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Abstract—The synchronization in cellular automata has been
known as the Firing Squad Synchronization Problem (FSSP) since
its development, where the FSSP gives a finite-state protocol for
synchronizing a large scale of cellular automata. A quest for
smaller state FSSP solutions has been an interesting problem
for a long time. Umeo, Kamikawa and Yunes [2009] answered
partially by introducing a concept of partial FSSP solutions and
proposed a full list of the smallest four-state symmetric powers-of-
2 FSSP protocols that can synchronize any one-dimensional (1D)
ring cellular automata of length n = 2% for any positive integer
k > 1. Afterwards, Ng [2011] also added a list of asymmetric
FSSP partial solutions, thus completing the four-state powers-of-
2 FSSP partial solutions. The number four is the lower bound
in the class of FSSP protocols. A question: are there any other
four-state partial solutions? remained. In this paper, we answer
the question by proposing a new class of the smallest symmetric
four-state FSSP protocols that can synchronize any 1D ring of
length n = 2% —1 for any positive integer k& > 2. We show that the
class includes a rich variety of FSSP protocols that consists of 39
symmetric solutions, ranging from minimum-time to linear-time
in synchronization steps. In addition, we make an investigation
into several interesting properties of these partial solutions, such
as swapping general states and a duality property between them.
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I. INTRODUCTION

We study a synchronization problem that gives afinite-state
protocol for synchronizing a large scale of cellular automata.
The synchronization in cellular automata has been known as
the Firing Squad Synchronization Problem (FSSP) since its
development, in which it was originally proposed by J. Myhill
in Moore [6] to synchronize some/all parts of self-reproducing
cellular automata. The FSSP has been studied extensively for
more than fifty yearsin [1]-[12].

The minimum-time (i.e.,, (2n — 2)-step ) FSSP algorithm
was developed first by Goto [4] for synchronizing any one-
dimensiona (1D) array of length n > 2. The algorithm needed
many thousands of internal states for its realization. After-
wards, Waksman [11], Balzer [1], Gerken [3] and Mazoyer [5]
also developed a minimum-time FSSP agorithm and reduced
the number of states realizing the algorithm, each with 16, 8,
7 and 6 states. On the other hand, Balzer [1], Sanders [8] and
Berthiaume et a. [2] have shown that there exists no four-state
synchronization algorithm. Thus, an existence or non-existence
of five-state FSSP protocol has been an open problem for a
long time. Umeo, Kamikawa and Yunes [9] answered partially
by introducing a concept of partial versus full FSSP solutions
and proposing a full list of the smallest four-state symmetric
powers-of-2 FSSP partial protocols that can synchronize any
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1D ring cellular automata of length n = 2% for any positive
integer £ > 1. Afterwards, Ng [7] also added a list of
asymmetric FSSP partial solutions, thus completing the four-
state powers-of-2 FSSP partial solutions. A question: are there
any other four-state partial solutions? remained.

In this paper, we answer the question by proposing a
new class of the smallest four-state FSSP protocols that can
synchronize any 1D ring of length n = 2% — 1 for any positive
integer k£ > 2. We show that the class includes a rich variety
of FSSP protocols that consists of 39 symmetric solutions,
ranging from minimum-time to linear-time in synchronization
steps. In addition, we make an investigation into several inter-
esting properties of these partial solutions, such as swapping
genera states and a duality between them.In Section 2, we
give a description of the 1D FSSP on rings and review some
basic results on ring FSSP algorithms. Section 3 presents a
new class of the symmetric partial solutions for rings. Section
4 gives a summary and discussions of the paper.

Il. FIRING SQUAD SYNCHRONIZATION PROBLEM ON
RINGS

A. Déefinition of the FSSP on Rings

The FSSP on rings is formalized in terms of the model of
cellular automata. Figure 1 shows a 1D ring cellular automaton
consisting of n cells, denoted by C;, where1 < i < n. All cells
are identical finite state automata. The ring operates in lock-
step mode such that the next state of each cell is determined by
both its own present state and the present states of its right and
left neighbors. All cells (soldiers), except one cell, areinitially
in the quiescent state at time ¢ = 0 and have the property
whereby the next state of a quiescent cell having quiescent
neighbors is the quiescent state. At time ¢t = 0 the cell C;
(general) is in the fire-when-ready state, which is an initiation
signal to the ring.

General

G .. . Soldiers -

Fig. 1. One-dimensional (1D) ring cellular automaton

The FSSP is stated as follows: given a ring of n identica
cellular automata, including a general cell which is activated at
time ¢t = 0, we want to give the description (state set and next-
state transition function) of the automata so that, at some future
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time, al of the cells will simultaneously and, for the first time,
enter a specia firing state. The set of states and the next-state
transition function must be independent of n. Without loss of
generality, we assumen > 2. The tricky part of the problem is
that the same kind of soldier having a fixed number of states
must be synchronized, regardless of the length n of the ring.

A formal definition of the FSSP on ring is as follows. a
cellular automaton M is a pair M = (Q, J), where

1) Q is afinite set of states with three distinguished
states G, Q, and F. G is an initial general state, Q is
a quiescent state, and F is a firing state, respectively.

2) & isanext state function such that 6§ : 92 — Q.

3) The quiescent state Q@ must satisfy the following
conditions: §(Q,Q,Q) = Q.

A ring cellular automaton M, of length n, consisting of
n copies of M, is a 1D ring whose positions are numbered
from 1 to n. Each M is referred to as a cell and denoted
by C;, where 1 < ¢ < n. We denote a state of C; at time
(step) ¢t by st, where t > 0,1 < i < n. A configuration of
M,, at time ¢ is a function C* : [1,n] — Q and denoted
as sigh ... st. A computation of M, is a sequence of
configurations of M, C°, C!, C?, ..., Ct, ... where C° is
a given initial configuration. The configuration at time ¢ + 1,
Ct*1, is computed by synchronous applications of the next
transition function ¢ to each cell of M, in C? such that:

St = 5(st,_,,8i.8h), st = (st st 8L,,), for any

n—1» 7

i,2<i<n-—1,and sttt =§(st _,,st, st).

A synchronized configuration of M,, a time ¢ is a configura
tion Ct, st =F, forany 1 <i <n.

The FSSP is to obtain an M such that, for any n > 2,

1) A synchronized configuration at time ¢ = T'(n),
n

¢t = F, ... F can be computed from an initial
n—1
. . ——
configuration C° = GQ,--- ,Q.
2) Forany t,isuchthaal <¢<T(n)—1,1<i<
n, St # F.

B. Full vs. Partial Solutions

One has to note that any solution in the origina FSSP
problem is to synchronize any array of length n > 2. We call
it full solution. Berthiaume et a. [2] presented an eight-state
full solution for the ring. On the other hand, Umeo, Kamikawa,
and Yunes [9] and Ng [7] constructed a rich variety of 4-
state protocols that can synchronize some infinite set of rings,
but not all. We call such protocol partial solution. Here, we
summarize recent developments on small state solutions in the
ring FSSP. Berthiaume, Bittner, Perkovic, Settle, and Simon [2]
gave time and state lower bounds for the ring FSSP, described
in Theorems 1, 2, and 3, below.

Theorem 1 (Time Lower Bound) The minimum time in which
the ring FSSP could occur is no earlier than n steps for any
ring of length n.

Theorem 2 There is no 3-state full solution to the ring FSSP.
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Theorem 3 There is no 4-state, symmetric, minimal-time full
solution to the ring FSSP.

Umeo, Kamikawa, and Yunes [9] introduced a class of
partial solutions to the FSSP and showed that there exist 17
symmetric 4-state partial solutions to the ring FSSP.

Theorem 4 There exist 17 symmetric 4-state partial solutions
to the ring FSSP for the ring of length n = 2% for any positive
integer & > 1.

Ng [7] added alist of 80 asymmetric 4-state solutions, this
completing the powers-of-two solutions.

Theorem 5 There exist 80 asymmetric 4-state partial solutions
to the ring FSSP for the ring of length n = 2* for any positive
integer k > 1.

C. A Quest for Four-State Partial Solutions for Rings

e Four-state ring cellular automata
Let M be a four-state ring cellular automaton M
= {Q, 4§}, where Q is an internal state set Q =
{A,F,G,Q} and ¢ is a transition function such that ¢ :
Q3 — Q. Without loss of generality, we assume that
Q isaquiescent state with a property 6(Q,Q,Q) =Q, G
is a general state, A is an auxiliary state and F is the
firing state, respectively. The initial configuration is
Plirly o
GQQ,...,Q for n > 2. We say that an FSSP solution is
symmetric if its transition table has a property such
that 6(z,y,z) = 0(z,y,x), for any dtate z,y,z in
Q. Otherwise, the FSSP solution is called asymmetric

one.
Right State Right State Right State
Q g G g A g
Q|G |A Q|G|A Q(G|A
Y Qe 51 Qle|e]|e S(Qle|e]|e
alcle]e]e 2lc ol 2/Gle]e]e
& 8 &
T |A|le|le|e T(A|e|e|e T oo e

Fig. 2. Four-state transition table

e A computer investigation into four-state FSSP so-
lutions for rings
Figure 2 is afour-state transition table, where a symbol
e shows a possible state in Q@ = {A,F,G,Q}. Note
that we have totally 426 possible transition rules.
We make a computer investigation into the transition
rule set that might yield possible FSSP solutions.
Our strategy is based on a backtracking searching.
A similar technique was employed in Ng [7]. Due
to the space available, we omit the details of the
backtracking searching strategy. The outline of those
solutions will be described in the next section.

I1l. FOUR-STATE SYMMETRIC PARTIAL SOLUTIONS

In this section, we will establish the following theorem
with a help of computer investigation.

Theorem 6 There exist 39 symmetric 4-state partial solutions
to the ring FSSP for the ring of length n = 2¥ — 1 for any
positive integer £ > 2.
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TABLE I. TIME COMPLEXITY AND NUMBER OF TRANSITION RULES
FOR 39 SYMMETRIC PARTIAL SOLUTIONS

Symmetric Time # of
Partial Complexity Transition | Notes

Solutions Rules
Rs_1 Ta(n) =Ta(n)=n 23
Rs._2 Ta(n) =Ta(n) =n 23
Rs_3 Tc(n) =n 23
Rs_4 Tc(n) =n 20
Rs_5 Tc(n) =n 27
RS_G Tc(n) =n 24
Rs_7 Tc(n) =N 23
RS_S TG(TL) = TA(n) =n 24
Rs_g TG(TL) = TA(R) =n 25
RS_IU TG(TL) = TA(n) =n 27
Rs_11 Tc(n) =Ta(n) =n 24
Rs_12 Ta(n)=n 21
Rs_13 Tg(n) = TA(’ﬂ) =n 23
Rs_14 Tg(n) = TA(’ﬂ) =n 23
Rs_15 Tg(n) = TA(’ﬂ) =n 26
Rs_16 Tc(n) =Ta(n) =n 27
Rs_17 Ta(n)=Ta(n) =n 23
Rs_1s Ta(n) =Ta(n) =n 22
Rs_19 Ta(n) =Ta(n) =n 22
Rs_zo Tg(n) =n 26
Rs_21 Ta(n) =Ta(n) =n 25
Rs_22 Ta(n) =Ta(n) =n 26
Rs_23 Ta(n) =Ta(n) =n 26
Rs_24 Tc;(n) =n 27
Rs_25 TG(’I’L) = TA(’n) =n+1 27
Rs_26 TG(’I’L) = TA(’n) =n+1 24
Rs_27 TG(’I’L) = TA(’n) =n+1 24
Rs_28 Ta (n) =n+1 22
Rs_29 Tac(n)=n+1,Ta(n) =n 23
Rs_30 Tc(n)=n+1 25
Rs_31 Ta(n) =Ta(n) =n+1 24
Rs_32 Ta(n) =Ta(n) =n+1 25
Rs_33 Tc(n)=n+1 24
Rs_34 Ta(n) =n+1 22
Rs_35 Ta(n) =Ta(n) =n—+1 24
Rs_36 TG(n) = TA(’VL) =n-+1 24
Rs_37 TG(n) = TA(’VL) =n-+1 24
Rs_38 Ta (n) =n+ 2,TA(n) =n+1 24
Rs_39 Ta(n) =Bn+1)/2,Ta(n)=n+1 25

Let Rg;,1 <4 < 39 be atransition table for symmetric
solutions obtained in this paper. We refer to the ith symmetric
transition table as symmetric solution ¢, where 1 < i < 39.
The details are as follows:

e Symmetric Minimum-Time Solutions:
We have got 24 minimum-time symmetric partial
solutions operating in exactly T'(n) = n steps. We
show their transition rulesRg ;, 1 < i < 24 in Figures
3 and 4.

e Symmetric Nearly Minimum-Time Solutions:
We have got 14 nearly minimum-time symmetric
partial solutions operating in T'(n) = n+ O(1) steps.
Their trangition rules Rg ;,25 < i < 38 are given in
Figure 4. Most of the solutions, that is, solutions 25-
37 operate in T'(n) = n+ 1 steps. The solution 38
operates in T'(n) = n + 2 steps.

e  Symmetric Non-Minimum-Time Solution:
It is seen that one non-minimum-time symmetric par-
tial solution 39 exists. Its time complexity is T'(n) =
(3n+ 1)/2. The transition rule Rg_sg is given in Fig.
4

In Table |, we give the time complexity and number of
transition rules for each symmetric solution.

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-608-8
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Fig. 5. Snapshots on 7 and 15 cells for symmetric solutions 2, 7, 13, and 15

Here, we give some snapshots on 7 and 15 cells for
minimum-time, nearly minimum-time and non-minimum-time
FSSP solutions, respectively, in Figures 5, 6, and 7.

Now, we give severa interesting observations obtained for
the rule set.

Observation 1 (Swapping General States)

It is noted that some solutions have a property that both of
the states G and A can be an initial general state without
introducing any additional transition rules and yield successful
synchronizations from each genera state.

For example, solution 1 can synchronize any ring of length
n =21k > 2in T(n) = n steps from both an ini-
tial configuration GQ,--- ,Q and AQ,--- ,Q, respectively. Let
Ta—rs_, (n) (or smply T (n), if the rule number is specified)
and Ta—_gg_,(n) (T'a(n)) be synchronization steps staring the
solution Rg ; from the state G and A, respectively, for rings
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Solution 25

Fig. 6. Snapshots on 7 and 15 cells for symmetric solutions 20, 23, 24, and
25

of length n. Then, we have Tg_g , (n) = Ta—gs, () = n.

In Fig. 8, we show some synchronized configurations on
3, 7, and 15 cells with a general G (left) and A (right),
respectively, for the solution 1. The observation doesn’t always
hold for al symmetric rules. For example, the solution 3 can
synchronize any ring of lengthn = 2 — 1,k > 2inT(n) =n
steps from the genera state G, but not from the state A.

The Observation 1 yields the following duality relation
among the four-state rule sets.

Observation 2 (Duality)

Let 2 and y be any four-state FSSP solution for ringsand z is
obtained from y by swapping the states G and A in y and vice
versa. We say that the two rules = and y are dua concerning
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Fig. 7. Snapshots on 7 and 15 cells for symmetric solutions 30, 33, 38, and
39

the states G and A. The relation is denoted as z = y. We have:

Rs_1 & Rs_14, Rs_2 & Rs_13,
Rs_8 < Rs_17, Rs_.9 S Rg_a21,
Rs_10 S Rs_16, Rs_15 S Rs_22,
Rs_18 = Rs_19, Rs_26 < Rs_37,
Rs_27 & Rs_36, Rs_31 = Rg_3s.

IV. SUMMARY AND DISCUSSIONS

A quest for smaller state FSSP solutions has been an
interesting problem for a long time. We have answered to the
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Solution 1 with a general-state A

Fig. 8. Synchronized configurations on 3, 7, and 15 cells with a general-state
G (upper) and A (lower), respectively, for the Solution 1

guestion by proposing a new class of the smallest four-state
FSSP protocols that can synchronize any 1D ring of length
n = 2F — 1 for any positive integer k& > 2. We show that the
class includes arich variety of FSSP protocols that consists of
39 symmetric solutions, ranging from minimum-time to linear-
time in synchronization steps. Some interesting properties in
the structure of 4-state partial solutions have been discussed.
We strongly believe that no smallest solutions exist other than
the ones proposed for length 2* rings in Umeo, Kamikawa and
Yunés [9] and Ng [7] and for rings of length 2% — 1 in this
paper. A question: how many 4-state partial solutions exist for
arrays (open-rings)? remains open. We think that there would
be a large number of the smallest 4-state partial solutions for
arrays. Its number would be larger than several thousands. The
structure of the 4-state array partial synchronizers is far more
complex than the 4-state ring partial synchronizers.
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