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Abstract—Due to ever-increasing information overload, human
attention has evolved to the most critical parameter in the
successful design of pervasive display systems. This article aims
at the validation of physical effort as a suitable descriptor
for attentional and perceptional behavior in interactive public
display scenarios. For this purpose, we integrated our qualita-
tive effort-based behavior description approach into Wickens’
established Saliency-Effort-Expectancy-Value (SEEV) attention
model to compare predicted and observed attentional behavior
and demonstrate its significance for attention mechanisms. The
SEEV attention model is adapted to a public display scenario,
with analysis focused on Minimum Required Effort (MRE) for
the assessment of information. This attention modeling approach
is evaluated based on data collected in an empiric study in an
exhibition setting and is based on a database of 188 visitors. We
employ different approaches of correlation analysis to evaluate
the dependencies between required effort for information assess-
ment and overt attention behavior which results in a maximum
overall correlation score of 0.749 in a frame by frame correlation
analysis.

Keywords–attention; behavior analysis; public displays; implicit
interaction

I. INTRODUCTION

Human attention has revealed as being among the most cru-
cial, yet least understood design criteria for modern, successful
Information and Communication Technologies (ICT) systems.
Digital information society technologies like the WWW, social
networks or mail and messaging systems continuously wash
floods of information to individuals via personal (mobile com-
puters, smartphones) and public ICT systems (public displays,
digital signage) [1], making it difficult for the individual to
allocate attention to the right things at the right time and filter
out the gold nuggets of information, which are relevant in the
respective situation and context.

Given the overabundance of information approaching indi-
viduals, it has to be of immediate interest to include a profound
understanding of (i) how attention is allocated and how it can
be, (ii) if not explicitly measured, at least be estimated and
modeled into technical solutions in public display scenarios.
Only a fundamental understanding and successful modeling
of human attention processes will allow the development of
pervasive ICT systems that are designed for the benefit of
users, and not only aiming at a most efficient distribution of
arbitrary information to a maximum audience.

In the following, the current state of the art will be

addressed. In Section 2, the underlying SEEV attention model
and necessary simplifications for this work are described. In
Section 3, the underlying experiment is introduced based on
which the behavior data computation is carried out (Section
4). Results are presented and discussed in Section 5, to be
concluded a discussion in Section 6.

A. Related Work
Attention research has evolved from first general observa-

tions by James [2] in the 1880s, over different Single Channel
Theories [3–7] in which mental processes are regarded as serial
competitive activities, over Capacity Theories in which human
attention is not limited by perception bandwidth or number
of channels but by processing capacity [8–10] to nowadays
multi-channel and multiple-resource theories [11, 12]. These
theories include multitasking capabilities and at the same time
investigate distinct aspects of attention in detail. All these
single models contribute to the overall understanding of the
complex matter of human attention, yet, the latest generation
of multiple-resource attention models provide promising capa-
bilities of broad applicability in real technical applications.

Aiming at estimating attention levels using pervasive com-
puting technologies, we depend on overt, observable somatic
indicators of human attention which can be measured, quan-
tified and interpreted. Concerning the individual, the anal-
ysis of Visual Attention represents the most intuitive and
most frequently pursued approach [13], focusing mainly on
stimulus-driven (bottom-up) attention mechanisms in contrast
to expectation-driven (top-down) aspects of attention control.
Modeling of Visual Attention is widely based on visual
saliency as characteristics describing attention capturing ca-
pabilities of input stimuli. There are numerous models mim-
icking biological findings to best possible reproduce human
eye movement patterns as, e.g., cognitive models [14][15],
Bayesian models [16–18], decision theoretic models [19],
information theoretic models [20][21] or alternatively pure
data-driven models [22].

In technical applications, the so-called Visual Focus of
Attention (VFOA) has become the main representation of the
estimated orientation of attention, covering analysis of gaze
direction [23], eye movements [24, 25], saccades and fixations
[26, 27] or head orientation depending on sensor data quality.
In addition to visual attention, overt attentional behavior is
interpreted in public area scenarios, describing competitive
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Figure 1. SEEV-Attention Model by Wickens [11] in which perception filters
are controlled via Salience, Expectation, Effort and Value.

selection and switched attention processes. Smith et al. [28]
created a head tracking in an out-of-home advertisement
scenario in which subjects were evaluated as focused if their
gaze was directed at the display longer than a certain threshold.
Leykin and Hammoud [29] used single camera surveillance
footage to estimate the area and direction of interest of
pedestrians with head pose and movement direction as features.
Ozturk et al. [30] investigated the orientation of people in
indoor environments, interpreting orientation as indicator for
visual focus of attention. Yakiyama et al. [31, 32] estimated
attention levels towards target objects on the basis of computed
distance, orientation and movement speed. Quek et al. [33]
analyzed feet positioning and movement orientation to estimate
the the orientation of perception.

In this paper, we will explore and validate physical effort
as a crucial and expressive indicator of attentional behavior in
the context of public display scenarios. For this purpose, we
employ predictions of attentional behavior derived from Wick-
ens’ SEEV attention model, which are based on a previously
published, general effort-based behavior description [34]. We
analyze behavior to calculate physical effort scores that need
to be invested for the potential perception of displayed in-
formation to identify significant correlations between physical
effort, behavior and resulting engagement and attention. The
identified correlations are supposed to validate physical effort
as a reliable indicator for human attention estimation in public
display scenarios.

II. EXPLORATION OF THE SEEV ATTENTION MODEL

In his elaborate research, Wickens created an extensive
attention model [11], [35], which describes attention as an
information processing system with multiple channels and
resource types, which is equipped with a filtering unit driven by
conscious (top-down) and unconscious (bottom-up) processes
(cf. Figure 1). The central message of this approach is, that
parallel cognitive processes are possible without interference
as long as they differ in occupied channels and required types
of resources (e.g., visual tasks can be executed in parallel to
auditory tasks).

In its computational annotation, the so-called SEEV-
attention model describes the probability to attend an area
of interest via a linear equation, which is based on four
components and their respective scaling factors - namely, the
contributive factors of stimulus attractiveness (Saliency S),
expected information entropy (Expectancy Ex) and importance
of the accustomed information (Value V) in contrast to the
physical and mental Effort Ef required for the assessment of

the respective information (cf. Equ. 1):

P (A) = s · S− ef · Ef + (ex · Ex+ v · V) (1)

Due to its linear and intuitive design, the SEEV model
has successfully found application in several different sce-
narios as (i) aviation: modeling of attentional behavior and
attention errors of pilots and air traffic controllers [36–38]
(ii) automotive sector: simulation of car driver behavior [39–
42] as well as information and infotainment systems in the
automotive environment and mobile service interfaces [43]
(iii) general computer interaction research [44] as well as (iv)
perception and reaction to alerts and notifications [45]. The
listed approaches use eye tracking or other sensorial data for
behavior input and compare predicted and observed behavior
to evaluate the applicability of the SEEV model and the
respective author’s developments, whereas, depending on the
available data and given use-case, the SEEV-equation were
simplified or generalizing assumptions were made.

A. The SEEV model in a public display scenario
The control parameters of the SEEV model Figure 1)

require some more elaboration and interpretation regarding our
specific use-case of pervasive display scenarios:

• Value represents the personal evaluation of the rel-
evance of events, stimuli or perceived information.
It is based on personal experiences and preferences,
thus together with expectancy describes the individual
intrinsic components of the SEEV attention model.
As these intrinsic parameters are not accessible in the
given experiment (anonymous users, no preferences
or previous behavior history available), this parameter
is deprived from our knowledge and control. As the
presented use-case at an annual sports fair represents
an event with voluntary presence, we are confident to
assume positive overall associations of the audience
towards the event in general and to simplify personal
value to a constant positive average score.

• Expectancy describes the expected information band-
width or entropy of an object, event or area of interest.
Expectancy is closely related to personal experience of
information consumption and especially thus linked to
Value. Areas of interest that provided useful, entertain-
ing or helpful information in the past are more likely
to be attended and frequented in the future [46].
Large-scale displays have become a fundamental part
of public life and represent established omnipresent
and continuous sources of information. They have
evolved towards an essential role in the public domain
with an associated high bandwidth of information,
regardless of the associated personal relevance of dis-
played information. Again, this gives us the confidence
to reduce model complexity by setting the expectancy
score to a constant positive value.

• Effort represents the physical or mental effort, neces-
sary to change current behavior to attend areas of inter-
est and assess the available information. For example,
this includes overcoming physical distances as well
as exhausting cognitive filtering processes in noisy
environments. Effort represents the only inhibitor of
attention allocation in the SEEV attention model.
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In our preliminary work [34], [47] we used invested
physical effort to interpret engagement and attention
to public displays. In this work, we try to validate
these findings by employing the SEEV model in which
effort - as the only inhibitory factor - plays a crucial
role in the assessment of information. Hence, the
required effort for content perception will serve as the
main variable to be observed and evaluated.

• Saliency expresses the attractiveness of an event or
stimulus mainly regarding bottom up processes, often
affected significantly by contrast. Salient events differ
from their environment via a single or several per-
ceptional characteristics (e.g., color, size, movement,
volume, frequency range, etc.). An overload with
irrelevant stimuli is reported to reduce performance
[48] and highly salient stimuli are likely to capture
attention even when irrelevant to the task [49].
Besides Effort, Saliency represents the second crucial
factor in this setting. In our approach, we try to
assess to which extent effort alone is sufficient to
describe observed attention behavior. Due to that goal,
we employed highly salient video content display-
ing extreme sports performances to ensure high and
constant attractiveness. As a consequence, we again
assume Saliency as a constant score in favor of a
direct sensitivity to effort as the variable of interest, in
the awareness of the over-simplification of the model
and the need to take this reduction of complexity into
consideration in the discussion and evaluation process.

The consequences of the described assumptions and sim-
plifications are presented in the adapted equation for SEEV
computation:

PA(t) = (s · S + ex · Ex+ v · V)− ef · Ef(t) (2)
= (C)− ef · Ef(t) (3)
= 1− ef · Ef(t) (4)

Value, Expectancy and Saliency are combined to a single
constant value and in the context of a description of probability,
to the maximum probability of 1. This results in an indirect
proportional relation between attentional behavior and required
effort, which will be experimentally verified in the following.
The exact value of C is not relevant in the following evaluation
via correlation since constant values do not have any influence
on correlation scores. Since we only want to investigate the
dependency of attention from effort behavior, it is an intuitive
step to set C to 1 as it decreases potential misinterpretations.

III. EXPERIMENT DESCRIPTION

To find significant correlations between attention distri-
butions predicted by SEEV probabilities and observed and
annotated attentional behavior, we employ experimental data,
which already served as input for preliminary works in [47].
The experiment was set up at a public sports event in the scope
of the Vienna City Marathon. A large-scale public display
integrated in a standard City Light cabinet (1,86 x 1,30 m)
equipped with two 50” monitors and a depth camera sensor
was installed in the entrance area of the event, with the sensor
covering the area in front of the display (cf. Figure 2) with an
horizontal opening angle of 57 ◦ and a maximal depth range of
6 m. The display itself did not show any interactive behavior,
but employed depth sensors were only used for data collection.

Figure 2. Setup of large-scale public display at Vienna Sports World Fair.
Depth cameras were used to detect and extract behavior features for effort

computation.

The recorded depth data was afterwards used to apply OpenNI
[50] and Primesense [51] skeleton tracking algorithms and
extract skeleton joint data, which was used to compute and
analyze behavior [34].

IV. BEHAVIOR ANALYSIS AND CREATION OF DATA SET

A. Computation of Minimum Required Effort - MRE
In earlier works, we interpreted the overall amount of in-

vested effort to deduce the quality of engagement with a public
display (Directed Effort [34]). A person in a public space
has the following independent degrees of freedom regarding
general movement in the horizontal plane (i) movement speed
v (ii) movement direction ϕ (iii) body orientation. Similar to
earlier computations of effort we stick to the strict additive
separation of these behavioral dimensions and define thresh-
olds for possible perception for each single parameter. We
employ the following annotation in the ongoing: i ∈ v, σ, ϕ, τ
as placeholder for the respective behavioral dimensions, as well
as iT as representation of the respective perceptional threshold.

As the analysis of the SEEV model is not directed at the
quality but at the probability of attention, we are now aiming
for the effort threshold that needs to be invested to enable
the perception of the displayed content (MRE). Hence, some
adaptations to the computation of invested effort had to be
made in comparison to earlier processes: Body orientation is
split up into head orientation σ and upper body orientation
τ to better model head turns in relation to the overall body
orientation.

The computation of all parameters is based on the ratio
of the difference between current behavior and the respective
thresholds iT to the overall possible change in this specific
parameter dimension (cf. Equ. 5-9). This provides a percental
rating to what degree the person needs to change its activities
in the respective behavioral dimension to enable the perception
of displayed content. If possible, the selection of these thresh-
olds was based on scientific research, otherwise they have been
set according to observations and the personal experience of
the authors. The respective maximum reference scores have
been set via empiric analysis of the overall data set.

B. Speed
Movement speed is characterized as the magnitude of the

movement vector v(t) = |
−−→
v(t)|. The speed threshold has been

set to a score, which resembles a medium walking pace in the
authors implementations. In figure 3(a), this is visualized via a
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(a) (b) (c) (d)

Figure 3. Computation of Minimum Required Effort in the dimensions of (a)
movement speed v(t), (b) movement direction ϕ(t), (c) head orientation

σ(t) and (d) upper body orientation τ(t).

centric circle with radius vT around the person center of mass
location.

C. Movement Direction
According to the Focus-Nimbus Aspects Attributes and

Resources (FN-AAR) model [52], which is based the Fo-
cus/Nimbus (FN) awareness model, there are areas of com-
fortable perception of displayed information. We employed the
area as visualized in figure 3(b) as reference location for the
perception threshold and to evaluate movement direction to
overcome this hindrance. The position and movement vector
of each proband is analyzed to compute whether the person is
moving towards this perception zone, and if not, the required
effort for behavior change (movement angle) is computed.

E(t) = ev · Ev(t) + eϕ · Eϕ(t) + eσ · Eσ(t) + eτ · Eτ (t)

(5)

Ev(t) =

{
v(t)−vT
∆vmax

, if v(t) > vT
0, otherwise

(6)

Eϕ(t) =

{
ϕ(t)−ϕT
∆ϕmax

, if ϕmax > ϕ(t) > ϕmin

0, otherwise
(7)

Eσ(t) =

{
σ(t)−σT
∆σmax

, if σ(t) > σT
0, otherwise

(8)

Eτ (t) =

{
τ(t)−τT
∆τmax

, if τ(t) > τT
0, otherwise

(9)

D. Head Orientation
Head orientation is interpreted as general Visual Focus of

Attention as a low-level feature of eye gaze and description
of general field of vision. The captured depth data did not
provide sufficient resolution for actual eye tracking algorithms
over the distance of several meters, so we were restricted to
head orientation measurements derived from depth data. For
this purpose, we employed the implementations by Fanelli et
al. [53]. The threshold σt for head orientation was set to 20◦, as
this angle between current eye position and goal of the saccade
has been reported by Kahneman [8] as the limit from which
head movements replaces eye movements for the assessment of
the information (cf. Figure 3(c)). Below 20◦ head orientation
in relation to the display location, we assume a perception of
the display content as sufficiently probable.

E. Upper Body Orientation
The threshold for required turn of the upper body has

been set to 40◦ (cf. Figure 3(d)). This seemingly arbitrarily
defined score is the result of empiric observations and personal
experiences and may be necessary to be replaced by more
scientifically founded studies.

F. Ground Truth Labeling
Due to the lack of qualitative attention metrics, the evalu-

ation of attention models represents a challenging issue. The
main challenge in this context is obtaining an objective ground
truth labeling of observed behavior. Subjective reports from
subjects provide helpful assistance, yet in our case could not
provide the required temporal resolution and detail.

In this work, we apply manually transcriptions that have al-
ready been applied in earlier works, which are combined from
(i) real-time observations and annotations that were obtained in
the gathering of the experiment data, (ii) detailed frame-wise
post-hoc labeling of behavior scores and (iii) interview results
from subjects regarding their overall awareness of the display
and perceived content. The hand-labeled behavior scores are
based on detailed categories of behavior that are associated
to a numeric scale (0-10) and associated to 5 more general
classes of behavior, representing increasing behavior change
and engagement with the pervasive display.

In the following, we employ the general five behavioral
classes of (0) No perception - display of of field of view,
(1) Selective Perception - display in peripheral visual range,
(2) Switched Attention - display actively in wandering gaze
area, (3) Focused Attention - conscious perception, distinct
behavior change (4) Sustained Attention - lasting perception,
fundamental behavior change. Please refer to [47] for the
detailed behavior assignment for the 11-tier scale and 5-class
behavior segmentation.

G. Overall dataset
The resulting dataset is based on 188 probands that were

observed and analyzed, resulting in an overall of 27’891
frames, which hold required effort for the respective behavioral
dimension, prediction of attention probability and labeled
ground truth of observed attentional behavior.

TABLE I. CORRELATION SCORES OF SINGLE EFFORT DIMENSIONS

Effort Parameter Correlation Score
Ev 0.7138437
Eϕ 0.3944934
Eσ 0.4232690
Eτ 0.2348277

V. RESULTS AND DISCUSSION

As a first step, we tried to identify the weighting parameters
ei (cf. Equ. 5) to find an optimal contribution of the single
behavioral dimensions for the aspired modeling of actual atten-
tion behavior. For this purpose, we computed the correlations
between the single effort components and the hand-labeled
ground truth data to evaluate the contributivity of the single
parameters. The single correlation scores, averaged over the
complete dataset, are displayed in Table I.

As can be observed, movement speed shows by far the
most promising correlation of the four parameters. The minor
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performance of other parameters especially head and body
orientation is partly related to the varying quality of skeleton
tracking data. Yet these other behavioral aspects may still
push the overall correlation between model prediction and
observation scores. For this purpose, we used the correlation
scores as weighting parameters:

ei =
cor(Ei)∑
i

cor(Ei)
(10)

A. Evaluation
For the analysis of the collected dataset, we employed the

implementation of Pearson’s product-moment correlation in R
[54]. An exemplary plot of the sequence of computed scores
for a sample of the dataset is displayed in Figure 4. It shows
how the single computed parameters add up to the overall
Effort score and relate to annotated behavior.

The overall evaluation of the gathered dataset using correl-
ative dependencies requires some discussion. Generally, the
computation of an adequate overall correlation score from
different single correlation results is not trivial, as the database
items differ in sample sizes and significance scores. The
sample sizes range from 14 to 2321 captured frames per
person with an average of 148.35 frames. This imbalance
between data samples represents the main challenge regarding
the computation of an expressive overall correlation score.

Figure 6. Scatter plot of computed attention probability scores for complete
dataset (27’891) frames in relation to associated attention behavior ground

truth. Horizontal bars indicate the arithmetic mean. The overall distributions
show strong proportional tendencies.

To approach this issue of evaluation, we pursue two different
evaluation approaches, neither of which can claim to give an
absolute overall correlation score, but which will show the
range of correlation dependencies and give an impression on
the overall performance of our approach.

1) Averaging over single probands: Simple averaging over
single subject correlation scores as overall correlation result
based will show bias towards shorter sample sizes. As longer
samples show a better correlation score, this process will
underestimate the actual system performance. Furthermore, it
is debatable, which averaging mechanism best represents cor-
relation results. The histogram of obtained single correlation
scores is visualized in Figure 5. In this case, the arithmetic
mean seems to be too sensitive to far outliers, whereas the
median (0.263) and the computed density function (0.413),
employing a Gaussian kernel seem to better represent the
overall distribution of results.

2) Creation of an overall Correlation: We can avoid the
problem of averaging of incomparable samples via conflating
all computed single temporal PA(t) and GT curves into a
single, encompassing dataset. This would be equivalent to a
single user being present in the scene for continuous 27’891
frames or 15h and 29min. The result is computed as the
overall correlation between computed (effort-based) attention
probabilities and hand-labeled observations, which computes
to an overall correlation score of 0.749. This interpretation
of correlation scores provides a far better rating of the de-
pendencies between behavior and attention distribution, yet is
probably prone to an overestimation since longer samples will
cause heavier weights and again a imbalanced evaluation.

In the scatter plot in Figure 6, the general relation between
predicted attention probabilities and overt attention behavior
can be observed. The mean scores and general distributions
show the expected strong proportional tendency, which is
expected to increase under consideration of not only physical
effort, but stimulus saliency as driving forces of attentional
behavior.

Yet, this approach provides a new issue in the evaluation
of these results in the assessment of significance. Usually,
significance scores of p < 0.05 or p < 0.02 are claimed for
reliable dependencies where coincidences are excluded. In the
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given evaluation, the problem arises from the extensive size
of the dataset. As the significance score p is directly related
to the size of the dataset it will turn against 0 (2.2 · e−16

in our case) for large data sets, a problem, which is already
established in the scientific community. Thus the significance
score loses its validity as an indicator in our case. Lin et al.
[55] proposed to use confidence intervals instead of p as a
more expressive evaluator regarding the validity of correlation
results. In our case, the 95% confidence interval ranges from
0.743 to 0.754, a range, which makes us confident to report
a significant relationship between required physical effort and
attention behavior.

VI. CONCLUSION & OUTLOOK

In this paper, we have identified and demonstrated sig-
nificant correlations between attention behavior predicted by
the established SEEV computational attention model, based on
minimum required physical effort as descriptor, and actual ob-
served attentional behavior in an empiric experimental study. In
a critical discussion of different approaches towards a general
evaluation of an absolute correlation score, we estimate the true
correlation score between the overestimated score of 0.749 for
overall correlation computation and the underestimated score
of 0.413 for per person correlation averaging.

Taking into account, that the major aspect of time-
dependent saliency has been ignored in the modeling and eval-
uation process, the obtained results absolutely show promising
potentials regarding physical effort as a suitable attention
modeling parameter in public domains. A future inclusion of
real-time saliency evaluation of displayed visual and audio
content is expected to further boost our attention modeling
process. Additionally, investigating surplus effort, exceeding
the necessary thresholds for perception might represent a
suitable indicator for the quality of engagement and attention.
Finally, in spite of undeniable efforts, the statistical evalua-
tion requires further research regarding the computation of a
suitable, explicit overall correlation score.
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