
From Personal Computers to Personal Computing Networks

A New Paradigm for Computation

Mark Burgin

UCLA

Los Angeles, USA

mburgin@math.ucla.edu

Rao Mikkilineni and Giovanni Morana

C3 DNA

Santa Clara, USA

{rao,giovanni}@c3dna.com

Abstract— Transition from mainframe computers to personal

computers marked a new important step in computer

technology. Here, we suggest a new transition from personal

computers to personal computing networks that, as proven in

scientific literature, they can be more powerful and efficient in

computation. An efficient tool for personal computing

networks is the Distributed Intelligent Managed Element

(DIME) network architecture, which extends the conventional

computational model of information processing networks,

allowing improvement of the efficiency and resiliency of

computational processes. This approach is based on organizing

the process dynamics under the supervision of intelligent

agents that, knowing the intent of the underlying process, is

able to optimize its execution. In this paper, we will discuss

about main ideas, structural features and tentative applications

of personal computing networks and will explain why the

DIME network architecture is suitable to build them.

Keywords- personal computer; personal computing network;

Oracle; DIME network architecture; structural operation;

connectivity; modularity.

I. INTRODUCTION

After their creation, electronic computers existed in the
form of a mainframe computer where the end user's requests
are filtered through operating staff, or a time sharing system
in which one large processor is shared by many individuals.
A new important step in computer technology followed with
the transition from mainframe computers to personal
computers intended for interactive individual use, as opposed
to time sharing access to mainframe computers.

Efficiency of personal computers has grown very fast and
contemporary personal computers are more powerful than
gigantic mainframe computers, which existed in the past.
However, people need to solve more and more complex
computational problems. To do this, engineers build more
and more efficient and fast computers, develop new
architectures such as Grid and Cloud Computing [1] [2] [3]
while programmers write more and more complex
distributed software systems [4] [5] [6] [7].

Here we suggest a new computational paradigm, which
presuppose the transition from personal computers to
personal computing networks (PCN), a set of distributed
resources provisioned on demand (often provided by
different service providers) that may have global reach using
private and public clouds. The goal of PCN is to solve

computational problems of the user with a specific goal with
appropriate resources throughout the computation life-cycle
to maintain optimal or desired availability, performance,
security, compliance and cost.

As it is proved in [8], computation using networks of
computers can be more powerful and efficient than
computation using an individual computer. Being an
efficient environment for concurrent computations, this
approach will unleash a revolution of new possibilities in
computer technology and applications of computers.

An efficient tool for PCNs is the distributed intelligent
managed element (DIME) network architecture [9] [10] [11]
[12] [13], which extends the conventional computational
model of information processing networks, allowing
improvement of the efficiency and resiliency of
computational processes. This approach is based on
organizing the process dynamics under the supervision of
intelligent agents that, knowing the intent of the underlying
process, is able to optimize its execution.

The DIME network architecture (DNA) utilizes the
DIME computing model with non-von Neumann parallel
implementation of managed Turing machines with a
signaling network overlay adding cognitive elements to
evolve super recursive information processing, for which it is
proved that they improve efficiency and power of
computational processes.

The aim of this paper is to explain why the DIME
network architecture is suitable to build PCNs. The paper is
organized as follows. Section II of this paper, describes the
main ideas, structural features and tentative applications of
PCNs. Section III describes how it is possible to build PCNs
with assured distributed resources throughout the
computation life-cycle based on the DIME network
architecture. In Section IV, we apply theoretical models to
study properties of PCNs, while in Section V, some
conclusions are considered and directions for future work are
suggested.

II. PERSONAL COMPUTING NETWORKS

Here we review the main ideas, structural features and
tentative applications of PCNs.

There are different approaches to the PCN architecture.
The goal of a PCN is to allow the user to work with a
network of computers in a similar way to working with a
single computer. The simplest solution is to form a

24Copyright (c) IARIA, 2015. ISBN: 978-1-61208-389-6

FUTURE COMPUTING 2015 : The Seventh International Conference on Future Computational Technologies and Applications

computing network and to provide access to each of its
computers for the user.

However, to interact with a personal distributed network
of computers at the same time is an unmanageable task. That
is why to achieve this goal, it is necessary to have a special
machine, which on one hand, provides an efficient interface
for the user, while, on the other hand, manages functioning
of all computers, called basic network computers, in the
PCN. We call such a machine the network Oracle because it
has to be more powerful and have more information that the
basic computers in the PCN.

There are different modes how the network Oracle can
manage the basic network computers. Here we consider three
prime modes of such a management:

1. Information supply

2. Control

3. Supervision

Definition 1. Information supply of the network Oracle is
the function of the Oracle in Turing machines where the
computing machine from time to time goes to the Oracle to
get information in the form of data that the Oracle already
has.

Definition 2. When the network Oracle A controls
functioning of the basic computers from its network, A
monitors these computers all the time changing, if
necessary, functioning of any of these computers.

Definition 3. When the group Oracle A supervises
functioning of the basic computers from its network, A
interacts with these computers from time to time, verifying
if the functioning of any of them is correct, providing
necessary data and allocating instructions for forthcoming
work.

Possible applications are:

A. Information search.

Each basic network computer from a PCN uses a specific
search engine for its task. For instance, one computer uses
Google, another utilizes Yahoo while the third one applies
Microsoft’s Bing. After each search cycle, the network
Oracle collects the most relevant results from all basic
computers, excluding repetitions and reorganizing data. Then
it transmits the results to the user and assigns new tasks to
the basic network computers. In such a way, the user
receives more relevant and organized information.

When it is necessary to find information about different
objects, e.g., different terms, each basic network computer
can explore only one object. As a result, the PCN performs
search in a parallel mode decreasing time of the search.

B. Computer simulation.

Each basic network computer from a PCN uses a specific
simulation algorithm or/and simulation technique for its task.
After each simulation cycle, the network Oracle collects the
obtained results from all basic computers, excluding
repetitions, eliminating irrelevant information and
reorganizing data. Then, it transmits the results to the user
and assigns new tasks to the basic network computers. In

such a way, the user receives more relevant and organized
information.

When it is necessary to simulate different systems, e.g.,
air currents and ocean currents, each basic network computer
can simulate only one system. As a result, the PCN performs
simulation in a parallel mode decreasing time of the
simulation.

III. DIME NETWORK ARCHITECTURE AS A BASIS FOR

PERSONAL COMPUTING NETWORKS

The DIME network architecture introduces three key
functional constructs to enable process design, execution and
management to improve both resiliency and efficiency of
computing networks:

1. Machines with an Oracle
2. Blue-print or policy managed fault, configuration,

accounting, performance and security monitoring
and control

3. DIME network management control overlay over
the managed Turing Oracle machines

A. Machines with an Oracle

Executing an algorithm, the DIME basic processor P

performs the {read  compute  write} instruction cycle or

its modified version the {interact with external agent  read

 compute  interact with external agent  write}
instruction cycle. This allows the external agent to influence
the further evolution of computation, while the computation
is still in progress. We consider three types of agents:

(a) A DIME agent.
(b) A human agent.
(c) An external computing agent.

In a PCN, we use DIME with several basic processors

The DIME agent plays the role of the network Oracle in its
PCN, while the basic DIME basic processors function as the
basic computers from this network.

It is assumed that a DIME agent knows the goal and
intent of the algorithm (along with the context, constraints,
communications and control of the algorithm) the DIME
basic processor is executing and has the visibility of
available resources and the needs of the basic processor as it
executes its tasks. In addition, the DIME agent also has the
knowledge about alternate courses of action available to
facilitate the evolution of the computation to achieve its goal
and realize its intent. Thus, every algorithm is associated
with a blueprint (analogous to a genetic specification in
biology), which provides the knowledge required by the
DIME agent to manage the process evolution. An external
computing agent is any computing node in the network with
which the DIME unit interacts.

25Copyright (c) IARIA, 2015. ISBN: 978-1-61208-389-6

FUTURE COMPUTING 2015 : The Seventh International Conference on Future Computational Technologies and Applications

B. Blue-print or policy managed fault, configuration,

accounting, performance and security monitoring and

control

The DIME agent, which uses the blueprint to configure,
instantiate, and manage the DIME basic processor executing
the algorithm uses concurrent DIME basic processors with
their own blueprints specifying their evolution to monitor the
vital signs of the DIME basic processor.

It also implements various policies to assure non-
functional requirements such as availability, performance,
security and cost management while the managed DIME
basic processor is executing its intent. Figure 1 shows the
DIME basic processor (executing its “Algorithm & Turing
Machine Instruction Cycle”) and its DIME agent
(performing “FCAPS monitoring of Application health). The
DIME agent extends the basic processor capability adding
the “Check with Oracle” operation: this allows the DIME
agent to infuse to the underlying basic processor new
knowledge, stored as the blueprint [15] and coming from
both local information, collected by the DIME agent itself,
and global information, received from the network of oracles
through the signaling channel.

C. DIME network management control overlay over the

managed Turing Oracle machines

In addition to read/write communication of the DIME
basic processor (the data channel), other DIME basic
processors communicate with each other using a parallel
signaling channel. This allows the external DIME agents to
influence the computation of any managed DIME basic
processor in progress based on the context and constraints.
The external DIME agents are DIMEs themselves. As a
result, changes in one computing element could influence the
evolution of another computing element at run time without
halting its Turing machine executing the algorithm. The

signaling channel and the network of DIME agents can be
programmed to execute a process, the intent of which can be
specified in a blueprint. Each DIME basic processor can
have its own Oracle managing its intent, and groups of
managed DIME basic processors can have their own domain
managers implementing the domain’s intent to execute a
process. The management DIME agents specify, configure,
and manage the sub-network of DIME units by monitoring
and executing policies to optimize the resources while
delivering the intent.

Figure 2 shows the DIME network architecture

implementation for a process with different hardware,
functions and an evolving structure used to attaining the
intent of the process. This architecture has following benefits
from current architectures deploying virtual machines to
provide cloud services such as self-provisioning, self-repair,
auto-scaling and live-migration:

1. Using DNA same cloud services can be provided at
application and workflow group level across physical or
virtual servers. The mobility of applications comes from
utilization of the policies implemented to manage the intent
through the signaling network overlay over the managed
computing network. Applications are moved into static
Virtual Machines or physical servers with given service
levels provisioned.

2. Scheduling, monitoring, and managing distributed
components and groups with policies at various levels de-
couple the application/workflow management from
underlying distributed infrastructure management systems.
The vital signs (CPU, memory, bandwidth, latency, storage
IOPs, throughput and capacity) are monitored and managed
by DIMEs, which are functioning similar to the Turing
Oracle Machines.

Figure 1. The distributed intelligent managed element (DIME) is a managed Turing Oracle Machine endowed with a

signaling network overlay for super recursive policy based DIME network management

26Copyright (c) IARIA, 2015. ISBN: 978-1-61208-389-6

FUTURE COMPUTING 2015 : The Seventh International Conference on Future Computational Technologies and Applications

While implementing the monitoring and management of
the DIME agent, the DIME network monitors and manages
its own vital signs and executing various policies to assure
availability, performance and security. At each level in the
hierarchy, a domain specific task or workflow is executed to
implement a distributed process with a specific intent. In
Figure 2, each web component has its own policies and the
group has the service level policies that define its
availability, performance and security. Based on policies, the
elements are replicated or reconfigured to meet the resource
requirements based on monitored behavior.

In essence, the DIME computing model infuses sensors
and actuators connecting the DIME basic processor with the
DIME agent to manage the DIME basic processor and its
resources based on the intent, interactions and available
resources. Higher level policy managers are used to
configure, monitor and manage the intent of a network of
lower level managed basic processors.

The DIME network architecture has been successfully
implemented using both Linux and Parallax [9][10][14], an
operating system designed to support natively the DIME-
based approach. More recently, a product based on DIME
network architecture was used to implement auto-failover,
auto-scaling, and live-migration of a web based application
deployed on distributed servers with or without virtualization
[15].

The mobility of the applications is provided by using the
Oracle interrupt to control the down-stream processes. The
global knowledge of down-stream process activity allows the
higher level Oracles to reason and affect changes to the
down-stream process dynamics. In addition to read/write
communication of the basic automaton (the data channel),
the Oracles manage different basic automata communicating
with each other using a parallel signaling channel. This
allows the external Oracles to influence the computation of
any managed basic automaton in progress based on the

context and constraints just as a Turing Oracle is expected to
do.

The Oracle uses the blueprint to configure, instantiate,
and manage the automaton and executing the algorithm.
Utilization of concurrent automata in the network with their
own blueprints specifying their evolution to monitor the vital
signs of the DIME basic automaton and to implement
various policies allows the Oracle to assure non-functional
requirements such as availability, performance, security and
cost management, while the managed DIME basic
automaton is executing its task to achieve its goal and realize
its intent.

The external Oracles represent DIME agents, allowing
changes in one computing element influence the evolution of
another computing element at run time without stopping its
basic automaton executing the algorithm. The signaling
channel and the network of the Oracles can be programmed
to execute a process whose intent itself can be specified in a
blueprint. Each basic automaton can have its own Oracle
managing its intent, and groups of managed basic automata
can have their own domain managers implementing the
domain’s intent to execute a process. The management
Oracles specify, configure and manage the sub-network of
DIMEs by monitoring and executing policies to optimize the
resources while delivering the intent. The DIME network
implementing the Oracles is itself managed by monitoring its
own vital signs and executing various FCAPS (i.e. Fault,
Control, Accounting, Performance and Security) policies to
assure availability, performance and security.

An Oracle is modeled by an abstract automaton that has
higher computational power and/or lower computational
complexity than the basic automaton it manages. For
instance, the Oracle can be an inductive Turing machine,
while the basic automaton is a conventional Turing machine.

Figure 2. A managed application network with super recursive global, local and process level policy management with

a signaling control network overlay

27Copyright (c) IARIA, 2015. ISBN: 978-1-61208-389-6

FUTURE COMPUTING 2015 : The Seventh International Conference on Future Computational Technologies and Applications

It is proved that inductive Turing machines have much
higher computational power and lower complexity than
conventional Turing machine [16][17][18]19].

DIME agents possess a possibility to infer new data and
knowledge from the given information. Inference is one of
the driving principles of the Semantic Web, because it will
allow us to create software applications quite easily. For the
Semantic Web applications, DIME agents need high
expressive power to help users in a wide range of situations.

To achieve this, they employ powerful logical tools for
making inferences. Inference abilities of DIME agents are
developed based on mathematical models of these agents in
the form of inductive Turing machines, limit Turing
machines [16] and evolutionary Turing machines
[18][20][21][22].

Figure 3 shows a DNA workflow of a web application
running on a physical infrastructure that has policies to
manage auto-failover by moving the components when the
vital signs being monitored at various levels are affected. For
example if the virtual machine in the middle server fails, the
service manager at higher level detects it and replicates the
components in another server on the right and synchronizes
the states of the components based on consistency policies.
A similar schema, described in details in another work [15],
is adopted for handling (live) migration and (auto) scaling-
out.

Figure 4 shows, in details, how a network of Oracles can
be deployed in order to allow the user/developer of the
application to have full control over an application. A user (a
developer of a web service in this case) can provision
resources by defining the intent of the global Oracle and use

multiple Oracles at various levels to implement, monitor and
manage the life-cycle of each component of the web
application The DIME network architecture allows
components to be developed and composed into services,
deploy them, monitor the resources and their behavior and
take corrective actions to fulfill the intent.

In conclusion, the PCNs distinguish themselves with the
following properties:

1. On-demand service provisioning with required
resources,

2. Auto-failover based on policies,
3. Stateful or stateless application migration and
4. End-to-end service visibility and control to assure

availability, performance and security.
Users can create application components and compose them
into service workflows and execute them on available
distributed resources with dynamic service assurance.

IV. CAPABILITIES OF PRIVATE COMPUTING NETWORKS

Let us assume that it is possible to model the group
Oracle and each computer from its group by a Turing
machine. Results from [16] allow us to prove the following
result.

Theorem 1. If the network Oracle A works in the
recursive mode and controls functioning of basic network
computers in the recursive mode, then it is possible to
model the network functioning by a Turing machine.

Figure 3. A Web application suite deployed using DIME network architecture with policies to monitor and manage the

service availability, performance and security using auto-scaling, auto-fail-over and live migration

28Copyright (c) IARIA, 2015. ISBN: 978-1-61208-389-6

FUTURE COMPUTING 2015 : The Seventh International Conference on Future Computational Technologies and Applications

Figure 4. PCN for a Web Application

Results from [16] allow us to prove the following results.

Theorem 2. If the network Oracle A working in the
recursive mode supervises functioning of basic network
computers, then the supervised network can be more
powerful than any Turing machine even if all basic network
computers function in the recursive mode and A does not
have noncomputable information.

Theorem 3. If the network Oracle A has recursively non-
computable information, then the supervised network can be
more powerful than any Turing machine.

V. CONCLUSION

Three innovations are introduced, namely, the parallel
monitoring of vital signs (CPU, memory, bandwidth, latency,
storage IOPs, throughput and capacity) in the DIME,
signaling network overlay to provide run-time service
management and machines with Oracles in the form of

DIME agents. This allows interruption for policy
management at read/write in a file/device allow self-repair,
auto-scaling, live-migration and end-to-end service
transaction security with private key mechanism independent
of infrastructure management systems controlling the
resources and thus, provide freedom from infrastructure and
architecture lock-in. The DIME network architecture puts the
safety and survival of applications and groups of applications
delivering a service transaction first using secure mobility
across physical or virtual servers. It provides information for
sectionalizing, isolating, diagnosing and fixing the
infrastructure at leisure. The DIME network architecture
therefore makes possible reliable services to be delivered on
even not-so-reliable infrastructure. Modeling this

architecture by grid automata allows researchers to study
properties and critical parameters of semantic networks and
provides means for optimizing these parameters. Future
work will investigate specific predictions that can be made
from the theory for a specific DIME network execution and
compare the resiliency and efficiency using both recursive
and super-recursive implementations.

ACKNOWLEDGMENT

Rao Mikkilineni and Giovanni Morana thank the team
from C3 DNA Inc., for their continued support in
implementing the DIME network architecture.

REFERENCES

[1] R. Buyya, C. S. Yeoa, S. Venugopala, J. Broberga and I.
Brandic, "Cloud Computing and Emerging IT Platforms:
Vision, Hype, and Reality for Delivering Computing as the
5th Utility," Future Geeneration Computer Systems, Vol. 25,
no. 6, pp. 599-616, 2009.

[2] J. Varia, Cloud Computing: Principles and Paradigms, Wiley
Press, 2011, Best Practices in Architecture.

[3] M. Rahman, R. Ranjan, R. Buyya and. B Benatallah, A
Taxonomy and Survey on Autonomic Management of
Applications in Grid Computing Environments, Concurrency
and Computation: Practice and Experience, Volume 23,
Number 16, Pages: 1990-2019,, ISSN: 1532-0626, Wiley
Press, New York, USA, November 2011.

[4] S. Jha, et al. "Distributed computing practice for large‐scale
science and engineering applications." Concurrency and
Computation: Practice and Experience 25.11 (2013): 1559-
1585.

[5] D. Thain, T. Tannenbaum, and M. Livny. "Distributed
computing in practice: The Condor experience." Concurrency
and computation: practice and experience 17.2‐4 (2005):
323-356.

29Copyright (c) IARIA, 2015. ISBN: 978-1-61208-389-6

FUTURE COMPUTING 2015 : The Seventh International Conference on Future Computational Technologies and Applications

[6] A.D. Kshemkalyani, M. Singhal, Distributed Computing:
Principles, Algorithms, and Systems, ISBN-13:
9780521876346, Cambridge University Press (2008).

[7] O. Babaoglu, K. Marzullo, Consistent Global States of
Distributed Systems: Fundamental Concepts and
Mechanisms, Distributed Systems, ACM Press (editor S.J.
Mullender), Chapter 4, 1993.

[8] M. Burgin, Algorithmic Control in Concurrent Computations,
in Proceedings of the 2006 International Conference on
Foundations of Computer Science, CSREA Press, Las Vegas,
June, 2006, pp. 17-23 .

[9] R. Mikkilineni, Designing a New Class of Distributed
Systems. New York: Springer, 2011.

[10] R. Mikkilineni, G. Morana and I. Seyler, "Implementing
Distributed, Self-Managing Computing Services
Infrastructure using a Scalable, Parallel and Network-Centric
Computing Model." In Achieving Federated and Self-
Manageable Cloud Infrastructures: Theory and Practice, ed.
M. Villari, I. Brandic and F. Tusa, pp. 57-78 2012.

[11] R. Mikkilineni, "Architectural Resiliency in Distributed
Computing," International Journal of Grid and High
Performance Computing (IJGHPC) 4, 2012
doi:10.4018/jghpc.2012100103. [retrieved: February, 2015]

[12] R. Mikkilineni, G. Morana, D. Zito, and M. Di Sano, “Service
Virtualization Using a Non-von Neumann Parallel,
Distributed, and Scalable Computing Model,” Journal of
Computer Networks and Communications, vol. 2012, Article
ID 604018, 10 pages, 2012. doi:10.1155/2012/604018
[retrieved: February, 2015].

[13] R. Mikkilineni, "Going beyond Computation and Its Limits:
Injecting Cognition into Computing." Applied Mathematics 3
(2012): 1826.

[14] R. Mikkilineni, A. Comparini and G. Morana, The Turing O-
Machine and the DIME Network Architecture: Injecting the
Architectural Resiliency into Distributed Computing, In
Turing-100. The Alan Turing Centenary, (Ed.) Andrei

Voronkov, EasyChair Proceedings in Computing, Volume 10,
2012.

[15] R. Mikkilineni and G. Morana, "Infusing Cognition into
Distributed Computing: A new approach to distributed
datacenters with self-managing services" Enabling
Technologies: Infrastructure for Collaborative Enterprises
(WETICE), 2014 23rd IEEE International Conference, June
2014, pp.131-136.

[16] M. Burgin, Super-recursive Algorithms, New York: Springer,
2005.

[17] M. Burgin, Interactive Hypercomputation, in Proceedings of
the 2007 International Conference on Foundations of
Computer Science (FCS'07), CSREA Press, Las Vegas,
Nevada, USA, 2007, pp. 328-333.

[18] M. Burgin, “Reflexive Calculi and Logic of Expert Systems”,
in Creative processes modeling by means of knowledge bases,
Sofia, (1992) pp. 139-160 .

[19] J. P. Crutchfield and M. Mitchell, "Evolution of Emergent
Computation" Computer Science Faculty Publications and
Presentations. Paper 3. 1995

http://pdxscholar.library.pdx.edu/compsci_fac/3 [retrieved:
February, 2015].

[20] M. Burgin, "Inductive Turing machines," Notices of the
Academy of Sciences of the USSR, 270 N6 (1983) pp. 1289-
1293 (translated from Russian).

[21] M. Burgin and E. Eberbach, “On Foundations of Evolutionary
Computation: An Evolutionary Automata Approach,” in
Handbook of Research on Artificial Immune Systems and
Natural Computing: Applying Complex Adaptive
Technologies (Hongwei Mo, Ed.), IGI Global, Hershey,
Pennsylvania, 2009, pp. 342-360 .

[22] M. Burgin and E. Eberbach, “Evolutionary Automata:
Expressiveness and Convergence of Evolutionary
Computation,” Computer Journal, v. 55, No. 9 (2012) pp.
1023-1029.

30Copyright (c) IARIA, 2015. ISBN: 978-1-61208-389-6

FUTURE COMPUTING 2015 : The Seventh International Conference on Future Computational Technologies and Applications

