
Computing Efficiency in Membrane Systems
Claudio Zandron

DISCo - Università degli Studi di Milano-Bicocca
Viale Sarca 336/14, 20126 Milano, Italy

Email: claudio.zandron@unimib.it

Abstract—Membrane systems (or P systems) are a computa-
tional model inspired by the functioning of the cell, and based
upon the notion of cellular membrane. In this paper, we give a
survey of some main results concerning the model, to show its
potential to approach various problems in the area of the theory
of computation.

Keywords-Natural Computing; Membrane systems; computa-
tional complexity.

I. INTRODUCTION

Membrane systems (also known as P systems) have been
proposed by Gh. Paun in [14] as a parallel, nondeterministic,
synchronous and distributed model of computation inspired
by the structure and functioning of living cells. The model
consists of a hierarchical structure composed by several mem-
branes, embedded into a main membrane called the skin.
Membranes defines regions that contain multisets of objects
(represented by symbols of an alphabet) and evolution rules.

Using these rules, the objects evolve and are moved from
a region to a neighboring one. The rules are applied using a
maximally parallel and nondeterministic semantic: all objects
which can evolve in a computation step must evolve; if
different sets of rules can be applied in a computation step
(in a maximal parallel way), then one of them is nondeter-
ministically chosen.

A computation starts from an initial configuration of the
system and terminates when no evolution rule can be applied.
The result of a computation is the multiset of objects contained
into an output membrane, or emitted from the skin membrane.

The model was investigated both under theoretical aspects
as well as for applications to other disciplines. In particular,
the formalism is suitable to model various biological systems,
thanks to its features. For instance, it allows identification of
separated compartmentalized spaces where different reactions
can take place; it is characterized by an easy understandable
writing of reactions; it can be easily simulated in a distributed
and parallel computing architecture, by separating the compu-
tation carried on by each single compartment, and simply syn-
cronizing the exchange of information at specific time-steps.
Other types of application were also investigates to different
disciplines, such as cryptography, approximate optimization,
or even economy. For a systematic introduction to P systems,
we refer the reader to [16] [17]; recent information can be
found in the dedicated webpage [32].

P systems with active membranes is a variant of the basic
model introduced in [15]: in this variant, membranes can
be multiplied by dividing existing ones, and the objects are
communicated according to electrical charges associated with

the membranes. Such features allow the construction of an
exponential workspace in linear time, which can then be used
in parallel to attack computationally hard problems.

In this paper we give a survey of some main results con-
cerning theoretical aspects of the model, to show its potential
in approaching various problems in the area of the theory of
computation. In Section 2, we recall formal definitions related
to P systems with active membranes. In Section 3, we give
a very brief summary of results concerning their computating
power, while in Section 4 we recall some results related to
computing efficiency. Section 5 is devoted to recall some
results concerning space complexity for membrane systems.
Finally Section 6 draws some conclusions and suggest a few
topics for research investigation.

II. DEFINITIONS

In this section, we recall the basic definition of P systems
with active membranes.

Definition 1: A P system with active membranes of initial
degree d ≥ 1 is a tuple Π = (Γ,Λ, µ, w1, . . . , wd, R), where:
• Γ is an alphabet, a finite non-empty set of symbols,

usually called objects;
• Λ is a finite set of labels for the membranes;
• µ is a membrane structure (i.e., a rooted unordered tree)

consisting of d membranes enumerated by 1, . . . , d; each
membrane is labeled by an element of Λ, not necessarily
in a one-to-one way, and possesses an electrical charge
(or polarization), that can be neutral (0), positive (+) or
negative (−).

• w1, . . . , wd are strings over Γ, describing the initial
multisets of objects placed in the d regions of µ;

• R is a finite set of rules.
The rules are of the following kinds:
• Object evolution rules, of the form [a→ w]αh

They can be applied if the membrane h has charge α
and contains an occurrence of the object a; the object a
is rewritten into the multiset w.

• Send-in communication rules, of the form a []αh → [b]βh
They can be applied to a membrane labeled by h, having
charge α and if the external region contains an occurrence
of the object a; the object a is sent into h becoming b
and, simultaneously, the charge of h is changed to β.

• Send-out communication rules, of the form [a]αh → []βh b
They can be applied to a membrane labeled by h, having
charge α and containing an occurrence of a; the object
a is sent out from h to the outside region becoming b.
Simultaneously, the charge of h is changed to β.

8Copyright (c) IARIA, 2021. ISBN: 978-1-61208-846-4

FUTURE COMPUTING 2021 : The Thirteenth International Conference on Future Computational Technologies and Applications

• Dissolution rules, of the form [a]αh → b
They can be applied to a membrane labeled by h, having
charge α and containing an occurrence of the object a; the
membrane h is dissolved and its contents are left in the
surrounding region unaltered, except that an occurrence
of a becomes b.

• Elementary division rules, of the form [a]αh → [b]βh [c]γh
They can be applied to a membrane labeled by h,
having charge α, containing an occurrence of the object
a but having no other membrane inside (an elementary
membrane); the membrane is divided into two membranes
having label h and charge β and γ; the object a is
replaced, respectively, by b and c while the other objects
in the initial multiset are copied to both membranes.

• Nonelementary division rules, of the form[
[]+h1
· · · []+hk

[]−hk+1
· · · []−hn

]α
h
→

[
[]δh1
· · · []δhk

]β
h

[
[]εhk+1

· · · []εhn

]γ
h

They can be applied to a membrane labeled by h,
having charge α, containing the positively charged mem-
branes h1, . . . , hk, the negatively charged membranes
hk+1, . . . , hn, and possibly some neutral membranes. The
membrane h is divided into two copies having charge β
and γ, respectively; the positively charged membranes
h1, . . . , hk are placed inside the former membrane, their
charge set to δ, while the negative ones are placed
inside the latter membrane, their charges set to ε. Neutral
membranes inside h are duplicated and placed inside both
copies.

Each instantaneous configuration of a P system with active
membranes is described by the current membrane structure,
including the electrical charges, together with the multisets
located in the corresponding regions. A computation step
changes the current configuration according to the following
set of principles:
• Each object and membrane can be subject to at most one

rule per step, except for object evolution rules (inside
each membrane any number of evolution rules can be
applied simultaneously).

• The application of rules is maximally parallel: each object
appearing on the left-hand side of evolution, communi-
cation, dissolution or elementary division rules must be
subject to exactly one of them (unless the current charge
of the membrane prohibits it). The same reasoning applies
to each membrane that can be involved to communication,
dissolution, elementary or nonelementary division rules.
In other words, all possible rules that can be applied must
be applied at each computation step; the only objects and
membranes that do not evolve are those associated with
no rule, or only to rules that are not applicable due to the
electrical charges.

• When several conflicting rules can be applied at the same
time, a nondeterministic choice is performed; this implies
that, in general, multiple possible configurations can be
reached after a computation step (e.g., consider two rules
a→ b and a→ c in a region h; if an object a is present

in that region, then it can nondeterministically produce
either b or c, by using respectively the first or the second
rule).

• While all the chosen rules are considered to be applied
simultaneously during each computation step, they are
logically applied in a bottom-up fashion: first, all evo-
lution rules are applied to the elementary membranes,
then all communication, dissolution and division rules;
then the application proceeds towards the root of the
membrane structure. In other words, each membrane
evolves only after its internal configuration has been
updated.

• The outermost membrane cannot be divided or dissolved,
and any object sent out from it cannot re-enter the system
again.

A halting computation of the P system Π is a finite sequence
of configurations ~C = (C0, . . . , Ck), where C0 is the initial
configuration, every Ci+1 is reachable by Ci via a single
computation step, and no rules can be applied anymore in
Ck. The result of a halting computation is the multiset of
objects emitted from the skin during the whole computation.
A non-halting computation ~C = (Ci : i ∈ N) consists
of infinitely many configurations, again starting from the
initial one and generated by successive computation steps,
where the applicable rules are never exhausted. A non–halting
computation produces no output.

P systems can also be used as recognizers (see, e.g., [3]) by
employing two distinguished objects yes and no; exactly one
of these must be sent out from the outermost membrane during
each computation, in order to signal acceptance or rejection
respectively; we also assume that all computations are halting.
If all computations starting from the same initial configuration
are accepting, or all are rejecting, the P system is said to be
confluent. If this is not necessarily the case, then we have a
non–confluent P system, and the overall result is established
as for nondeterministic Turing machines: it is acceptance iff
an accepting computation exists. All P systems considered in
this paper are confluent.

In order to solve decision problems (i.e., decide languages),
we use families of recognizer P systems Π = {Πx : x ∈ Σ?}.
Each input x is associated with a P system Πx that decides
the membership of x in the language L ⊆ Σ? by accepting
or rejecting. The mapping x 7→ Πx must be efficiently
computable for each input length [13].

Definition 2: A family of P systems Π = {Πx : x ∈ Σ?} is
said to be (polynomial-time) uniform if the mapping x 7→ Πx

can be computed by two deterministic polynomial-time Turing
machines F (for “family”) and E (for “encoding”) as follows:

• The machine F , taking as input the length n of x in unary
notation, constructs a P system Πn, which is common
for all inputs of length n, with a distinguished input
membrane.

• The machine E, on input x, outputs a multiset wx (an
encoding of x).

• Finally, Πx is simply Πn with wx added to the multiset
placed inside its input membrane.

Definition 3: If the mapping x 7→ Πx is computed by a

9Copyright (c) IARIA, 2021. ISBN: 978-1-61208-846-4

FUTURE COMPUTING 2021 : The Thirteenth International Conference on Future Computational Technologies and Applications

single polynomial-time Turing machine, the family Π is said
to be semi-uniform. In this case, inputs of the same size may be
associated with P systems having possibly different membrane
structures and rules.

Any explicit encoding of Πx is allowed as output of the
construction, as long as the number of membranes and objects
represented by it does not exceed the length of the whole
description, and the rules are listed one by one. This restriction
is enforced to mimic a (hypothetical) realistic process of
construction of the P system, where membranes and objects
are placed in a constant amount during each construction
step, and require actual physical space proportional to their
number. Moreover, notice that uniformity condition can also
be restricted to be computed in classes below P, such as log–
space Turing machines. We refer the reader to [13] for further
details on the encoding of P systems.

Finally, we describe how time and space complexity for
families of recognizer P systems are measured.

Definition 4: A uniform or semi–uniform family of P sys-
tems Π = {Πx : x ∈ Σ?} is said to decide the language
L ⊆ Σ? (in symbols L(Π) = L) in time f : N → N iff, for
each x ∈ Σ?,
• the system Πx accepts if x ∈ L, and rejects if x /∈ L;
• each computation of Πx halts within f(|x|) computation

steps.
Definition 5: Let C be a configuration of a P system Π.

The size |C| of C is defined as the sum of the number of
membranes in the current membrane structure and the total
number of objects they contain. If ~C = (C0, . . . , Ck) is a halting
computation of Π, then the space required by ~C is defined as

|~C| = max{|C0|, . . . , |Ck|}

or, in the case of a non-halting computation ~C = (Ci : i ∈ N),

|~C| = sup{|Ci| : i ∈ N}.

Non-halting computations might require an infinite amount of
space (in symbols |~C| = ∞). The space required by Π itself
is then

|Π| = sup{|~C| : ~C is a computation of Π}.

Notice that |Π| = ∞ occurs if either Π has a non-halting
computation requiring infinite space, or Π has an infinite set
of halting computations, such that for each bound b ∈ N there
exists a computation requiring space larger than b.

III. COMPUTING POWER OF MEMBRANE SYSTEMS

The first studies of the model concerned its computing
power: various types of Membrane systems have been com-
pared with computing models like automata, Turing machines
and register machines.

It is known that using a single membrane we can only
generate the length sets of context–free languages, and the
power cannot be extended by using an unlimited number of
membranes. However, if we allow to dissolve membranes after
the application of rewriting rules then the computing power is
increased, when at least two membranes are used.

More formally, let us denote by NOPk(δ) (resp.
NOPk(nδ)) the family of natural numbers generated by P
systems having k membranes and using (resp. not using) the
dissolving membrane action. The following results can be
stated [16]:

Theorem 1: NOP1(nδ) = NOP∗(nδ) = NCF
NCF = NOP∗(nδ) ⊂ (NE0L ⊆)NOP2(δ)
NOP∗(δ)(⊆ ET0L) ⊂ NCS

Even when dissolving membrane action is allowed, uni-
versality cannot be reached. Some more ingredients can be
considered to obtain such a result like, e.g., cooperative rules,
catalysts, or priorities defining the order of rules application.

A rewriting rule a → w is said to be cooperative if a
contains more than one symbol. This turned out to be a feature
very powerful in the framework of membrane systems. In fact,
when using such rules one membrane turns out to be sufficient
to obtain the same power as Turing machines:

Theorem 2: NOP1(coop) = NOP∗(coop) = NRE
where coop indicates the possibility to use cooperative rules.
A simpler form of cooperative rules can be defined by means

of catalysts. A rewriting rule with catalyst is a rule of the form
CX → Cw, where C and X are symbols and w is a string.
C is said to be a catalyst: it is needed to activate the rule, but
it is not changed by it. Such a feature also allows to obtain
universal systems, but only when priorities defining a partial
order concerning the application of the rules is also used:

Theorem 3: NOP2(cat, pri) = NOP∗(cat, pri) = NRE
One can also consider structured objects instead of atomic

ones, by consider strings of symbols: in this case, the systems
are called Rewriting P systems. Let us denote by RPk the
family of languages generated by Rewriting P systems using
k membranes and context–free rewriting rules. The following
theorem from [16] shows that using a single membrane only
context–free languages can be obtained, but a structure with
four membranes allow to obtain a strictly more powerful class.

Theorem 4: RP1(CF) = CF ⊂ RP4(CF)
Thus, it is evident from these results that the power of

such systems can be improved (as expected) by exploiting
membranes to define regions to keep separated specific subsets
of rules and objects. Once again, universality cannot be
obtained using only this basic set of ingredients, and more
features must be considered.

Further details can be found in [16] and [17].

IV. COMPUTING EFFICIENCY OF MEMBRANE SYSTEMS

Another interesting feature that can be considered, and
already described in Section 2, is the possibility to give an
active role to membranes. P systems with active membranes
allow to create new membranes during the computation by
division of existing membranes. In this way, we can obtain
a trade off between time and space resources that allows to
solve NP–complete (or even harder) problems in polynomial
time and exponential space (see, e.g., [15] [7] [8] [29] [31]).

Theorem 5: The SAT problem can be solved in linear time
(with respect to the number of variables and the number of
clauses) by a confluent P-system with active membranes using
elementary membrane division only.

10Copyright (c) IARIA, 2021. ISBN: 978-1-61208-846-4

FUTURE COMPUTING 2021 : The Thirteenth International Conference on Future Computational Technologies and Applications

In fact, consider a boolean expression Φ in conjunctive
normal form, with m clauses and n variables. We can build
a P-system Π = (Γ,Λ, µ, w1, w2, R) having initial objects
a1, a2, . . . , an in region 2 and such that R is defined to contain
a polynomial number of rules (with respect to the size of the
input formula) that operate as it follow.

By using the variables ai and elementary membrane division
rules, in O(n) steps we generate 2n copies of membrane 2,
containing all possible truth assignments of the n variables of
Φ.

Then, in O(m) steps we verify if there is at least one
membrane containing a truth assignment that satisfies all the
m clauses of Φ. In this case, an object yes is sent out from
the skin membrane; otherwise, an object no is sent out.

Let us denote by PMCNAM, PMCEAM, and PMCAM
the class of problems solved in a polynomial number of
steps (with respect to the input length) by P systems with
active membranes without membrane division, with division
for elementary membranes only, and for both elementary and
non–elementary membranes, respectively.

The following results can be obtained directly from defini-
tions:

Theorem 6: PMCNAM ⊆ PMCEAM ⊆ PMCAM
Moreover, it is easy to show that
Theorem 7: P ⊆ PMCNAM
In fact, the "trick" is that the deterministic Turing machine

deciding L ∈ P is used to solve directly the problem in
polynomial time. Then, we build a P system with a single
membrane containing either an object Y ES, whenever an
input x ∈ L is given, or NO, otherwise. This requires
polynomial time, and then the P system simply send out the
object in a single computation step.

The opposite inclusion is also true:
Theorem 8: PMCNAM ⊆ P
In fact, a generic P system Π without membrane division

can be simulated by a deterministic Turing machine M , with
a polynomial slowdown, as proved in [29].

Since we have shown that the NP-complete problem SAT
can be solved when elementary membrane division is allowed,
then we can also state the following:

Theorem 9: NP ⊆ PMCEAM
From this result and from the closure properties for

PMCEAM it also follows:
Theorem 10: coNP ⊆ PMCEAM
P systems with elementary membrane division can be

simulated by Deterministic Turing machines using polynomial
space: PMCEAM ⊆ PSPACE. Hence:

Theorem 11: NP ∪ coNP ⊆ PMCEAM ⊆ PSPACE
A stronger result was later proved [19]: a solution to the

PP–complete problem SQRT–3SAT was obtained using P
systems with active membranes and elementary membrane
division. This proved that the class PP (Probabilistic Poly-
nomial time: the class of decision problems solvable by a
probabilistic Turing machine in polynomial time, with an error
probability of less than 1/2 for all instances) is also included in
PMCEAM. A characterization of the class P#P was obtained
in [10].

When division for non-elementary membranes is allowed,
even harder problems can be solved, as expected. In a series
of papers [2] [26] and [24] the following results were proved:

Theorem 12: PSPACE ⊆ PMCAM ⊆ EXPTIME

By limiting the nesting levels of membranes (and, as a
consequence, the membrane division) to a constant depth, the
problems in the class CH (Counting Hierarchy) can be solved,
as proved in [23].

V. SPACE COMPLEXITY OF P–SYSTEMS AND
POLARIZATION OF MEMBRANES

In order to clarify relations between the amount of time
and space needed to solve various classes of problems, in
[18] a definition of space complexity for P systems has been
introduced.

On the same line of what has been done for time complex-
ity, we can define space complexity classes for Membrane
systems. By MCSPACET (f) we denote the class of lan-
guages decided by confluent recognizer P systems (of type
T) within space f(n). In particular, by PMCSPACET (=

MCSPACE
[∗]
T (p(n))) we denote the class of languages

decided by confluent recogniser P systems using at most a
polynomial number of elements.

From the definitions and from the results we recalled in the
previous section, it is easy to see that:

• P ⊆MCSPACENAM (O(1))
• NP ∪ co−NP ⊆ EXPMCSPACEEAM
• PSPACE ⊆ EXPMCSPACEAM

In [20] and [21] it has been shown, respectively, that the
PSPACE–complete problem Quantified–3SAT can be solved
by P–systems with active membranes using a polynomial
amount of space, and that such P systems can be simulated
by Turing machines with only a polynomial increase in space
requirements, thus giving a precise characterization of the class
PSPACE in terms of space complexity classes for membrane
systems. A similar result to characterize the complexity class
EXPSPACE can be obtained by considering exponential
space P systems, as showed in [1]. Thus, all types of Mem-
brane systems with active membranes and both divisions for
elementary and non-elementary membranes, and working in a
polynomial space, exactly characterize PSPACE.

Investigation of classes of problems solved by P systems
using sublinear space was also considered. In order to consider
sublinear space, two distinct alphabets were considered in the
definition of P systems: an INPUT alphabet and a WORK al-
phabet. Objects from the INPUT alphabet cannot be rewritten
and do not contribute to the size of the configuration of a
P system. The size of a configuration was defined as the sum
of the number of membranes in the current membrane structure
and the total number of working objects they contain; the
space required by a computation is the maximum size among
all configurations. Moreover, we need to define a uniformity
condition for the families of P systems that is weaker than the
usual P uniformity, to avoid the possibility to solve a problem
directly by using the Turing machine that build the P systems
we use to compute. We consider DLOGTIME-uniformity,

11Copyright (c) IARIA, 2021. ISBN: 978-1-61208-846-4

FUTURE COMPUTING 2021 : The Thirteenth International Conference on Future Computational Technologies and Applications

defined on the basis of DLOGTIME Turing machines [12].
We refer the reader to [25] for formal definitions.

The efficient simulation of logarithmic space Turing ma-
chines (or other equivalent models) by employing standard
techniques used in the papers previously cited seems not to
work because of two main problems: we either need to use
a polynomial number of working objects (thus violating the
logarithmic space condition) or to use a polynomial number
of rewriting rules (thus violating the uniformity condition).
Nonetheless, it has been showed in [25] that such a simulation
can be efficiently done by using membrane polarization both
to communicate objects through membranes as well as to store
some information:

Theorem 13: Each log–space deterministic Turing machine
M can be simulated by a DLOGTIME-uniform family Π
of confluent recognizer P systems with active membranes in
logarithmic space.

An immediate corollary of Theorem 13 is that the class L
(the class of problems solved by log–space Turing machines)
is contained in the class of problems solved by DLOGTIME-
uniform, log–space P systems with active membranes.

VI. CONCLUSIONS

We survey some results concerning P systems with active
membranes, concerning both the computational aspects, as
well as computational efficiency. Some results concerning
space complexity of the model have also been recalled. For
further reading on the subject, we refer the reader to the main
volumes on the subject [16] [17].

A recent survey on different strategies to approach compu-
tationally hard problems (containing links to various research
paper on the subject) by P systems with active membranes can
be found in [27].

Links to various paper concerning space complexity for
membrane systems are available in [20] [21]; readers interested
in results concerning sublinear space or even constant amount
of space can refer to [22] and [9], respectively. A recent survey
concerning results obtained by considering different bounds on
space can be found in [28].

There are various research topics which deserve to be
investigated with respect to computing efficiency. In particular,
precise characterizations of complexity classes obtained by
considering systems using specific subset of features, as well
as relations of such classes with standard complexity classes,
both concerning time complexity and space complexity.

More general research directions actually under develop-
ment concern the application of the model to describe different
biological processes. As already pointed out, since Membrane
systems are a bio-inspired computing model, it is natural
to apply it to the description and simulation of complex
bio-processes, to gain various kind of information on such
processes.

Another interesting research directions concern the link of
P systems with neural computing: a variant of neural-like
P systems have been introduced in [6] under the name of
Spiking P systems, and its application to the field of Artificial
Intelligence and deep learning strategies is currently under
development.

ACKNOWLEDGEMENTS

This work was partially supported by Università degli Studi
di Milano-Bicocca, Fondo di Ateneo Quota Dipartimentale
(FAQD-2019).

REFERENCES

[1] A. Alhazov, A. Leporati, G. Mauri, A. E. Porreca, C. Zandron, Space
complexity equivalence of P systems with active membranes and Turing
machines, Theoretical Computer Science 529, 2014, 69—81

[2] A. Alhazov, C. Martin-Vide, L. Pan, Solving a PSPACE–complete prob-
lem by P–systems with restricted active membranes, Fund. Inf. 58, 2,
2003, 67–77

[3] E. Csuhaj-Varju, M. Oswald, Gy. Vaszil, P automata, Handbook of
Membrane Computing, Gh. Paun et al. (Eds.), Oxford University Press,
2010, 144–167

[4] M. Gutierrez-Naranjo, M.J. Perez-Jimenez, P–systems with active mem-
branes, without polarizations and without dissolution: a characterization
of P, Unconv. Comp. 2005, C.S. Calude et al. (eds.), LNCS 3699,
Springer, 2005, 105-116.

[5] M. Gutierrez-Naranjo, M. J. Perez-Jimenez, A. Riscos-Nunez, F. J.
Romero-Campero, Characterizing tractability by cell-like membrane sys-
tems, in K.G. Subramanian et al. (Eds.), Formal Models, Languages and
Applications, Ser. Mach. Percept. Artif. Intell., vol. 66, World Scientific,
2006, 137-–154

[6] M. Ionescu, Gh. Paun, T. Yokomori, Spiking neural P systems, Funda-
menta Informaticae, 71, 2-3, 2006, 279–308

[7] S. N. Krishna, R. Rama, A variant of P-systems with active membranes:
Solving NP-complete problems, Rom. J. of Inf. Sci. and Tech., 2, 4 (1999)

[8] A. Leporati, C. Zandron, M. A. Gutierrez-Naranjo, P systems with input
in binary form, Int. J. of Found. of Comp. Sci., 17(1), 2006, 127–146

[9] A. Leporati, L. Manzoni, G. Mauri, A. E. Porreca, C. Zandron, Constant-
space P systems with active membranes, Fundamenta Informaticae
134(1–2), 2014, 111–128

[10] A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron, Simulat-
ing elementary active membranes with an application to the P conjecture,
LNCS 8961, Springer, 2014, 284–299

[11] A. Leporati, G. Mauri, C. Zandron, Quantum Sequential P Systems
with Unit Rules and Energy Assigned to Membranes, in R. Freund et
al (eds.), Membrane Computing, 6th Int. Work., WMC 2005, Vienna,
Austria, LNCS 3850, Springer, 2006, 310–325

[12] D.A. Mix Barrington, N. Immerman, H. Straubing, On uniformity within
NC1. Journal of Computer and System Sciences 41(3), 1990, 274–306

[13] N. Murphy, D. Woods, The computational power of membrane systems
under tight uniformity conditions, Natural Computing 10(1), 2011, 613–
632

[14] Gh. Păun, Computing with membranes, J. of Computer and System
Sciences, 61(1), 2000, 108–143

[15] Gh. Păun, P systems with active membranes: Attacking NP-complete
problems, J. of Automata, Languages and Combinatorics 6(1), 2001, 75–
90

[16] Gh. Păun, Membrane Computing. An Introduction, Springer, Berlin,
2002

[17] Gh. Păun, G. Rozenberg, A. Salomaa (Eds.), Handbook of Membrane
Computing, Oxford University Press, 2010

[18] A. E. Porreca, A. Leporati, G. Mauri, C. Zandron, Introducing a space
complexity measure for P systems, Int. J. of Comp. Comm. and Control,
4(3), 2009, 301–310

[19] A. E. Porreca, A. Leporati, G. Mauri, C. Zandron, P systems with
Elementary Active Membranes: Beyond NP and coNP, in Gheorghe M.
et al. (eds.), CMC 2010, Jena, Germany, August 2010, LNCS 6501,
Springer, 2011, 338–347

[20] A. E. Porreca, A. Leporati, G. Mauri, C. Zandron, P Systems with Active
Membranes: Trading Time for Space, Natural Computing 10(1), 2011,
167–182

[21] A. E. Porreca, A. Leporati, G. Mauri, C. Zandron, P systems with active
membranes working in polynomial space, Int. J. Found. Comp. Sc., 22(1),
2011, 65–73

[22] A. E. Porreca, A. Leporati, G. Mauri, C. Zandron, Sublinear-space P
systems with active membranes. In E. Csuhaj-Varjú, M. Gheorghe, G.
Rozenberg, A. Salomaa, G. Vaszil, G. (eds.) Membrane Computing, 13th
International Conference, CMC 2012, LNCS 7762, 2013, 342–357

[23] A. E. Porreca, L. Manzoni, A. Leporati, G. Mauri, C. Zandron,
Membrane division, oracles, and the counting hierarchy, Fundamenta
Informaticae, 138, 1-2, 2015, 97–111

12Copyright (c) IARIA, 2021. ISBN: 978-1-61208-846-4

FUTURE COMPUTING 2021 : The Thirteenth International Conference on Future Computational Technologies and Applications

[24] A. E. Porreca, G. Mauri, C. Zandron, Complexity classes for membrane
systems, RAIRO-Theor. Inform. and Applic. 40(2), 2006, 141–162

[25] A. E. Porreca, C. Zandron, A. Leporati, G. Mauri, Sublinear Space P
systems with Active Membranes, Membrane Computing: 13th Interna-
tional Conference, LNCS, CMC 2012, Springer, Berlin, 2013, 342–357

[26] P. Sosik, The computational power of cell division in P systems: Beating
down parallel computers?, Natural Computing, 2(3), 2003, 287–298

[27] P. Sosik, P systems attacking hard problems beyond NP: a survey.
Journal of Membrane Computing 1(3), 2019, 198—208

[28] C. Zandron, Bounding the space in P systems with active membranes,
Journal of Membrane Computing 2(2), 2020, 137–145

[29] C. Zandron, C. Ferretti, G. Mauri, Solving NP-complete problems
using P systems with active membranes, In I. Antoniou, C.S. Calude,
M.J. Dinneen, eds., Unconventional Models of Computation, Springer–
Verlag, London, 2000, 289–301

[30] C. Zandron, C. Ferretti, G. Mauri, Two Normal Forms for Rewriting P
systems, in Machines, Computations and Universality, Proc. of 3rd Int.
Conf. MCU 2001, LNCS 2055, Springer-Verlag, 2001, 153–164

[31] C. Zandron, A. Leporati, C. Ferretti, G. Mauri, M. J. Pérez-Jiménez, On
the Computational Efficiency of Polarizationless Recognizer P Systems
with Strong Division and Dissolution, Fundamenta Informaticae, 87(1),
2008, 79-91

[32] The P systems Web page: http://ppage.psystems.eu/

13Copyright (c) IARIA, 2021. ISBN: 978-1-61208-846-4

FUTURE COMPUTING 2021 : The Thirteenth International Conference on Future Computational Technologies and Applications

