
needed if a Lower Ambiguity, Higher Uncertainty (LAHU) 
and Higher Ambiguity, Lower Uncertainty (HALU) Module 
(LHM) determines that it will not seek further resultants. 
More on this will be presented in Section III. Third, the 
recognition of affinity (e.g., temporally fluctuating dotted-
line relationships) is particularly challenging, as even the 
seemingly simplistic task of mapping the entities associated 
with a large company can be complex, as it is difficult to 
ascertain the extent of affinity (or even 
control/subordination) one entity might have 
with/over/under another (e.g., as pertinent case studies, the 
described paradigm is reflected in the notions of “keiretsu,” 
“chaebol,”  “qiyejituan,” etc.). In numerous cases, certain 
unknown entities have been the “point of the spear” for 
technological initiatives and/or operational 
programs/functional roles. Interesting historical case studies 
include Atari, Inc.’s obfuscated subsidiary Kee Games 
(thought to be a competitor) [3] and Aisin Seiki (an 
obscured  single-source supplier of a brake-related part for 
the Toyota Group, which includes Toyota Motor), which 
experienced a fire at one of its plants that could have 
impacted/stopped operations at Toyota for weeks; however, 
the full might of the Toyota Group keiretsu was illuminated 
as subsidiaries, suppliers/contractors, and affililates engaged 
in helping produce the brake-related part (e.g., a sewing 
machine manufacturer, within the keiretsu, shifted its 
production line to start making the brake-related part) [4]. 
Accordingly, the identification of entities with an affinity 
(e.g., under a keiretsu) is challenging to say the least. 
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Restated in relationship/network science terms, these 
difficult to discern, but pertinent sparse clusters, particularly 
for the study space of this paper, can be deemed to be Very 
Small/Non-Obvious (VSNO); furthermore, these VSNO 
need to be detected within High Dimensional Data (HDD), 
wherein the number of features, f, are approximately equal 
to or greater than the number of observations, o. This HDD 
VSNO Discernment challenge is referred to as HVD. 

Discernment engines have been among the most coveted 
technological goals within ecosystems that span multi-
domains. Computer vision, communications, and other 
arenas have long sought Artificial Intelligence (AI)-centric 
Software-Defined approaches for high-resolution, multi-
resolution image and signal analyses, among other purposes 
[5]. Yet, noise and vagaries, among other factors, have 
plagued a number of efforts. Recently, AI implementers 
have increasingly explored DFL as a potential means to 
capture and embody the vagueness of a paradigm [6]; this is 
crucial for the ICSM. Traditionally, high-precision 
Numerical Methods (NM) were utilized to contend with 
emulating/modeling complex Real World Systems (RWS); 
however, there has existed a gap in contending with and 
capturing the RWS paradigm/phenomenon of 
vagueness/fuzziness; the available/involved NM as well as 
the associated computational cost to bridge this gap have 
struggled with being robust/feasible enough to satisfy the 
challenge. The literature delineates various surrogate/proxy 
approaches that endeavor to enhance the performance for 
the involved AI//ML-based RWS (e.g., by reducing the 
training time) [7]. Other approaches have involved 
accelerations via a SOT while yet others have focused upon 
preserving the multi-scale structure of the involved matrices 
via the involved SOT [8]. Regardless of the approach, CVI 
affirmation is a key step in the overall process and is 
instrumental in the choice(s) for the involved clustering 
algorithm(s)/heuristic(s); these decisions directly impact the 
computational performance for the involved RWS-at-large. 

The aspects discussed within this paper are presented in 
Table I (with utilized acronyms), via five parts: (1) the 
overarching objectives (e.g., targets, actions), (2) the 
functional requirements, (3) the constraints (e.g., functional, 
selection bias, temporal), (4) some specific boundaries, and 
(5) the requisite components (e.g., the triumvirate 
constituents, which each constitute a separate system). In 
this way, by Section IV (Discussion, Conclusion, & Future 
Work), it can be evaluated whether the proposed triumvirate 
approach suffices in addressing the overarching objectives. 

TABLE I.  CONSIDERED ASPECTS OF THE TRIUMVIRATE AMALGAM 
(WITH UTILIZED ACRONYMS) 

I. Overarching Objectives (e.g., targets, actions) 
   Decision Support & Decision-Making 
• Optimal Decision Engineering Pathway (DEP) amidst 
   ➣Uncompressed Decision Cycles (UDC) 
   ➣Compressed Decision Cycles (CDC) 
• Multi-Criteria Decision Making (MCDM) with constituent 
   ➣Multi-Attribute Decision Making (MADM) 

   ➣Multi-Objective Decision Making (MODM) 
   which should be considered via Mathematical Programming Methods  
   (MPM), Artificial Intelligence (AI)/Machine Learning (ML), and 
   Integrated Approaches (IA) 
• Quality Assurance/Quality Control (QA/QC) 
II. Functional Requirements 
     Aspects Needed 
• Dynamic Fuzzy List (DFL) represented by 
   Numerical Methods (NM) for 
   Real World Systems (RWS) 
• HDD VSNO Discernment (HVD) in 
   High Dimensional Data (HDD) for 
   Very Small/Non-Obvious (VSNO) 
   wherein the requirements above are dictated by a 
• LAHU/HALU Module (LHM), which is comprised of 
  ➣Lower Ambiguity, Higher Uncertainty (LAHU) 
  ➣Higher Ambiguity, Lower Uncertainty (HALU) considerations 
III. Constraints (e.g., functional, bias, temporal) 
      Implementation Considerations 
• Relationship Membership Stream (RMS) 
   ➣Probability [& Statistics] Systems Theory (PST) 
   ➣Fuzzy Systems Theory (FST) 
        ⌳Type-2 Fuzzy Set (T2FS), as contrasted to Type-1 Fuzzy Set  
           (T1FS) 
           -Footprint of Uncertainty (FOU) 
        ⌳Spherical Fuzzy Sets (SFS) 
        ⌳Three-Way Soft Clustering (TWSC) 
   ➣Rough Set (RS) 
   ➣Rough (R)-Fuzzy Set (RFS) 
   ➣Grey Systems Theory (GST)  
• AI/ML Metaheuristic Limitations 
   ➣Particle Swarm Optimization (PSO) 
       ⌳Constriction Factor (CF) 
       ⌳Robust Convex Relaxation (RCR) 
       ⌳Long Short-Term Memory (LSTM) 
       ⌳Deep Convolutional Neural Network (DCNN)  
       ⌳CF-PSO-RCR-LSTM-DCNN (CPRLD) 
   ➣Sequence of Transformations (SOT) 
       ⌳Nonnegative Matrix Factorization (NMF) 
       ⌳Gaussian Composite Model (GCM) 
       ⌳Multiresolution Matrix Factorization (MMF) 
       ⌳Corresponding WT (CORWT) 
       ⌳Enhanced CORWT (ECORWT) 
       ⌳Wavelet Transform (WT) which include 
          -Discrete WT (DWT) 
          -Stationary Wavelet Transform (SWT) 
          -Continuous Wavelet Transform (CWT), whose implementation 
           can include 
           CWT PyWavelet Schema (CPS) 
• Explainable AI (XAI) 
   ➣Criteria Weighting Systems (CWS), which might utilize 
        ⌳Subjective Methods (SMs) 
        ⌳Objective Methods (OMs) 
        which might include MADM/MODM SM/OM (MMSO), such as 
        ⌳Point Allocation (PA) 
        ⌳Analytic Hierarchy Process (AHP) 
        ⌳CRiteria Importance through Intercriteria Correlation (CRITIC) 
        ⌳Technique of Order Preference by Similarity to an Ideal Solution 
           (TOPSIS) 
        ⌳Multi-Objective Optimization by a Ratio Analysis plus the Full 
           Multiplicative Form (MULTIMOORA) 
        while other HDD-oriented sub-space approaches include 
       ⌳Clustering in QUEst (CLIQUE) 
       ⌳Merging Adaptive Finite Intervals And (MAFIA) 
   ➣Adaptive CWS (ACWS), which underpins the ACWM 
• Overall TFCP, which is comprised of 
  ➣Transparency (TY) 
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  ➣Flexibility (F) 
  ➣Consistency (C) 
  ➣Performance (P) 
IV. Specific Boundaries 
• Cluster Validity Index (CVI), which can be grouped as 
    ➣External Measures (EMs), such as 
         ⌳F-Measure (FM) 
         ⌳Normalized Mutual Information (NMI) 
    ➣Internal Measures (IMs), such as 
         ⌳Calinski-Harabasz (CH) 
         ⌳Davies-Boulding (DB) 
         ⌳Ball-Hall (BH) 
         ⌳Pakhira-Bandyopadhyay-Maulik (PBM) 
         ⌳Trace(W) (TW) 
         ⌳Point-Biserial (PB) 
    ➣Relative Measures (RMs), which can be construed to be IMs, such 
        as 
         ⌳Dunn-Index (DI)  
         ⌳Maulik-Bandyopadhyay (MB)    
         ⌳McClain-Rao (MR) 
          These can also be grouped as  
         ⌳Difference-like Criteria (DLC) 
         ⌳Optimization-like Criteria (OLC) 
V. Requisite Components (e.g., the triumvirate constituents, which 
     each constitute a separate system) 
     Triumvirate Constituents 
• Adaptive Criteria Weighting Methodology (ACWM) 
• Isomorphic Comparator Similarity Measure (ICSM) 
• HDD CVI Measures (HCM) 

 
 In brief, this paper delineates a proposed triumvirate 

approach for the ascertainment of certain desired DFLs. The 
paper is structured as follows. Section I provided a backdrop 
and introduces the problem space of DFLs. Section II 
provides background information by way of describing the 
operating environment as well as the state of the challenge 
for contending with certain selection bias in Criteria 
Weighting Systems (CWS), the discernment of VSNO in 
HDD, and the selection of data uncertainty-centric HDD 
CVI Measures (HCM). Section III provides some theoretical 
foundations regarding uncertainty, such as Fuzzy Systems 
Theory (FST), RFS, Grey Systems Theory (GST), and 
others, as well as the posited/utilized approach for 
contending with uncertainty; it also delineates some 
preliminary experimental thoughts/forays regarding the 
posited performance acceleration approach. Section IV 
concludes with a discussion, presents some preliminary 
reflections, puts forth envisioned future work, and the 
acknowledgements close the paper.  

II. BACKGROUND INFORMATION 
Generally speaking, the concept of a fuzzy list should be 

fairly self-evident and intuitive; however, for the purposes 
of this paper, it shall be explicitly defined as being related to 
membership candidacy amidst temporally fluctuating 
dotted-line relationships, wherein the criteria for 
membership as well as the desire for membership may be 
fluid. A fuzzy list may have various types of membership, 
different grades of membership within the types of 
membership (e.g., primary, secondary, etc.), varying degrees 

of membership participation within the grade, and the 
enumeration goes on. For the most part, T2FS well captures 
many of the aspects for such a fuzzy list, as underscored by 
the fact that interval T2FS are among the most prevalent 
(wherein the secondary grades equate to one) approaches in 
contemporary times. For example, the notion of a Footprint 
of Uncertainty (FOU) for, say, primary memberships can be 
quite useful, as it can readily be depicted in two-dimensions 
(as contrasted to three-dimensions, which is more complex 
to depict and decipher) [9]; FOUs lend toward intuitiveness, 
which is central for explainability and justification, and is 
essential prior to moving to Type-3 Fuzzy Neural Networks 
[10]. For example, as noted in our prior work [11], a more 
intuitive constituent representation can better lend toward 
analysis; a particular example is provided, wherein “a very 
large matrix A” is “being factorized into, let us say, matrices 
B and C” and “ultimately, the desire is that all the involved 
matrices have no negative elements” [11][12]. However, if a 
standard method of matrix factorization, such as Singular 
Value Decomposition (SVD) is leveraged, “the resulting 
SVD-based lower rank representation leads to both positive 
and negative elements (which is the antithesis of the intent 
to have no negative elements), thereby making 
interpretation quite challenging due to the ensuing 
ambiguity” [11]. Yet, if the approach vector of Nonnegative 
Matrix Factorization (NMF) is leveraged, given “the 
inherent constraint that the factorized matrices be comprised 
of non-negative (i.e., positive) elements,” it can be readily 
ascertained that “the involved approximation/representation 
as the sum of positive elements (e.g., matrices, vectors, 
integers) is more intuitive, logical, and naturalistic given the 
matrices of positive integers,” which can then “facilitate a 
more robust interpretation of the original matrix data, as it 
segues to a more intuitive structural representation by parts” 
[11]. Thus, when this particular SOT is utilized (e.g., 
commencing with NMF and concluding at a Continuous 
Wavelet Transform (CWT), an interesting unsupervised 
Machine Learning (ML) pathway for HVD emerges; 
however, it should be noted that there are three challenges to 
be addressed along this sherpa-like SOT pathway: (1) 
mitigating against selection bias via a more balanced 
determination of entropy weights in the CWS (i.e., an 
Adaptive CWS or ACWS), (2) discerning VSNO in HDD to 
successfully operationalize the ICSM, and (3) determining 
apropos HCM for QA/QC purposes and the task at hand. 

A. The Challenge of Bias in CWS 

According to Chakraborty, Chen, and others, in 
numerous instances, CWS often utilize Subjective Methods 
(SMs) that “often lead to biased estimation of criteria 
weights,” which “often results in biased results” [13][14]. 
SM inherent biases might include, by way of example, 
particular parameters/certain indices omitted/opted for, etc. 
A potential mitigation approach to contend with this 
selection bias, among others, is to use the referenced 
ACWS, which takes into consideration and complements 
the SMs with Objective Methods (OMs). The SMs and OMs 
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comprise the constituent elements of the encompassing 
Multi-Attribute Decision Making (MADM) and Multi-
Objective Decision Making (MODM) frameworks; in turn, 
the MADM and MODM comprise Multi-Criteria Decision 
Making (MCDM). The objective, then, is to devise a well 
counterpoised MADM/MODM SM/OM (MMSO) construct 
for deriving the requisite robust entropy weights. This 
mitigation against selection bias, via the proposed MMSO 
construct, constitutes one of the contributions of this paper.  

It is essential that the MMSO packages, such as those 
derived from Github, be gauged for the metrics of 
Transparency (TY), Flexibility (F), Consistency  (C), and 
Performance (P) (TFCP). After all, TY is vital when 
endeavoring to mitigate against selection bias, wherein the 
need is well noted by the Explainable AI (XAI) movement. F 
is critical for extensibility, particularly when the literature is 
continuously being refreshed with new hybrid approaches 
[15]; accordingly the chosen MMSO should be amenable for 
being combined with other packages. C should be axiomatic 
given the desire for accuracy (as well as precision, 
concurrently, to the degree possible). P is a driving factor, 
which dictates whether the considered approach is feasible or 
not from a computational vantage point; there are also 
several underlying facets shaping P, such as that of 
numerical stability, potential stagnation at local optima (or a 
differing lack of convergence), etc. 

A prospective viable counterpoised construct, such as 
that experimented with for this paper, might be of the 
following composition. With regards to MADM SM, the 
classic Point Allocation (PA) and Saaty’s Analytic Hierarchy 
Process (AHP) might be utilized. Weighted Aggregated Sum 
Product Assessment (WASPAS) can be utilized as well 
[16][17][18]. For MADM OM, Diakoulaki et al.’s CRiteria 
Importance through Intercriteria Correlation (CRITIC) and 
Hwang & Yoon’s Technique of Order Preference by 
Similarity to an Ideal Solution (TOPSIS) might be selected. 
Fuzzy VIšekriterijumsko KOmpromisno Rangiranje 
(VIKOR) can be used as well [19]. For MODM SM, 
Brauers & Zavadskas’ Multi-Objective Optimization by a 
Ratio Analysis plus the Full Multiplicative Form 
(MULTIMOORA) can be utilized. MODM OM is a slightly 
more complicated matter, as Hanine et al. and others have 
asserted that Mathematical Programming Methods (MPM), 
ML, and Integrated Approaches (IA) should be considered 
(not only for MODM OM, but also the other MMSO) [20]; 
accordingly, a bespoke architectural construct described in 
[21] is utilized. In essence, as noted in [21], it is a 
Constriction Factor (CF)-Particle Swarm Optimization 
(PSO)-Robust Convex Relaxation (RCR)-Long Short-Term 
Memory (LSTM)-Deep Convolutional Neural Network 
(DCNN) (CPRLD), which will be discussed in Section III. 

For the fuzzy domain, the use of Spherical Fuzzy Sets 
(SFS), as introduced by Gundogdu et al. [22], are of value-
added proposition as they contribute to some of the specific 
needs in risk assessment and decision-making (e.g., SFS can 
accommodate uncertainty and the notion of 
imprecision/quantitative exactitude for MADM problems) 
[23]; Ortega et al. affirm with regards to the proposed for 
MADM SM [24]. Kahraman et al. and Sharaf affirm with 

regards to that for MADM OM [25][26]. Gundogdu et al. 
affirm with regards to that for MODM SM [27]. Hopefully, 
affirmation of the MODM OM selection will occur in the 
not too distant future. For those cases, wherein the MMSO 
conjoined multiple packages, the various pairings were 
designed to be well counterpoised. For example, the pairing 
might involve complementary structures (e.g., PA is 
matrixed while AHP is hierarchical) and/or complementary 
roles (e.g., criteria weights can be derived by CRITIC and, 
subsequently, ranked by TOPSIS), as noted in prior works. 

The notion of an ACWS has long been supported and 
promulgated by researchers; these include, among others, Li 
et al., Chai, Skondras, and others [28][29][30]. Along this 
vein, an ACWS is used for the preliminary experimention 
and operationalized by the described MMSO construct. 

B. The Challenge of Discerning VSNO for ICSM 

Laborde, Vitelli, and others have noted that discerning 
sparse solutions (e.g., subspace clusters) in HDD is a 
formidable feat, and certain language, such as “have not 
been designed for” HDD and “has not been explored prior 
to the writing of this paper,” has been used by researchers to 
underscore the fairly nascent state of the research being 
conducted within this arena [31][32]. Suffice it to say, the 
process of HVD is non-trivial. Many researchers have noted 
(and the literature is rife with examples) the sensitivity of 
prototypical clustering classifiers (e.g., K-Means, K-Nearest 
Neighbor, etc.) to the placement of the initial seeds [33], 
noise [34], and the lackluster efficacy when confronted by 
varying cluster sizes, densities, shape, etc. (i.e., constraints 
of the employed metaheuristics) [35]. The efficacy of these 
classifiers are predominantly determined by the underlying 
measures utilized; exemplar measures include distance (e.g., 
Euclidean, Manhattan, Minkowsky, etc), 
similarity/dissimilarity (e.g., Cosine, Dice, Jaccard, etc.), 
and others. Measures for HDD need to be tailored for such; 
HVD needs to be gauged for its validity (e.g., goodness) and 
quality (e.g., robustness) of the resultant clusters.  

The efficacy of the HVD is predicated upon the 
underlying workflow sequences, as well as the involved 
measures. For example, to discern VSNO in HDD, 
similitude needs to be gauged in HDD. Govaert and Nadif 
noted that insight could be gleaned from  the relationships 
among the subspace elements, such as that of submatrices 
(e.g., homogeneous subsets of data). Along this vein, Wang 
also advocated for a subspace approach [36]. Extrapolating 
upon this, others (e.g., Majdara, Li, Xianting, etc.) proposed 
density-based approaches, and yet others (e.g., Zhao, Du, 
Lu, etc.) put forth grid-based approaches [37][38]. Still 
others have introduced hybridized approaches; for example, 
Agrawal et al. introduced a density-based and grid-based 
approach referred to as Clustering in QUEst (CLIQUE) 
[38]. As a follow-on enhancement to CLIQUE, Merging 
Adaptive Finite Intervals And (MAFIA) was introduced by 
Nagesh et al. [39]. Still other approaches include those that 
are Wavelet Transform (WT)-based. This should be of no 
surprise, since WT are a recognized method “to summarize 
high-dimensional data in a few numbers” [40]. 
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The literature has shown various researchers 
promulgating various WT in HDD. For example, Bruce et 
al., Qu et al, and Tuna et al. have championed Discrete WT 
(DWT). Interestingly, as noted in both prior work and 
ongoing unpublished work (e.g., “AI-Facilitated Dynamic 
Threshold-Tuning for a Maritime Domain Awareness 
Module,” “AI-Facilitated Selection of the Optimal 
Nondominated Solution for a Serious Gaming Information 
Fusion Module,” etc.), for the purposes of this paper, the 
Continuous Wavelet Transform (CWT) has certain 
advantages over other forms of WT [41]. For example, 
CWT tends to have better resolution than, say, DWTs, 
which are not only characterized by constrained sampling 
and fixed windowing, but are also beset with spectral 
leakage. The Stationary Wavelet Transform (SWT), as an 
extension of DWT, is not necessarily beset with spectral 
leakage, but it does tend to be overdetermined/redundant in 
its representation. Given that CWTs are particularly 
amenable to time series analysis and are very well suited for 
implementation aboard the CPRLD architecture, which has 
“successive convolutional layers (which contain the 
cascading of ever smaller ‘CWT-like’ convolutional 
filters),” CWTs are the preferred WT embodiment [21]. The 
implementation described in [11][21][42] and in Section III, 
along with an additional DCNN-3 to assist with complexity 
reduction, is another contribution of this paper.  

As noted in the beginning of this Section II and in [21], 
an effective SOT begins with MMF, progresses to a 
Gaussian Composite Model (GCM), which then undergoes a 
transformation to a Multiresolution Matrix Factorization 
(MMF), a Corresponding WT (CORWT), and “an Enhanced 
CORWT (ECORWT), which was operationalized by way of 
a CWT PyWavelet Schema” (CPS) [11]. This SOT 
progression was operationalized by the CPRLD (and the 
additional DCNN-3), and the resultant CWT (seguing from 
the ECORWT) is utilized for fleshing out the wavelet space-
based mapping ecosystem, as a facilitating precursor to the 
HVD operationalization.  

The HVD runway is underpinned with soft clustering;  
this provides the requisite versatility of more granular and 
variegated classification; this is distinguished from hard 
clustering, wherein there is classification into only one 
cluster. The characterization of soft versus hard clustering 
should be reminiscent of T2FS (as contrasted to the Type-1 
Fuzzy Set or T1FS, which only accommodates membership 
invariableness). In addition, ongoing work has indicated that, 
Three-Way Soft Clustering (TWSC) nicely suffices for the 
purposes at hand; TWSC is suitably defined via “samples in 
the positive region as belonging to the cluster, samples in the 
boundary region as partially belonging to the cluster, and 
samples in the negative region as not belonging to the 
cluster” [43].  

The notion of TWSC (and hybridizations thereof) is well 
supported and espoused by researchers such as Wang, Yu, 
Ali, Yang, and others [44][45][46][47]. Also, the “fuzzy 
clustering” and CWT approach seems to be a well 
recognized combinatorial, as evidenced by the works of 
Jafari, Kumar, and others [48][49]. Taking these two 
described approaches, the HVD for this paper is 

operationalized by the TWSC and CWT combinatorial 
(aboard the CPRLD with DCNN-3). This updated 
implementation is another of the contributions of this paper. 

C. The Challenge of Selecting Apropos HCMs 
With regards to the process of HVD, Ko and others view 

the underlying HCM via the groupings of: (1) data certainty, 
and (2) data uncertainty [51]. The predominant share of 
HCM center upon (1), and Tavakkol et al. even noted, “To 
the best of our knowledge, there is not any clustering validity 
index in the literature that is designed for uncertain objects 
and can be used for validating the performance of uncertain 
clustering algorithms” [52]. In essence, the particular area is 
in an emerging state. By way of background, HCM are 
generally classified into three groupings:  External Measures 
(EMs), Internal Measures (IMs), and Relative Measures 
(RMs). EMs are more disposed towards leveraging cluster 
structures/resultants from data sources not necessarily 
intrinsic to the clusters and data at-hand. IMs are more 
focused upon the affinity aspect, which exists predominantly 
within the clusters and data at-hand, as well as place an 
emphasis on compactness/cohesion. RMs, which are 
sometimes construed to be an extension of IMs, have a 
tasking that is more akin to comparing/contrasting variegated 
cluster structures by leveraging what is known about various 
EMs and IMs, etc. Exemplars of EM include F-Measure 
(FM), Normalized Mutual Information (NMI), etc. Examples 
of IM include Calinski-Harabasz (CH), Davies-Boulding 
(DB), etc. RM can include Dunn-Index (DI), Maulik-
Bandyopadhyay (MB), etc. As noted by Vendramin and 
others, RM can be construed to be a subset of IM (which can 
be construed to encompass “Optimization-like Criteria” or 
OLC and “Difference-like Criteria” or DLC), and RM can 
refer, in particular, to DLC, wherein a baseline reference can 
be established and utilized to determine relative 
improvement(s) over a certain time frame [53][54]. 
Extrapolating upon other prior/concurrent work, this paper 
utilizes a DLC orientation when treating RM, as it more 
closely resonates with the notion of a baseline reference in 
the evaluation of  HVD performance over a period of time. 

Various researchers, such as Vendramin et al., have 
illuminated some interesting prospective performance 
acceleration opportunities. For example, as discussed in [54], 
while the seminal figures of “Milligan and Cooper” had 
“evaluated” the IM/RM of “McClain-Rao” (MR) as an OLC, 
Vendramin et al., among others, found that MR “performed 
signficantly better (eight times more accurately)” when 
transforming DLC to OLC (e.g., better results) prior to any 
evaluation [54]. An examination began in prior/concurrent 
work and continued on into the considerations of this paper. 
Precursor work involved determining which HCMs have 
been considered for facilitating the DLC Candidate List 
(CL). Ensuing work centered upon conducting an extensive 
literature review and ascertaining which HCMs were 
prospective candidates that warranted further exploration. 
The underlying logic centers upon the conviction that if the 
classification related to DLCs can be augmented, and the 
involved transformations, such as that of DLC to OLC, can 
be accelerated, then the ensuing enhanced HVD process can, 
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likely, better provide for and facilitate the overall involved 
underpinning AI/ML processes.  

The need for a robust HCM apparatus is underscored by 
Tavakkol, Vendramin, and others. Comparisons as well as 
performance acceleration opportunities have been looked to 
by Arbelaitz et al., Pakgohar et al. (who differ from 
Vendramin et al. in terms of their perspective on viable 
conversion methods, such as DLC to OLC), as well as many 
other researchers. Suffice it to say, the exploration of useful 
transformation methods, both from Vendramin’s and 
Pakgohar’s vantage points, are being explored in an ongoing 
fashion. Both have valid points, and for the purposes of this 
paper, Vendramin’s posits were examined. 

III.       THEORETICAL FOUNDATIONS & EXPERIMENTATION 
The ascertainment of a DFL is a non-trivial challenge 

that draws upon various foundational works to tackle the 
notion of uncertainty. There are several well recognized and 
acknowledged scientific method-based  formalized systems 
for addressing uncertainty. These include, among others, the 
works of Cardano, Pascal, Fermat, Bernoulli, Laplace, as 
well as the contributions of others, to Probability [& 
Statistics] Systems Theory (PST), Zadeh’s FST [55], Yang 
& Hinde’s RFS (an extension of Pawlak’s Rough Set (RS) 
and FST) (e.g., RWS that contain inconsistent data) [56], and 
Deng’s GST [57]. This paper capitalizes upon these and 
others to facilitate the addressing of uncertainty. 

Uncertainty is necessarily counterpoised with ambiguity, 
and both are impacted via the time available along a 
Decision Engineering Pathway (DEP); the referenced time 
availability can be classified as: “(1) Uncompressed 
Decision Cycles (UDC), and (2) Compressed Decision 
Cycles (CDC)” [58]; under a CDC paradigm or “tight time 
constraints, it accepts higher uncertainty (i.e., sparse data) 
given the condition of lower ambiguity” (i.e., Lower 
Ambiguity, Higher Uncertainty or LAHU), and this roughly 
translates to the consideration that an isomorphic scenario 
has manifested previously within the available historical 
data. Conversely, if there exists a condition of higher 
ambiguity” (i.e., Higher Ambiguity, Lower Uncertaintylo or 
HALU), wherein the isomorphic scenario is nonexistent 
within the historical data, there will be a proactive seeking 
of more data “to lower uncertainty” so as to move towards a 
more acceptable state [58]. This described LAHU/HALU 
Module (LHM) is key for DEP by determining whether 
more data is needed or not, such as by way of the resultants 
from the ICSM [58]. Restated, under a LAHU paradigm, the 
LHM will not seek further resultants, so the resultants of the 
ICSM may not be required. 

It can be seen that the HVD underpinning the LHM is 
critical, and the two pillars are that of TWSC and CWT. For 
TWSC, the format/lexicon of Wang is utilized, “assuming 
that TWSC = {TWSC1, …, TWSCx} is a family of clusters 
within ecosystem E = {E1, … , Ey}, and m = 1, …, x, it can 
resemble (1): 

                   TWSCm = (PR(TWSCm), BR(TWSCm))              (1)  

wherein the Positive Region (TWSCm) = PR(TWSCm), 
Boundary Region (TWSCm) = BR(TWSCm), and the Negative 
Region (TWSCm) =  NR(TWSCm) = E – (PR(TWSCm)  ∪ BR 
(TWSCm)), and wherein PR(TWSCm) is the set of objects that 
are definitively a part of TWSCm, BR(TWSCm) is the set of 
objects that possibly belong to TWSCm, and NR(TWSCm) is 
the set of objects that definitively are not part of TWSCm.” 
[59]. 

On the CWT side, The CWT is defined by (2) [50]: 

 
 

wherein I is the input, ⍺	 is the scale factor, β is the 
translation factor, ɣ is the complex conjugate, and MW(t) is 
the Mother Wavelet function [50]. 

In contemporary times, DFLs are formulated (to the 
extent that they are) based upon a myriad of criteria at a 
particular instance in time. Yet, oftentimes, SMs (as 
discussed in Section IIA, are heavily used for the criteria 
weighting, which segues to selection bias. Hence, it is 
critical to buttress the TWSC-CWT for the HVD by way of 
the MMSO and HCM. Taking the MMSO first, the 
composition is shown in Figure 1, wherein the orange-
outlined boxes are MODM-related and the blue-outlined 
boxes are MADM-related; the same holds true for the 
arrows associated with these colors. 

 

 
Figure 1.  MCDM’s MODMss Facilitation of MADMis to MADMss 

Progression and Experimental MMSOs  

As noted in [21], the “MODM solution set (MODMss)” can 
indeed facilitate “the MADM input set (MADMis) to 
MADMss progress,” particularly when leveraging a specific 
bespoke formulated notion to help operationalize the HVD, 
via the following lynchpin —  a bifurcated Relationship 
Membership Stream (RMS) [21]. First, FST (HVD-1a) is 
considered along with RFS (HVD-2a), which is an extension 
of HVD-1a and RS (HVD-1b). Second, GST (HVD-2b) can 
improve the robustness of HVD-2a. As noted in various 
related prior/concurrent work leading up to this paper, if the 
RMS (e.g., entity, attribute, etc.) “is discontinuous,” HVD-2b 
“can be leveraged; otherwise, “given a 
continuous/continuous alternative paradigm, then other” PST 
“approaches might be utilized, such as Information Entropy 
Methods (IEMs)” (HVD-3), “whose strength resides in 
ascertaining ‘unknown attribute weights” [60][21]. Of 
course, the RMS can be either discontinuous or continuous 
(e.g., pulsed, rather than continuous), and this is reflected in 
purple in Figure 2 below. The constituent parts of MCDM 
(i.e., MADM and MODM) are reflected in blue, and the 
various HVD are depicted in green. 
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Figure 2.  RMS Paradigms for the MMSO Support of HVD 

The orchestration of the MMSO can be seen with the 
endeavored counterpoising of MADM and MODM within 
the MCDM construct.  

Any existing selection bias (hopefully, somewhat 
mitigated by the MMSO construct) is also compounded by 
the frequent dearth of a robust Quality Assurance/Quality 
Control (QA/QC) mechanism. The QA/QC mechanism is 
very much needed to undertake apropos validity testing. 
Furthermore, insights into related entities (which might be 
highly relevant in determining membership affinity) is often 
lacking, which can skew the membership value pertaining to 
such determinations. Accordingly, various HCM 
experimentation approaches had been initiated in 
prior/concurrent work, and the exploration continues on into 
this paper. This is reflected in Table II below. 

TABLE II.  HCM  FOR HVD EXPERIMENTATION FACETS FOR DLC TO 
OLC PROSPECTIVE CANDIDACY 

 
 
In essence, Column I lists some exemplar HCMs: MR, Ball-
Hall (BH),  DI, Pakhira-Bandyopadhyay-Maulik (PBM), 
Trace(W) (TW), and Point-Biserial (PB). Column II notes 
the DLC/OLC presort, as presented by Vendramin and Liu 
[54][61]. Column III provides some trade-off inflection 
points in the way of “elbows” (e.g., positive concavity) or 
“knees” (e.g., negative concavity) as well as the method 
posited to ascertain optimality (e.g., partition), wherein “the 
smallest index value” is denoted by Min and the largest by 
Max [63]; As noted in [63], Maxdiff refers to the optimal K 
seguing to the maximum difference “between … successive 
slopes” [61][62][63]. Column IV uses Powell’s 
convention/nomenclature of “Within-cluster (W), Between-
cluster (B),  and full Dataset (D)” [62]. Column V delineates 
the computational complexity [38][54][64]. The P of TFCP 
for the various normal distributions, increasing degree of 
overlap, global optimum, as well as paradigms that are 
generally affirmed (and are affirmed by other benchmarks) 
are checked off for the pertinent cells of Columns VI, VII, 
VIII, and IX, respectively, and commonalities are noted in 
green [38][54][64]. 

The various aspects discussed in this Section III are 
operationalized aboard the CPRLD (with DCNN-3) 
construct, which involves a “DCNN” and “Generative 
Adversarial Network (GAN)” amalgam (DCNN-GAN or 
DCGAN)” to avoid mode failure/collapse (i.e., “Helvetica 
Scenario”) as well as a distinct/disparate DCNN to handle 

the RCR (DCNN-1) and yet another DCNN to handle the 
CWT derivation (DCNN-2),” via the SOT previously 
discussed, as the chosen approach vector for managing the 
HDD mappings [47][21][65]. Furthermore, a DCNN-3 is 
added to buttress the handling of additional non-convex 
problems that may be spawned from the RCRs, and this is 
shown in Figure 3. 

 
Figure 3.  CPRLD Construct with additional DCNN-3 

 As a continuation of prior/concurrent work, this paper 
reviewed the findings put forth (by the researchers cited 
within) so as to posit conducive conditions for prospective 
performance accelerations (e.g., DLC candidates); as also 
noted in concurrent work, and to re-articulate the point, it 
turns out that MR, BH, and TW potentially constituted 
viable DLC candidates, among others, while DI, PB, and 
PBM exhibited performance possibilities, which need to be 
explored as part of future work. Some of categorical 
commonalities of this prospective candidate set are green 
highlighted. In addition, the disparities (and consensus) are 
also noted by way of the the varying colors. To re-articulate 
a point from prior/concurrent work, as pertains to the DLC 
commonality (e.g., for MR), the “value that minimizes the 
index indicates the optimal cluster number,” while for BH, 
the value that maximizes the “difference between levels is 
used to indicate the optimal solution.” It should also be 
noted that — unlike stopping rules, which constitute a 
cessation of the iterations — the DLC paradigm has the 
value-added proposition of  exhibiting peaks (e.g., Max, 
Min) at OLC areas [66]. In essence, the DLC to OLC 
prospective candidacy determination constituted potential 
performance acceleration opportunities. In addition, central 
to the determination of appropriateness, for the various 
HCMs, was the evaluation for prospective performance 
acceleration via the previously cited SOT (i.e., NMF-
>GCM->MMF->CORWT->ECORWT->CPS) prior to any 
assessment. 

The experimentation herein operationalized the 
discussed framework of this paper, as shown in Figure 4. 
The novelty of the framework was rooted by several 
contributions, among others: (1) the mitigation against 
selection bias, via the proposed construct, which included the 
additional use of WASPAS and Fuzzy VIKOR, (2) The 
specific implementation, via the enhanced CPRLD 
architecture, which capitalized upon the benefit of using  a 
DCNN-3, (3) the TWSC and CWT combinatorial (aboard 
the CPRLD with DCNN-3) to operationalize the HVD, and 
the utilization of the LHM to optimize performance (e.g., 
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determining that it was not necessary to seek further 
resultants from the ICSM) along the DEP. 

 

 
Figure 4.  The ACWM-ICSM-HCM Triumvirate Amalgam with LHM 

The Section III experimentation section explored a 
triumvirate amalgam of (1) apropos HCM that are data 
uncertainty-centric, (2) an ICSM to gauge similitude, via the 
discernment of VSNO clusters in HDD (a.k.a., HVD), and 
(3) an Adaptive Criteria Weighting Methodology (ACWM), 
underpinned by an ACWS, to derive the requisite entropy 
weights. Collectively, these three separate modules, of the 
described triumvirate approach, demonstrated the viability 
of the illuminated DFL pathway, which exhibited some 
promise during the preliminary experimentation phase. 

IV. CONCLUSION & FUTURE WORK 
The nexus of AI with the notions of uncertainty and 

ambiguity represents a complex environment, wherein the 
interpretation may be fluid amidst various computational 
complexities. For example, AI/ML rule-based systems do 
not well handle ambiguity. Even for the more adaptable 
AI/ML systems, uncertainty besets various aspects, such as 
data (e.g., incomplete, noisy), perception (e.g., the inherent 
limitations of the sensors), models (e.g., hyperparameters to 
be tuned, optimization algorithms/heuristics utilized), 
algorithms (e.g., different NMs segue to different results for 
the identical problem), etc. This constitutes a herculean 
challenge, as AI for RWS must necessarily not only provide 
posits, but it necessarily needs to provide a level of certainty 
regarding those posits. This gauging of uncertainty in RWS 
applications (e.g., medical diagnoses, system-initiated 
emergency braking for vehicles, etc. [67]) directly impacts 
reliability and safety. This is especially the case for semi-
autonomous and autonomous RWS. Hence, the efficacy of 
the LHM and discussed triumvirate (and the crucial DCNN-
3 component) are central to the discussion.  

With  regards to the triumvirate, the formulation of a 
robust DFL is indeed a non-trivial feat. Among various 
potential approaches, the pathway explored within this 
paper was that of a specific triumvirate amalgam: ACWM-
ICSM-HCM. For the preliminary experimentation touched 
upon herein, the underpinning ACWS of the ACWM was 
operationalized by the delineated MMSO construct, the 
HVD was effectuated the TWSC-CWT, and the selection of 
apropos HCMs was explored for potential performance 
enhancement opportunities; in particular, the prior works of 

well-known researchers were examined and, in many cases, 
affirmed. Suffice it to say, the ACWM-ICSM-HCM 
triumvirate constitutes only the beginnings of a prospective 
DFL pathway, and further exploration and experimentation, 
such as that referenced in Section III, regarding future work, 
remains to be performed. Having said that, the SOTs 
described herein, and their potentialities, seem to warrant 
further investigation. Likewise, the MMSO Construct 
shown in Figure 1 seems to be a viable foundation upon 
which to build; similarly, the RMS shown in Figure 2 has 
well captured many of the foundational contributions from 
the literature and seems to remain a viable formulation. 
Finally, the Table II excerpt illuminates a sampling of the 
various categorical parameters that need to be further 
explored in future work to further flesh out the posits of 
Vendramin, Pakgohar, and others. Overall, the presented 
triumvirate approach did indeed endeavor to address the 
selection bias issue, via the semblance of an ACWM for a 
more balanced criteria weighting schema. It also 
incorporated the thoughts of seminal figures and 
contemporary researchers with regards to discernment of 
VSNO in HDD. It further considered HCM in the context of 
practicality: QA/QC and the task at hand. For these reasons, 
the ACWM-ICSM-HCM triumvirate approach, as a 
contribution to the DFL challenge (and the overarching 
complex problem of risk-prediction-decision in advanced 
AI/ML systems), warrants further investigation, as it covers 
a thematic that is crucial for IF in dynamic RWS, and the 
paper reviewed a series of challenges for more optimal 
MCDM and DEP. The proposed logic/premise (the notion 
that if the classification related to DLCs can be enhanced, 
and the involved transformations, such as that of DLC to 
OLC, can be expedited, then the ensuing facilitated HVD 
process can likely better support the overall involved 
underpinning AI/ML processes) exhibits promise. 
Moreover, the proposed triumvirate approach seems to have 
potential in addressing the stated overarching objectives. 
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