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Abstract- In this paper, a techno-economic assessment of a real 

life hydrocarbon facility electrical system real power loss 

optimization is addressed. This optimization was attained by 

using the Genetic Algorithm (GA) and the Differential Evolution 

Algorithm (DEA).  The study is the first of its kind as none of the 

previous studies were conducted in the context of a real life 

hydrocarbon facility’s electrical system. The hydrocarbon 

facility’s electrical system examined in the study consisted of 275 

buses, two gas turbine generators, two steam turbine generators, 

and large synchronous motors, with both rotational and static 

loads. For the real life hydrocarbon facility, the performance of 

the GA and the DEA were benchmarked in the course of 

optimizing the subject objective. The problem was articulated as 

a constrained nonlinear problem. The constraints were all real 

values reflecting the system equipment and components’ 

limitations. The consequences obtained from the study showed 

the efficiency and prospects of the proposed algorithms in 

solving the described optimization case.  Also presented in this 

study is the annual fuel cost avoidance.  

 
     Keywords-genetic algorithm; differential evolution algorithm; 

power loss optimization; hydrocarbon facility; millions of standard 

cubical feet of gas (MMscf).  

 
I. INTRODUCTION 

Most of the oil exporting developing countries are facing 

a challenge associated with the increasing demand for 

domestic electrical energy. This increase has reached such an 

alarming level that it mandates action from the governments 

of the subject countries. For example, in the Kingdom of 

Saudi Arabia, the average annual increase in electricity 

demand is 7.4% [1]. 

In fact, in these countries, a high percentage of electric 

generation comes from low efficiency power generation 

plants, such as the simple cycle steam turbine. This 

complicates the issue, creating an urgent requirement for the 

utilization of more efficient plants coupled with a reduction in 

loss in the transmission and distribution system. In Saudi 

Arabia, the distribution of plant capacity for electricity 

generation by technology illustrates that low efficiency simple 

cycle steam turbine generators make up 32% of the utility 

company’s generation fleet, while the most efficient 

combined cycle generators are around 13.8% of the whole 

fleet [2]. 

The aforementioned challenges gave impetus to the idea 

of studying the potential to use intelligent algorithms in 

optimizing real hydrocarbon facility power loss. The study 

used the real values of the system parameters and practical 

constraints, which escalated the challenges in finding a global 

solution. 

This paper considers an existing real life hydrocarbon 

central processing facility electrical power system model for 

assessing the potential of system real power loss minimization 

using the Genetic Algorithm (GA) and the Differential 

Evolution Algorithm (DEA) for two generation modes. In 

Section 2, the problem will be formulated as optimization 

problem with equality and inequality constrains. In Section 3, 

the GA and DEA will be employed to solve this problem. In 

Section 4, the paper study scenarios will be developed. 

Finally, in Section 5 techno-economic analysis of the results 

and discussion will be presented. 

 
II. PROBLEM FORMULATION 

The problem formulation consists of two parts: the 

development of the objective functions and the identification 

of the system electrical constrains to be met; equality and 

inequality constrains.  

 

A. Problem Objective Function 

The objective to be achieved is the minimization of the real 

power loss J1 (PLoss) in the transmission and distribution lines. 

This objective function can be expressed in terms of the power 

follow loss between two buses i and j as follows: 

 

           J1 = PLoss = ∑  𝒈𝒌 [ 𝑽𝒊
𝟐 + 𝑽𝒋

𝟐 − 𝟐  𝑽𝒊𝑽𝒋 𝐜𝐨𝐬(𝜹𝒊 − 𝜹𝒊)] 
𝒏𝒍

𝒌=𝟏
            (1) 

 

Where nl is the number of transmission and distribution 

lines; gk is the conductance of the kth line, Vi i  and Vj j   

are the voltage at end buses i and j of the kth line, respectively  
[3] [4]. 

 

B. Problem Equality and Inequality Constrains  

The system constrains are divided into two categories: 

equality constrains and inequality constrains [3][5]. Details 

are as follows: 
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B.1 Equality Constrains 

These constrains represent the power load flow equations. 

The balance between the active power injected PGi, the active 

power demand PDi and the active power loss Pli at any bus i is 

equal to zero. The same balance applies for the reactive power 

QGi, QDi , and  Qli. These balances are presented as follows: 

 

                                 PGi− PDi −  Pli = 0                                                 (2) 
 

                                 QGi− QDi −  Qli = 0                                               (3) 

 

The above equations can be detailed as follows: 

  

PGi− PDi−𝑉𝑖 ∑  𝑽𝒋 [ 𝐺𝑖𝑗𝑐𝑜𝑠(𝛿𝑖 − 𝛿𝑗) + 𝐵𝑖𝑗 sin (
𝑵𝑩

𝒋=𝟏
𝛿𝑖 − 𝛿𝑗)] = 0         (4) 

 

QGi − QDi−𝑉𝑖 ∑  𝑽𝒋 [ 𝐺𝑖𝑗𝑠𝑖𝑛(𝛿𝑖 − 𝛿𝑗) − 𝐵𝑖𝑗 cos (
𝑵𝑩

𝒋=𝟏
𝛿𝑖 − 𝛿𝑗)] = 0     (5) 

 

where i = 1,2,…,NB;NB is the number of buses; PG and QG 

are the generator real and reactive power, respectively; PD and 

QD are the load real and reactive power, respectively; Gij and 

Bij are the conductance and susceptance between bus i and bus j, 

respectively.   

 

B.2 Inequality Constrains 

These constrains represent the system operating constrains 

posted in Table 1 and they are as follows:  

a. Generator and synchronous motor voltages; VG and VSynch; 

their reactive power outputs; QG and QSynch.  

b. The transformers taps. 

c. The load buses voltages VL.  

Combining the objective function and these constrains, the 

problem can be mathematically formulated as a nonlinear 

constrained single objective optimization problem as follows: 

 

Minimize J1   
Subject to: 

                                         g(x,u) = 0                                   (6) 

                                         |h(x,u)| ≤ 0                                  (7) 

Where: 

 

x:  is the vector of dependent variables consisting of load  bus 

voltage VL, generator reactive power outputs QG and the 

synchronous motors reactive Power QSynch. As a result, x 

can be expressed as 

          xT= [VL1..VLNL, QGi…QGNG, QSynchi…QSynchNSynch]       (6) 

u:  is the vector of control variables consisting of generator 

voltages VG, transformer tap settings T, and synchronous 

motors voltage VSynch. As a result, u can be expressed as 

             uT = [VG1..VGNL, T1…TNT, VSynch1..VSynchNL]              (8) 

 

g: are the equality constrains. 

h: are the inequality constrains. 

 

All the constraints posted in Table 1 are real values based on 

the system and equipment real data. 

 
TABLE 1 

 SYSTEM INEQUALITY CONSTRAINS  

Description Lower Limit Upper 

Limit 

GTG Terminal Voltage (VGTG) 90% 105% 

STG Terminal Voltage (VSTG) 90% 105% 

GTG Reactive Power (QGTG) Limit  -62.123 
MVAR 

95.72 
MVAR 

STG-1 Reactive Power (QSTG) Limit -22.4 MVAR 20.92 

MVAR 

STG-2 Reactive Power (QSTG) Limit -41.9 MVAR 53.837 
MVAR 

Captive Synch. Motors Terminal Voltage  90% 105% 

Synch. Motors Terminal Voltage (VSychn) 90% 105% 

Causeway downstream Buses Voltage  95% 105% 

All Load Buses Voltage 90% 105% 

Main Transformer Taps +16 (+10% ) -16 (-10%) 

Generators Step-Up Transformer Taps +8 (+10% ) -8 (-10%) 

 

 
III. THE PROPOSED APPROACH 

A. Generic Algorithm (GA) Implementation    

The implementation of the GA technique can be 

summarized in the following steps [6]-[12]: 

1) Generate initial populations of chromosomes; each 

chromosome consists of genes and each of these genes 

represents either transformer tap settings, synchronous 

motors voltages or the generators voltages values. 

2) Assign fitness to each chromosomes, as follows: 

a. Use the Newton-Raphson method to calculate the real 

power losses for each population [8]. 

b. Identify if the voltage constrains are satisfied.  

c. Identify if the synchronous machines (generators and 

motors) capacity limitations are met.  

d. Assign fitness values to the populations that meet all the 

constrains; the population best power loss value (J1). 

3) Identify the best population with its associated 

chromosomes that has the best objective function value 

and store it.  

4) Identify the chromosomes parents that will go to the 

mating pool for producing the next generation via the 

random selection method. This method works by 

generating two random integer numbers (each represents a 

chromosome). Then, these two randomly selected 

chromosomes fitness values are compared and the one 

with the better fitness value will go into the mating pool. 

This randomly selected chromosomes mechanism will be 

repeated until the population in the mating pool equals to 

the initial chromosomes population [13].   

5) Perform genes crossover for the mating pool parents via 

the simple crossover method [13]. In this method, the 

offspring chromosomes are generated by establishing a 

vertical crossover position for parent’s chromosomes and 

then crossover their genes.  
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6) Perform gene mutation for the mating pool parents after 

they have been crossed over; the random mutation method 

was implemented [13]. In this method, the offspring 

chromosomes genes are mutated to new ones randomly 

from the genes domain. 

7) Go to Step #2 and repeat the above steps with the new 

populations generated from the original chromosome 

parents after being crossed over and mutated.  

8) Each time, identify the best population and compare its 

fitness value with the stored one; if it is better (meeting the 

objective function), replace the best chromosomes with 

the new ones. 

9) The loop of generation is repeated until the best population 

with its associated chromosomes, in terms of minimum 

real power loss, is identified or the maximum number of 

generations is met. The flow chart of the proposed 

approach is shown in Fig. 1. 
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         Figure 1.  The GA algorithm evolution process flowchart 

B. Differential Evolution Algorithm (DEA) Implementation    

DEA utilizes special differential operators in creating the 

offspring individuals from the parent individuals’ population 

in place of the classical crossover and mutation operators used 

in the GA. In DEA, there are two control parameters, which 

are the mutation constant F and the crossover constant C. 

Different from the GA, in the DEA the mutations are 

performed before the crossover and the selection is taken 

place after both the mutation and the crossover.  DEA’s first 

three evolutionary process steps are similar to the GA ones. 

[14]-[18]. The remaining steps are as described below: 

4) In the DEA, mutations are performed using the DE/rand/1 

mutation technique [17]. Vi (t) - the mutated vector, is 

created for each population member Xi (t) set by randomly 

selecting three individuals’ xr1, xr2 and xr3 and not 

corresponding to the current individual xi. Then, a scalar 

number F is used to scale the difference between any two 

of the selected individuals. The resultant difference is 

added to the third selected individual. The mutation 

process can be written as: 

 
                         Vi,j(t) = xr1,j (t) + F * [ xr2,j(t) - xr3,j (t) ]              (9)                   

 

The value of F is usually selected between 0.4 and 1.0. In 

this study, F was set to be 0.5 (50%). In [14], scaling 

mutation based on the frequency of successful mutations 

is applied. 

5) Perform the binomial crossover, which can be expressed as 

follows: 

           𝑢𝑖,𝑗(𝑡) =  {
𝑣𝑖,𝑗(𝑡) 𝑖𝑓 𝑟𝑎𝑛𝑑 (0,1) < 𝐶𝑅

𝑥𝑖,𝑗 (𝑡)                             𝑒𝑙𝑠𝑒
        (10)                        

       

CR is the crossover control parameter, and it is usually set 

within the range [0, 1]. The child ui,j (t) will compete with 

its parent xi,j (t). CR is set equal to 0.9 (90%) in this study.  

6) Perform the selection procedure as described below: 

 

                 xi(t+1) = ui(t)      condition    f(ui(t)) ≤   f(xi(t))        (11)    
 

                     xi(t+1) = xi(t)      condition    f(xi(t)) ≤   f(ui(t))           (12)                                         
 

       Where f( ) is the objective function to be minimized.     

7) Looping back for the terminating criteria. If the criteria are 

not fulfilled, then generate new offspring population and 

begin again.  

8) If the termination criteria are met, identify the best 

population with its associated chromosomes, in terms of 

minimum real power loss. The DEA evolution process is 

shown in Fig. 2.  
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Figure. 2:  DEA in single-objective mode evolutionary process chart 
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IV. STUDY SCENARIOS 

In this paper, three scenarios were studied: the base case 

scenario- business as usual (BAU), the optimal case scenario 

when all generators are online, and the optimal case scenario 

when two generators are offline. In the optimal cases, the best 

system parameters (chromosomes) that meet the minimum 

objective function (J1) are obtained. 

A. Base Case Scenario 

The BAU scenario was simulated to be benchmarked with 

the two optimal scenarios. Following are some of the normal 

system operation mode parameters: 

1) The utility bus and generators terminal buses were set at 

unity p.u. voltage. 

2) All the synchronous motors were set to operate very close 

to the unity power factor.   

3) All downstream distribution transformers and the captive 

synchronous motors transformers; off-load tap changers; 

were put on the neutral tap. 

4) The causeway substations main transformers taps were 

raised to meet the very conservative voltage constrains at 

these substations downstream buses; ≥ 0.95 p.u. Refer to 

Table 2 below. 

TABLE 2 

 THE SELECTED FEASIBLE TRANSFORMERS TAPS VALUE 

Substation Number Transformer Tap 

Causeway Substation#1 +3 (1.019 p.u.) 

Causeway Substation#2 Neutral (1.0 p.u.) 

Causeway Substation#3 +3 (1.019 p.u.) 

Main Substation Transformers +1 (1.006 p.u.) 

B. Optimal Case Scenario with All Generators Online 

In this scenario, all the generators were assumed to be 

online. The initial 100 populations of feasible chromosomes 

(individuals), which meet both the buses voltage and 

synchronous machine reactive power constrains were 

identified. The feasible populations with their associated 

chromosomes were subject to the GA and DEA evolutionary 

process of 100 generations guided by the objective function 

J1. The GA process was set with 90% crossover probability 

and 10% mutation probability. In the DEA case, the mutation 

F constant was set equal to 0.5 (50%) and the CR is set equal 

to 0.9 (90%). The system parameters and the objective 

function value associated with the optimal solution of this 

scenario were identified. 

 

C. Optimal Case Scenario with Two Generators Offline  

In this scenario, two generators (one gas turbine generator 

and one steam turbine generator) were assumed to be offline. 

All others parameters are identical to the optimal case 

scenario with all generators are online. 

  
V.  RESULTS ANALYSIS AND DISCUSSIONS 

The results from the three scenarios, base case, when all 

generators online and with two generators offline will be 

analysed in two categories: the system parameters analysis 

and the economic analysis.  

A. System Parameters Analysis  

The hydrocarbon facility simplified electrical system 

model, which is studied in this paper, is shown in Fig. 3. The 

evolution of the objective function (J1) values over the GA 

and DEA evolution process is captured in Fig. 4. In the all 

generators online scenario the GA converted to its optimal J1 

value of 1.892 MW after 53 generations while the DEA 

converted to better J1 value of 1.885 MW but after 78 

generations. So, DEA converted to a better J1 value but after 

a higher number of generations. In the scenario with two 

generators offline, DEA converted to again better J1 value of 

2.926 MW at generation 72 while the GA converted to its 

optimal J1 value of 2.933 MW after 91 generation. In this 

scenario, DEA produced a better J1 value and within a lower 

number of generations compared to the GA. The evolution 

process for both the GA and the DEA were repeated many 

times to confirm the obtained results.  

 

 

Figure 3.  Simplified electrical system of the hydrocarbon processing facilty 

 

In Table 3, a comparison of the objective functions’ values 

are posted for the three studied scenarios. The DEA performs 

better than the GA for the all generators’ online scenario. J1 

was reduced by 11.67% when compared with the BAU values. 

Also, DEA produced better objectives’ values than GA for the 

two generators’ offline mode. 
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Figure 4.  J1 value convergent for the two generation scenarios  

 
TABLE 3 

THE J1 VALUES FOR THE STUDIED THREE SCENARIOS   

Generation Mode              Case # J1 Value Δ J1 % 

All online                  BAU       2.134 0.00 

Two offline BAU 3.219 0.00 

All online GA 1.892 -11.34% 

All online DEA 1.885 -11.67% 

Two offline GA 2.933 -8.89%6 

Two offline DEA 2.926 -9.10% 

 

B. Economic Analysis  

The annual cost due to the system real power loss 

calculated based on natural gas cost of $3.5 per MM is 

demonstrated in Table 4. In the all generators online scenario, 

DEA produce better real power loss cost $561,782 which is 

$74,200 less than the BAU power loss cost and $2,076 less   

when benchmarked with GA. Also, DEA produce better real 

power loss of $872,124 which is $87,361 less than the BAU 

power loss cost and $2,161 less when compared with GA real 

power loss cost value. 

 
TABLE 4 

ECONOMIC ANALYSIS FOR THE STUDIED THREE SCENARIOS  
    

Generation Mode    Case# Real Power Loss Cost 

All online BAU  (635,982.30) 

Two offline BAU   (959,485.76) 

All online GA   (563,858.10) 

All online DEA   (561,782.11) 

Two offline GA   (874,285.01) 

Two offline DEA   (872,124.64) 

 

VI. CONCLUSION AND FUTURE WORK 

This paper presented the potential of minimizing the real 

system’s power loss for a real-life hydrocarbon facility using 

the GA and DEA approach. Three scenarios were considered, 

the base case scenario and two generation scenarios. The 

technical and economic advantages of the optimal scenarios 

versus the base case scenario were highlighted in this paper. 

Also, the superiority of applying DEA to search for the 

optimal value of the objective function over the GA was 

highlighted. Future study may need to address the problem as 

a multi-objective problem considering the grid connection 

power factor as a second objective which competes with the 

real power loss minimization objective.  
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