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Abstract- In this paper, a differential evolution algorithm (DEA) 

is considered for formulating nonlinear constrained 

multiobjective problem where electrical system real power loss 

and voltage stability index are optimized concurrently for a real 

hydrocarbon industrial plant. The subject plant electrical 

system consists of 275 buses, two gas turbine generators, two 

steam turbine generators, large synchronous motors, and other 

rotational and static loads. Truncation mechanism is used to 

manage the pareto-optimal solution set size. The best 

compromise solution is extracted using fuzzy set theory. The 

DEA performance for different population sizes and generation 

number cases will be demonstrated. The results exhibited the 

capabilities of the proposed approach in producing optimized 

pareto-optimal solutions for the subject multiobjective problem. 

The byproduct annual cost avoidance potential due to real 

power loss optimization for the studied cases will be 

demonstrated. 

 
     Keywords-differential evolution algorithm; power loss 

optimization; voltage stability index; hydrocarbon facility; 

millions of standard cubical feet of gas (MMscf).  

 

I. INTRODUCTION 

Due to the exponential increase of the electrical power 

demand and the average low generation efficiency in most of 

the developing countries, the issue of reducing the electrical 

power system loss while maintaining the system stability has 

received more attention. For example, in Saudi Arabia, the 

annual average peak electric demand increase is around 7.4% 

[1]. As of 2013, the distribution of plant capacity for 

electricity generation in Saudi Arabia, by technology is 

shown in Figure 1. The low efficient simple cycle steam 

turbine generation is making 32% of Saudi Arabia utility 

company generation fleet while the most efficient combined 

cycle is around 13.8% of the whole fleet [2]. These inspired 

most of the developing countries to unleash national 

initiatives to optimize electrical usage and reduce system 

loss. The subject issue can be addressed by adjusting 

transformer taps and generators and synchronous motors 

buses voltages.  

Heuristic methods are very powerful in addressing the 

electricals system loss optimization by searching the solution 

space for the optimal solutions. Many intelligent algorithms 

were implemented to identify the pareto-optimal solution set 

for the subject. The DEA in most cases demonstrates superior     

 
 

Figure 1.  Saudi Arabia generation units fleet distribution by technology 

 

over other algorithms such as the genetic algorithm [3]-[6].   

Most of the previous studies in the literature used virtual 

IEEE system models to address the power loss and system 

stability multiobjective optimization problem or other 

problems [7]-[9]. A truncation technique is implemented with 

the DEA to manage the size of the Pareto-optimal set solution 

[9]. The fuzzy logic is the most common technique in 

extracting the best compromise solution out of the pareto-

optimal solution set [7][9].  

This paper considers an existing real life hydrocarbon 

central processing facility electrical power system model for 

assessing the potential of DEA in optimizing two competing 

objectives simultaneously: power system loss and system 

stability index improvement. In Section 2 of the paper, the 

problem will be formulated as a multiobjective optimization 

problem with equality and inequality constraints. In Section 

3, the multiobjective optimization process will be illustrated. 

In Section 4, the DEA approach will be addressed. In Section 

5, the paper study cases will be developed. Finally, in Section 

6 the technical and economic analysis of the studied cases 

results will be presented. 

 

II. PROBLEM FORMULATION 

 

The problem formulation consists of five parts: the 

development of the objective functions, the calculation of all 

load buses stability index (L-Index), the identification of the 

system electrical constraints to be met - equality and 

inequality constraints - and the illustration of the fuzzy logic 

and the truncation technique.  
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A. Problem Objective Functions 

 

In this paper, two competing objective functions will be addressed 

as follows:  

 

A.1 System Loss Objective Function  

 

This objective function is to minimize the real power loss 

J1 (PLoss) in the transmission and distribution lines. This 

objective function can be expressed in term of the power 

follow loss between two buses i and j as follows: 

 

         J1 = PLoss = ∑  𝒈𝒌 [ 𝑽𝒊
𝟐 + 𝑽𝒋

𝟐 − 𝟐  𝑽𝒊𝑽𝒋 𝐜𝐨𝐬(𝜹𝒊 − 𝜹𝒊)] 
𝒏𝒍

𝒌=𝟏
            (1) 

 

where nl is the number of transmission and distribution 

lines; gk is the conductance of the kth line, Vi i  and Vj j   

are the voltage at end buses i and j of the kth line, respectively  
[7] [9]. 

 

The objective is to minimize Ploss, that is,  

J1= Minimize (Ploss)                                                                 (2) 

A.2 Voltage Stability Index (Lmax)  

 

 The L indicator varies in the range between 0 (the no load 

case) and 1, which corresponds to voltage collapse. This 

indicator uses the bus voltage and network information 

provided by the power flow program to measure the stability 

of the system. The L indicator can be calculated as given in 

[10]. For a multi-node system 

 

                           
bus bus bus

I Y V                                        (3) 

 

By segregating the load buses (PQ) from generator buses 

(PV), (3) can be written as: 

 

      [
𝑰𝑳

𝑰𝑮
] =  [

𝒀𝟏 𝒀𝟐

𝒀𝟑 𝒀𝟒
]  [

𝑽𝑳

𝑽𝑮
]                       (4) 

 

       [
𝑽𝑳

𝑰𝑮
] =  [

𝑯𝟏 𝑯𝟐

𝑯𝟑 𝑯𝟒
]  [

𝑰𝑳

𝑽𝑮
] =  [

𝒁𝑳𝑳 𝑭𝑳𝑮

𝑲𝑮𝑳 𝒀𝑮𝑮
]  [

𝑰𝑳

𝑽𝑮
]   (5) 

 

where  

VL , IL are load buses voltages and currents 

VG , IG are Generator buses voltages and currents 

H1 ,H2 ,H3 ,H4 are submatrices generated from Ybus Partial 

Inversion 

ZLL ,FLG , KGL ,YGG  are submatrices of H-matrix 

 

Therefore, a local indicator Lj can be worked out for each 

node j similar to the line model 

                                  Lj = |𝟏 −
∑  𝑭𝒋𝒊𝒊  𝑮  𝑽𝒊

𝑽𝒋
|              (6) 

 

For a stable situation, the condition Lj ≤ 1 must not be violated 

for any of the nodes j. Therefore, a global indicator L 

describing the stability of the whole system is given by: 

 

                     Lmax= MAXjL |𝟏 −
∑  𝑭𝒋𝒊𝒊  𝑮  𝑽𝒊

𝑽𝒋
|           (7) 

 

where L is the set of load buses and G is the set of generator 

buses.  

 

The objective is to minimize Lmax, that is,  

J2= Minimize (Lmax)                                                                 (8) 

 

Combining the objectives functions and these constraints, the 

problem can be mathematically formulated as a nonlinear 

constrained single objective optimization problem as follows: 

 

Minimize J1 and J2   
Subject to: 

                                      g(x,u) = 0                                      (9) 

                                      |h(x,u)| ≤ 0                                   (10) 

where: 

x:   is the vector of dependent variables consisting of load  bus 

voltage VL, generator reactive power outputs QG and the 

Synchronous motors reactive Power QSynch. As a result, x 

can be expressed as 

     xT= [VL1..VLNL, QGi…QGNG, QSynchi…QSynchNSynch]       (11) 

 

u:  is the vector of control variables consisting of generator 

voltages VG, transformer tap settings T, and synchronous 

motors voltage VSynch. As a result, u can be expressed as 

            uT = [VG1..VGNL, T1…TNT, VSynch1..VSynchNL]             (12) 

 

g: are the equality constraints. 

h: are the inequality constraints. 

B. Problem Equality and Inequality Constraints  

 

The system constraints are divided into two categories: 

equality constraints and inequality constraints [6][7]. Details 

are as follows: 

 

B.1 Equality Constraints 

 

These constraints represent the power load flow 

equations. The balance between the active power injected PGi, 

the active power demand PDi and the active power loss Pli at 

any bus i is equal to zero. The same balance apply for the 

reactive power QGi, QDi , and  Qli. These balances are 

presented as follows: 

 

                             PGi− PDi −  Pli = 0                            (13) 

 

                             QGi− QDi −  Qli = 0                        (14) 

The above equations cane be detailed as follows: 
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 PGi− PDi−𝑉𝑖 ∑  𝑽𝒋 [ 𝐺𝑖𝑗𝑐𝑜𝑠(𝛿𝑖 − 𝛿𝑗) + 𝐵𝑖𝑗 sin (
𝑵𝑩

𝒋=𝟏
𝛿𝑖 − 𝛿𝑗)] = 0          (15) 

QGi − QDi−𝑉𝑖 ∑  𝑽𝒋 [ 𝐺𝑖𝑗𝑠𝑖𝑛(𝛿𝑖 − 𝛿𝑗) − 𝐵𝑖𝑗 cos (
𝑵𝑩

𝒋=𝟏
𝛿𝑖 − 𝛿𝑗)] = 0     (16)  

 

where i = 1,2,…,NB;NB is the number of buses; PG and QG 

are the generator real and reactive power, respectively; PD 

and QD are the load real and reactive power, respectively; Gij 

and Bij are the conductance and susceptance between bus i 

and bus j, respectively.   
 

B.2 Inequality Constraints 

 

These constraints represent the system operating 

constraints posted in Table IV. 

C.  Fuzzy Logic for Selecting the Best Compromise Solution 

 

Upon having the Pareto-optimal set of nondominated 

solution, the proposed approach presents one solution to the 

decision maker as the best compromise solution. Due to 

imprecise nature of the decision maker’s judgment, the i­th 

objective function Fi is represented by a membership function 

i defined as [7] [9]. 
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where min

iF  and max

iF are the minimum and maximum value 

of the i-th objective function among all nondominated 

solutions, respectively.  

For each nondominated solution k, the normalized 

membership function k is calculated as 
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                            (18) 

 

where M is the number of nondominated solutions. The best 

compromise solution is that having the maximum value of k. 

 

D. Pareto Set Reduction by Truncation  

 

A minimum distance based algorithm [9] is employed to 

reduce the Pareto set to manageable size. At each iteration, 

an individual i is chosen for removal from the external pareto 

set 𝑃𝑡+1. The algorithm is illustrated in the following steps: 

Step 1: find the nearest individuals A and B in the objective 

functions space. 

Step 2: calculate the distance dA and dB of the next nearest 

individual from A and B in the objective function space 

respectively. 

Step 3: Delete the individual with the smaller one between dA 

and dB. 

 

III. MULTIOBJECTIVE OPTIMIZATION 
 

In real life, there are problems that involve simultaneous 

optimization with no common thing in-between.  Usually, 

these problems are competing multiobjective optimization 

which mandates developing a set of optimal solutions, 

instead of one optimal solution. The reason for the optimality 

of many solutions is that no one can be considered to be better 

than any other with respect to all objective functions. These 

optimal solutions are known as Pareto­ optimal solutions set. 

A universal multiobjective optimization problem consists 

of a number of objectives to be optimized simultaneously in 

association with a number of equality and inequality 

constraints. It can be formulated as follows: 

 

obji NixfMinimize ,...,1  )(                                          (19) 









Kkxh

Mjxg
toSubject

k

j

,...,1   0|)(|

,...,1  0)(
 :  Constraints           (20) 

 

where fi is the ith objective functions, x is a decision vector 

that represents a solution, and Nobj is the number of 

objectives. 

For a multiobjective optimization problem, any two 

solutions x1 and x2 can have one of two possibilities: one 

covers or dominates the other or none dominates the other. In 

a minimization problem, without loss of generality, a solution 

x1 dominates x2 if the following two conditions are satisfied: 

 

1. )()(:}..., ,2 ,1{
21

xfxfNi iiobj                        (21) 

2. )()(:}..., ,2 ,1{
21

xfxfNj jjobj                        (22) 

 

If any of the above conditions is violated, solution x1 does 

not dominate the solution x2. If x1 dominates solution x2, x1 is 

called the nondominated solution. The solutions that are 

nondominated within the entire search space are denoted as 

Pareto­optimal and constitute the Pareto­optimal set. 

 

IV. THE DEA APPROACH 

 

The DEA evolution process are summarized in the 

following steps [11] [12]: 

Step 1: Initialization 

            The population P0  is generated with K size and an vacant 

annals (external) Pareto-optimal set  P0̅ with 𝐾 size. 

     Step 2: Updating of external pareto set 

           To bring the external pareto-optimal set up to date, the 

following steps are to be shadowed,  
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(a) Population non-dominated individuals are highlighted 

and reproduce to the external Pareto set.  

(b) Look for set of external Pareto, designed for the non-

dominated individuals. 

(c) If condition ( 𝑃𝑡+1
̅̅ ̅̅ ̅̅  ) <𝐾 is satisfied, keep the individuals 

with higher fitness values untial | 𝑃𝑡+1
̅̅ ̅̅ ̅̅ | =   𝐾 is satisfied. 

(d) If ( 𝑃𝑡+1
̅̅ ̅̅ ̅̅  ) >𝐾, truncation procedure is called which 

removes individuals from ( 𝑃𝑡+1
̅̅ ̅̅ ̅̅  ) in anticipation of | 

𝑃𝑡+1
̅̅ ̅̅ ̅̅ | =   𝐾. 

 Step 3: Assignment of fitness values 

The fitness values of the individuals are calculated in the 

external Pareto set Pt̅ and the population 𝑃𝑡  𝑎s follows: 

(a) St(i); strength value;  is assigned to all individuals i 

inside the external pareto set 𝑃𝑡̅ and the population Pt. 

St(i) signifies the unit, which i dominates and it is 

expressed as follow:  

 

       St(i) = | { j, j ϵ 𝑃𝑡  +  𝑃𝑡̅ , ^ i ≻ j } |                           (23) 

       

    Then, the raw fitness Rw(i) with respect to an individual   

can be measured  as follows: 

        

        Rw (i)=∑ 𝑆𝑡(𝑗)𝑗𝜖𝑃𝑡+𝑃̅𝑡 ,𝑗≻𝑖
                                           (24) 

        

       The raw fitness of an individual is obtained with respect 

to the strength of its dominators in the archive and 

population.  

(b) The distances between an individual i and the entire j 

individuals, in the course of external and   population sets 

and are enlisted. Then, the list is sorted in a cumulative 

manner, the distance to the mth individual, consequently 

m = √𝐾 + 𝐾 is represented as 𝜎𝑖
𝑚. Then, the density D(i) 

is calculated for each  i 

 

      D (i) = 
1

𝜎𝑖
𝑚+2

                                 (25) 

 

The addition of integer 2 is made in the denominator to 

certify that the value of D (i) is larger than zero and is < 

1. The fitness value i of an individual is expressed as 

follows: 

        F (i) = Rw (i) + D(i)                                                           (26) 

 

Step 4: Mutation 

Different from the SPEA2 in which the individuals to be 

subjected to crossover and mutation are selected from the 

front pareto optimal set, in DEA the individuals are selected 

from the population. In the DEA, mutation is performed using 

the DE/rand/1 mutation technique. Vi (t), the mutated vector, 

is created for each population member Xi (t) set by randomly 

selecting three individuals’ xr1, xr2 and xr3 and not 

corresponding to the current individual xi . Then, a scalar 

number F is used to scale the different between any two of 

the selected individuals. The resultant difference is added to 

the third selected individual. The mutation process can be 

written as: 

Vi,j(t) = xr1,j (t) + F . [ xr2,j(t) - xr3,j (t) ]                             (27) 

 

The value of F is usually selected between 0.4 and 1.0; in this 

study F was set to be 0.5 (50%). 

Step 5: Crossover 

Perform the binomial crossover, which can be expressed as 

follow: 

 

𝑢𝑖,𝑗(𝑡) =  {
𝑣𝑖,𝑗(𝑡) 𝑖𝑓 𝑟𝑎𝑛𝑑 (0,1) < 𝐶𝑅

𝑥𝑖,𝑗 (𝑡)                             𝑒𝑙𝑠𝑒
                   (28) 

 

CR is the crossover control parameter and it usually set 

within the range [0, 1]. The child ui,j(t) will contend with its 

parent xi,j(t). CR is set equal to 0.9 (90%) in ths study  

Step 6: Selection 

The procedure for the selection is as follows: 

 

xi(t+1) = ui(t)      condition    f(ui(t)) ≤   f(xi(t))               (29) 

 

xi(t+1) = xi(t)      condition    f(xi(t)) ≤   f(ui(t))                (30) 

 

where f( ) is the objective function to be minimized.     

Step 7:  Looping back/Termination  

Look for the terminating criteria. If the criteria are not 

fulfilled, then generate new offspring population to previous 

one. If satisfied, apply the fuzzy set theory for the 

identification of the best compromise pareto set. Figure 2. 

demonstrates DEA evolutionary steps.  

 
Start

Initialize population & Pareto-Optimal set, set Gen=0

Current Population

Assign Fitness values

External Pareto Set

Size < Set Size

Reduce Pareto Set by truncation

Mutation & Crossover 

Selection

Select the Best
Compromise Solution 

Using Fuzzy Set Theory

Updated Population

Stop

Gen = Gen + 1

No

Yes

Yes

No

No

Yes

Is feasible 
Population Field ?

Is Gen < Max. Gen ?

Figure 2.  DEA evolutionary process chart 

V. STUDY CASES 

In this paper, three cases were studied. First, is the base 

case - business as usual (BAU). Second, the different number 

of generation with fix population size optimization case. 
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Third, the different population size with fix number of 

generation optimization case. In the two optimization cases, 

the best compromised values of the objective functions (J1 

and J2) are obtained. 

 

A.  Base Case Scenario (Business as Usual) 

 

The base case scenario (BAU) which is also called normal 

system operation mode was simulated to be benchmarked 

with the two optimal cases. Following are some of the normal 

system operation mode parameters: 

1) The utility bus and generators terminal buses were set at 

unity p.u. voltage. 

2) All the synchronous motors were set to operate very close 

to the unity power factor.   

3) All downstream distribution transformers’ and the captive 

synchronous motors transformers’ off-load tap changers 

were put on the neutral tap. 

4) The causeway substations main transformers’ taps were 

raised to meet the very conservative buses voltage 

constraints (≥ 0.95p.u.) at these substations downstream 

buses as posted in Table IV.  These main 

transformers’selected taps values are as per Table I below. 

TABLE I 

 THE SELECTED FEASIBLE TRANSFORMERS TAPS VALUE 

         Substation Number        Transformer Tap 

Causeway Substation#1 +3 (1.019 p.u.) 

Causeway Substation#2 Neutral (1.0 p.u.) 

Causeway Substation#3 +3 (1.019 p.u.) 
Main Substation Transformers +1 (1.006 p.u.) 

 

B. Different Generation Number with Fix Population Size Case 

 

In this case, the crossover rate is fixed at 90%, the 

mutation rate is fixed at 50%, the population size was fixed 

at 100 individuals and the front pareto set population is fixed 

to be 50 individuals. Yet, the number of generations was 

varied to be 50, 100 and 150 respectively. The effect of 

different number of generations on the DEA performance 

compared to the BAU case is posted in Table II. 

 
TABLE II  

EFFECT OF GENERATION NUMBER ON THE DEA PERFORMANCE  

 

Generation #   BAU J1/J2 Optimal J1/J2 Δ%  J1/J2 

50 2.13/0.075 1.90/0.06636 -10.8%/-11.5% 

100 2.13/0.075 1.893/0.06640 -11.1%/-11.5% 
150 2.13/0.075 1.897/0.06633 -10.9%/-11.6% 

 

C. Different Population Size with Fix Generation Number Case  

 

In this case, the number of generations is fixed at 50, the 

crossover rate is fixed at 90%, the mutation rate is fixed at 

50% and the front pareto set population is fixed to be 50 

individuals. Yet, the population size was varied to be 100, 

200 and 300 correspondingly. Table III shows the effect of 

population size on the DEA performance compared to the 

BAU case. Population size of 200 produces better optimized 

value of J1 while population size of 300 produces better 

optimized value of J2.  
TABLE III  

EFFECT OF POPULATION SIZE ON THE DEA PERFORMANCE  

 

Population Size   BAU J1/J2 Optimal J1/J2 Δ%  J1/J2 

 100 2.13/0.075 1.902/0.06636 -10.8% /-11.5% 

 200 2.13/0.075 1.892/0.06640 -11.2% /-11.5% 
      300 2.13/0.075 1.91/0.06633 -10.3% /-11.6% 

 
VI.  RESULTS AND DISCUSSIONS 
 

The results from the three studied cases will be analyzed 

in two categories: the system parameters analysis and the 

economic analysis.  

 
A. System Parameters Analysis  

 

The hydrocarbon facility simplified electrical system 

model, which is studied in this paper, is shown in Figure 3. 

 

 

 

Figure 3.  Simplified electrical system of the hydrocarbon facilty 

 

The system inequality constraints are posted in Table IV. 

All these constraints are real system constraints for industrial 
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electricals system. The real and reactive power limitations are 

manufactures actual limitations.    

 
TABLE IV 

 SYSTEM INEQUALITY CONSTRAINTS  

Description Lower Limit Upper Limit 

GTG Terminal Voltage (VGTG) 90% 105% 

STG Terminal Voltage (VSTG) 90% 105% 
GTG Reactive Power (QGTG) 

Limit  

-62.12 MVAR     95.72 MVAR 

STG-1 Reactive Power (QSTG) 
Limit 

-22.4 MVAR     20.92 MVAR 

STG-2 Reactive Power (QSTG) 
Limit 

-41.9 MVAR     53.837 MVAR 

Captive Synch. Motors Terminal 

Voltage  

90% 105% 

Synch. Motors Terminal Voltage 

(VSychn) 

90% 105% 

Causeway downstream Buses 
Voltage  

95% 105% 

All Load Buses Voltage 90% 105% 

Main Transformer Taps +16 (+10% ) -16 (-10%) 
Generators Step-Up Transformer 

Taps 

+8 (+10% ) -8 (-10%) 

 

The front pareto-optimal solution set for the first optimal 

studied case - different number of generation with fixed 

number of generation - is captured in Figure 4.  

 

 
 

Figure 4.  Pareto-optimal set solution for the first optimal case 

 

The second optimal case - different population size - front 

pareto-optimal solution sets are shown in Figure 5. As shown 

in both figures none of the different population sizes or 

generation number produces very well distributed front 

pareto optimal set. A better distributed front pareto optimal 

set may be produced by trying higher population size or 

generation number. Yet, this will increase the evolution 

process. Massaging the crossover and mutation rate may also 

results in well distributed front pareto optimal set.  

 

 

Figure 5. Pareto-optimal set solution for the second optimal case 

 

B. Economic Analysis  

The avoided annual cost due to the optimization of the 

system power loss is demonstrated in Figure 6 for the BAU 

and the two optimal cases. The annual cost avoidance based 

on natural gas cost of $3.5 per MMscf is around $69,507/year 

for the 150 generations with 100 population size scenario part 

of the first optimal case. It is $71,218/year for 200 population 

size with 50 generations scenario part of the second optimal 

case.  
 

 
 

Figure 6.  The avoided cost due to system power loss optimization 

 

VII. CONCLUSION AND FUTURE WORK 
 

This paper presented the potential of DEA in addressing 

the studied multiobjective problem for a real-life 

hydrocarbon facility. It was clearly demonstrated that 

increasing of generations number have better impact in 

producing better pareto-optimal set solution. Yet, many of the 

pareto-optimal solution set converged to the same J1 and J2 

values.  The annual avoided cost due to the power loss 

reduction was captured. Future study may need to address the 
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effectiveness of different crossover and mutation rate 

percentage in the pareto-optimal solution set values and 

distribution. The use of different fix or dynamic mutation and 

crossover rate is a subject of future study considering the 

problem in hand.   
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