
Multi-Level Queue-Based Scheduling for Virtual Screening Application on
Pilot-Agent Platforms on Grid/Cloud to Optimize the Stretch

Bui The Quang, Nguyen Hong Quang
IFI, Equipe MSI; IRD, UMI 209 UMMISCO

Vietnam, Hanoi
e-mails: nguyen.hong.quang@auf.org,

 buithequang@gmail.com

Emmanuel Medernach, Vincent Breton
Laboratoire de Physique Corpusculaire

France, Aubière
e-mails: breton@clermont.in2p3.fr,

 medernach@clermont.in2p3.fr

Abstract— Virtual screening has proven a very effective
method on grid infrastructures. Operating a dedicated virtual
screening platform on grid resources requires optimizing the
scheduling policy. The scheduling can be done at 2 levels; at
site level and at platform level. Site scheduling is done at each
site independently. Each site allocates time slots for different
groups of users. Platform scheduling is done at group level:
inside a time slot jobs from many users are allocated. Pilot
agents are sent to sites and act as a container of actual users
jobs. They pick up users jobs from a central queue where the
platform scheduling is done. This paper focus on finding
platform scheduling policy for pilot-agent platform shared by
many virtual screening users. They need a suitable scheduling
algorithm at platform level to ensure a certain fairness
between users.

 Keywords-Virtual screening; grid computing; scheduling;
fairness; stretch; online-algorithm; cloud computing; multilevel
queue scheduling; SimGrid.

I. INTRODUCTION
In silico (i.e., computer-assisted) drug discovery [1]

offers an efficient alternative to reduce the cost of drug
development and to speed-up the discovery process. Virtual
screening (VS) is achieved through a pipeline analysis, first
step of which requires using a docking software, such as
Autodock [2], Dock [3] or FlexX [4] to predict potential
interacting complexes of small molecules in protein binding
sites. Large scale virtual screening, and especially its
docking step, consumes large computing resources. As
docking is an embarrassingly parallel process where
thousands to millions of compounds are tested in silico
against a biological target, it was successfully deployed on
grid computing to reduce the computation time. Some large
scale VS projects in the past have been deployed
successfully on grids, such as WISDOM [5][6], and
WISDOM-II [8] on malaria, and Avian Flu Data Challenge
[7].

Pilot-agent platforms are tools used for submitting and
controlling a large number of user jobs on grid
infrastructures. Several pilot agent platforms have been
developed, such as WPE [8], DIRAC [9], DIANE [10],
glideinWMS [11], and PanDA [12]. The DIRAC pilot-agent
platform is now available to the users of several
multidisciplinary virtual organizations on EGI (the European

Grid Initiative) [9]. As many users share the DIRAC pilot-
agent platform, it is important to define a scheduling policy
to ensure a certain degree of fairness so that users receive a
fair share of system resources. The scheduling policies used
on the existing pilot-agent platforms on EGI, are respectively
FIFO policy in WPE platform and Round Robin policy in
DIRAC platform. The VS project has specific properties,
such as divisibility in many independent docking tasks, no
order of execution constraints and comparable execution
time of all docking tasks. In this paper, we focus on
evaluating suitable online scheduling policies for the VS
application on the pilot-agent platform to improve user’s
satisfaction in the system.

Our research is also relevant to applications which have
the same properties of VS application (divisibility in many
independent tasks, no order of execution constraints and
comparable execution time of all tasks) on pilot agent
platform on grid/cloud. These applications are used in a
variety of scenarios, including data mining, massive
searches, parameter sweeps [38], simulations, fractal
calculations, computational biology [39], and computer
imaging [40][41].

This paper is organized as follows. Section 2 describes
the problem and our research objectives. Section 3 presents
related works. Section 4 introduces our solution based on
multi-queue scheduling. Section 5 discusses our results and
presents our simulator based on SimGrid [26]. Finally, we
conclude in Section 6 and give some perspectives on this
research.

II. PROBLEM STATEMENT
In this paper, we evaluate the performances of many

scheduling policies applied on the central pool of pilot jobs.
The criterion used is the stretch for all users. We, then,
explore new scheduling policy based on multiplexing user
group queues depending onsome probability parameter. We
will first describe our computing platform in details, then
we will explain our scheduling policies and evaluate them
with the help of simulation based on real workload traces.

32Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

A. Pull model, 2-level scheduling and limited machine
availability property of scheduling
A pilot-agent platform uses pull model for efficient

submission and controlling of user tasks: tasks are no longer
pushed through the grid scheduler but are put in a master
pool and pulled by pilot agents running on computing nodes.
Scheduling job is the process of ordering tasks in this pool.
List scheduling is applied in it. The pilot-agent itself is a
regular grid job that is started through a grid resource
manager. It is automatically submitted by platform and run
on a computing machine on grid. We can see a pilot agent as
container of jobs. The pull model adapts to heterogeneous
property of grid (faster machine will pull more tasks than the
other), reduces faults (resubmission of failed tasks) and
improves latency (the waiting time of job in grid scheduler is
reduced).

Figure 1. Pull model in pilot agent platform on grid.

As shown in Figure 1, a pilot-agent platform has two
main modules, the Task Manager and the Agent Manager.

The pilot agents are submitted automatically to grid by
Agent Manager. Then each pilot agent communicates with
Task Manager and asks a user task to be executed. Task
Manager receives tasks from user and control queue of user
tasks. Also, it receives request from pilot agent, choose some
task from queue and sends it to pilot agent.

Scheduling of pilot agent platform on grid takes place at
site and platform level. The site level scheduling takes place
in the site scheduler. Pilot agents sent by the platform are
distributed to the sites according to the grid scheduling
policy. The platform level scheduling is done by the
platform’s Task Manager. User sends the VS project to the
Task Manager, where docking tasks are put in the task
queue. The Task Manager Scheduler calculates task
priorities, and responds to pilot agents requests by sending to
them tasks ranked with the highest priority. There are
underlying grid architectural scheduling and logical
scheduling for the specific grid applications. We are
concerned with scheduling issue for many virtual screening
application users who share the grid resources given to the
same group privilege.

Moreover, the platform level scheduling has limited
machine availability property. Because each computing
center requires some limits to the maximum computing time
for grid job, each pilot agent is available for a limited period.
Therefore, the number of machines available for the platform
changes over time. This specific property makes our analysis
directly relevant to cloud infrastructures where users buy
computing resources for a limited time.

This paper focuses on finding out the most suitable
scheduling policy at platform level to optimize the
satisfaction of VS users.

B. The stretch – a measure for user’s satisfaction in
platform
To work on the fairness of scheduling policy, we need to

define a good metric for the satisfaction of an individual user
on platform. In the parallel scheduling literature, metrics
used to measure the performance of scheduling policies can
be classified in two groups: System-centric metrics and Job-
centric metrics:

- System-centric metrics to assess platform utilization:
Cj denotes the completion time of job j. Makespan
(the maximum of the job termination time, maxjCj)
or the sum of completion time (∑jCj) are common
objective functions. Minimization of makespan or
sum of completion times is conceptually a system-
centric approach.

- Job-centric metrics (Flow time, stretch, etc.) to
assess user experience: Flow time F is the time an
individual job spends in the platform. The stretch S
(also called slowdown) is a particular case of
weighted flow time: for job j with size Wj and flow
time Fj, the stretch is defined as Fj/Wj. In the context
of variable job sizes, the stretch is more relevant to
describe user experience than the flow time [24].

This paper focuses on user-centric metric. The stretch is
here measured for a group of jobs all belonging to the same
user. Assume that user has U jobs, Fj is flow time of job j, W
is total size of U jobs, the stretch is then defined as
maxjϵUFj/W

Figure 2. Example of the stretch for two users.

Figure 2 illustrates the mean of stretch in the case of two
users sending jobs to a platform. User 1 has a job with size
10 that reaches the platform at t=0s. User 2 has a job with
size 5 that reaches the platform at t=5s. User 1 job is
executed before user 2 job. As in Figure 2, user 1 finishes at
t=10s. Because user 2 has to wait user 1 job completion, he
finishes at t=15s. Although the two users spent the same time
on the platform (10s), user 2 satisfaction is worse than user
1’s. The stretch of user 1 is equal to 10/10=1 while the
stretch for user 2 is equal to 10/5=2. This example illustrates

Submit pilot agent

Send task

Grid environment

Pilot-agent platform

Agent Manager Task Manager

Pilot agent Pilot agent
Pilot agent

Pull user task

33Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

why the stretch S measures the user experience on the
platform: the larger the stretch, the lower the satisfaction.

Our goal is to identify the best scheduling policy to
minimize the stretch of all VS users of a shared pilot-agent
platform. We use the max-stretch (Smax) metrics to measure
of fairness in our scheduling problem. In our latest research
[37], we have compared two well-known scheduling
policies, Shortest Processing Time (SPT-the user with the
least number of tasks has the highest priority) and Longest
Processing Time (LPT: the user with the greatest number of
tasks has the highest priority), to the scheduling policies
currently used on the existing platforms (FIFO and Round
Robin). Simulation result and experimentation result on real
platform has shown that SPT is the best policy in these 4
policies for online job-centric stretch optimization with
virtual screening application on pilot-agent platform on
grid/cloud [37].

Although SPT policy is very good online algorithm for
optimization of the stretch, this policy has a disadvantage,
i.e., it has the tendency to push users with many tasks to the
end of the task queue. Sometimes, these users have to wait a
long time for a long series of users with less number of jobs.
In the worst case, they have to wait forever. Furthermore,
research on grid workloads in [27] showed that there are two
types of grid users: normal users and data challenge users.
Normal user submits to the grid little number of tasks, but
the number of user in this group is very large. While data
challenge user group submit to the grid very large number of
jobs, but the number of users in this group is small. If we use
the original SPT policy for all of users in the pilot agent
platform, data challenge user will be negatively affected due
to large number of user in normal group.

In this paper, we propose a new scheduling policy named
SPT-SPT for platform level scheduling in pilot agent
platform using multi-level queue scheduling techniques to
improve the stretch of VS users. Instead of using one task
queue implemented by SPT policy for all users, we use two
separate task queues: one for normal user group and another
one for data challenge user group. These two task queues are
both using SPT policy to optimize the user's stretch in each
one. Moreover, a task queue is assigned a parameter p (p ϵ
[0, 1]) and the rest one with 1 - p. This parameter is the
probability that task queue will be selected by Task Manager
when Task Manager receives request from pilot agents. We
can see that for p > 0, this policy ensures that the data
challenge group did not have to wait for the normal group to
be entirely empty. Therefore, all users will get an
opportunity to utilize grid resources efficiently. The rest of
paper is organized as follows.

III. RELATED WORK

A.Grid scheduling
Grid scheduling has been abundantly studied: some

surveys of grid scheduling algorithms are proposed in
[14][15] and performance of some priority rule scheduling
algorithms is presented in [33]. DIET platform [17] is a
GridRPC middleware relying on the client/agent/server
paradigm. The scheduling on DIET changes from FIFO,

Round Robin and CPU-based scheduling. But, the operation
of DIET platform is different with pilot-agent platform:
DIET use both “push” and “pull” scheduling. Mandatory
requests are pushed from clients to resources, whereas
optional requests are pulled by resources from clients. Pilot-
agent platform takes most scheduling decisions in a
centralized agent, in contrast, each client and each server
contributes to taking scheduling decisions in DIET.
Therefore, the solutions brought by research of scheduling
problem on DIET platform are not directly applicable to our
problem statement.

Berman et al. [18] presented a scheduling solution in
application level called AppLeS. They describe an
application specific approach to scheduling individual
parallel applications on production heterogeneous systems.
They utilize comprehensive information about application
and resource to optimize execution time of application on
grid. Our goal is not to optimize the execution time of all
users but the quality of service for each user.

Existing pilot agent platforms such as DIANE [10], WPE
[8], PanDA [12], DIRAC [9] and glideInWMS [11] have
different scheduling policies: WPE and DIANE platforms
use FIFO while DIRAC uses Round Robin policy. The VS
projects have specific properties, such as divisibility in many
docking tasks and no order of execution constraints.
Therefore, we need to find a suitable online scheduling
policy for the VS application on the pilot-agent platform.
Fortunately, in some platform, such as DIRAC platform, we
can configure the specific scheduling policy for a user group
sharing the same application. So, we can apply suitable
policy in a VS user group to improve fairness.

B. Cloud scheduling
As mentioned earlier, the limited machine availability

property of the scheduling problem on pilot agent platform is
similar with scheduling on cloud environment because on
cloud environment, user buys some resources with limited
duration. When a VS project is deployed on an Infrastructure
As A Service (IAAS) cloud, docking task will be executed
on a virtual machine with limited availability.

Some researches on cloud scheduling, such as [19][20],
have presented their scheduling algorithms on cloud to
optimize the speed of resources allocation, the price to pay
and the utilization of system resource. But our object is
optimization of the fairness of users when they share pilot-
agent platform together.

Luckow et al. [21] proposed the design and
implementation of a SAGA-based Pilot-Job system, which
supports a wide range of application types, and is usable over
a broad range of infrastructures from grids/clusters to cloud
computing. Fifield et al. [22] showed also an extension of the
pilot agent platform DIRAC on cloud computing by
submitting pilot agent on Virtual Machine on cloud, such as
Amazon EC2. Therefore, our research is also relevant to
pilot-agent platforms on Cloud environments.

34Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

C. Scheduling for stretch optimization with limited
machine availability constraints
Many groups have conducted research on optimizing job-

centric stretch in the context of dedicated machines (i.e.
always available). Muthukrishnan et al. [23] presented the
efficiency of the optimal on-line algorithm SPT on
uniprocessor and multi-processor. Their objective is
optimizing the average of the stretch. Legrand et al. [24] has
shown that SPT is quite effective at max-stretch and sum-
stretch optimization in problems with continuous machines.
But, compared to these studies, our scheduling problem uses
a user-centric definition of stretch and adds an additional
constraint: machines have limited availability. With this
property, the number of machines available for platform
changes over time and the complexity of problem increases.
Schmidt [16] have reviewed some scheduling algorithm in
the context of limited machine availability. LPT is one of the
online scheduling algorithms proposed in this research. But
these researches are done on system-centric metrics
(makespan, sum of completion time, etc.). In our latest
research for scheduling for stretch optimization with limited
machine availability constraints, we compared two well-
known scheduling policies, SPT and LPT, to the scheduling
policies currently used on the existing platforms (FIFO and
Round Robin). Simulation result and experimentation result
on real platform showed that SPT policy is the best policy in
these 4 policies for optimization of user stretch in the context
of limited machine availability.

D. Multi-level queue scheduling
Various algorithms for multilevel queue are discussed in

[34] to improve different CPU scheduling factors as
turnaround time, waiting time, starvation problem, etc. These
researches are done on multi-level queue scheduling
technique used for CPU scheduling in operating system in a
computer. In contrast, grid is a distributed computing
environment. User tasks are executed by many distributed
pilot agent on grid. Therefore, we need to evaluate multi-
level queue technique on distributed computing environment
of grid computing.

Chouhan et al. [35] and Kumaresh et al. [36] presented a
scheduling policy for grid computing using multilevel
feedback queue scheduling technique and multilevel queue
scheduling to avoid the starvation of low priority jobs in the
global scale of grid. However, in our context we need to find
out a policy for platform level scheduling of pilot agent
platform. And our objective is minimization of the user
stretch, a measure for user experience.

In conclusion, to the best of our knowledge, no research
on optimizing user stretch was conducted in the case of
limited machine availability. In the next section, we describe
solution proposed and our simulator used to evaluate and
compare the performance of new policy to original SPT
scheduling policy.

IV. SOLUTION PROPOSED
In this section, we briefly explain the proposed solution

using multilevel queue technique in Task Manager of pilot

agent platform. Administrator of pilot agent platform creates
two groups for VS users: Normal group and Data Challenge
group. VS user is assigned to Normal group by default.
When someone needs to process a big virtual screening
project, he will contact with administrator of pilot agent
platform to change his role to Data Challenge group in some
days or some weeks.

Figure 3. SPT-SPT policy with two task queues.

In the Task Manager module of the platform, we build
two separate task queues: one queue for normal group and
another one for data challenge group. Task queue of normal
group is assigned priority p and task queue of data challenge
group is assigned priority 1 – p. These indices are the
probability that task queue is chosen by Task Manager to
send pilot agent their task when Task Manager receives
request from pilot agent.

According to our latest research, SPT is better than FIFO,
LPT, RR for minimizing the user stretch. Therefore these
both task queues use SPT policy for optimizing the stretch of
user on each one (We tried with policy SPT-RR: SPT on
normal group task queue and Round Robin in data challenge
task queue and SPT-FIFO: SPT on normal group task queue
and FIFO on data challenge task queue. The result of SPT-
RR and SPT-FIFO is worse than SPT policy). We use
algorithm SPT-SPT to control user task in Task Manager as
described in Algorithm 1. The platform administrator can
change value of parameter p in the configuration of pilot
agent platform.

Algorithm 1: SPT-SPT policy in Task Manager scheduler
INPUT:
 p = normal user group task queue parameter
 Pilot agent requests are received online
OUTPUT:
 Scheduling of tasks to pilot agents

for all pilot agent request received
do
 if empty(data challenge task queue)
 AND empty(normal task queue)
 then
 Push pilot agent to pilot agent queue
 else if empty(data challenge task queue)
 then
 Send task of normal task queue to pilot agent
 else if empty(normal task queue)
 then

Pilot agent
agent request

Task queue of
Data Challenge

Task queue of
Normal group

1 - p

p

35Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

 Send task of data challenge task queue to pilot agent
 else
 if (random(0,1) < p)
 then
 Send task of normal task queue to pilot agent
 else
 Send task of data challenge task queue to pilot agent
 end if
end if

This is an online scheduling algorithm and it is linear in
time complexity. We can see that with 0 < p < 1 there are
always pilot agents taking a task from Data Challenge group.
Therefore, Data Challenge user does not have to wait for a
long series of normal users having less tasks. We will use our
simulator to find out the best value of p to decrease Smax of
Data Challenge group and do not increase very much Smax of
Normal group.

V. EXPERIMENTATION ON SIMULATOR

A. Scenario description
There are three parameters for our experimentation:

Configuration of grid infrastructure, VS user workload and
parameter for pilot-agent platform.

1) Configuration of grid infrastructure
To simulate realistically the operation of a pilot-platform,

we used archives of the AuverGrid regional multidisciplinary
grid infrastructure in Auvergne (France) in 2004-2005,
available on the Grid Workload Archive site. The AuverGrid
infrastructure in this period is detailed in Table 1, including
machines relative speeds. All machines in a cluster have the
same speed.

TABLE I. CONFIGURATION OF THE AUVERGRID INFRASTRUCTURE

Cluster name

Number
of Worker

Node

Relative
speed of
Worker
Node

Limitation of
computing

time (second)

CLRLCGCE01 112 1 258220
CLRLCGCE02 84 1.1 258220
CLRLCGCE03 186 1.6 258220

IUT15 38 0.8 172800
OPGC 55 1.4 172800

2) Virtual screening user workload

 According to the research on the real grid workload done
by Medernach [27], we use their model to generate workload
example for virtual screening user as below:

Normal group has Xnormal users, for each user normal

iU in
this group (ref. section 3.1: Mathematical model):

 ()

normal

j iN , the number of docking tasks of project j
submitted by user i, is generated by a Geometric
random distribution : ia b   , parameter a
corresponds to the first user mean number of

docking tasks and parameter b is the geometric
progression.

 [()

normal

j ir , 1()

normal

j ir


], the interval between submissions of
two projects consecutive of user i, is generated
within a Poisson random distribution with parameter

ic d   , parameter c corresponds to the first user
mean inter-arrival time and parameter d is the
geometric progression.

 We require max_time = 400 seconds to generate VS
user workload example: ()

normal

j ir < max_time
The same model is used for generating workload for data

challenge group. In our simulation, we used the following
parameters:

 Normal user group has parameters:
401, 20, 600a b d c   

 Data Challenge group has parameters:
2060000, 10, 30000a b d c   

The workloads of normal user and data challenge user are
combined in VS workload example. We generated 500 VS
workload examples for each dataset. There are 4 datasets:
case 00, case 01, case 02 and case 03 with different numbers
of users in each group as table 2.

TABLE II. NUMBER OF USER IN EACH GROUP ON DATASET

 Number of
Normal users

Number of Data
Challenge users

Max time
(second)

Case 00 119 1 400.000
Case 01 195 5 400.000
Case 02 190 10 400.000
Case 03 185 15 400.000

B. Simulation result and analysis
For each dataset (from case 00 to case 03), we run

simulation on 500 VS workload examples for FIFO policy,
SPT policy and SPT-SPT policy with the percentage of pilot
agent for normal group p = 0%, 10%, 30%, 50%, 70%, 90%
and 100% (ref. Algorithm 1). We calculate the

max
DCS and max

normalS on each VS workload example as formula 1

and 2. Next, we figure out the average of max
DCS and max

normalS in
each dataset. Figure 4 presents simulation results for case 00,
case 01, case 02 and case 03. The more percentage of pilot
agents for normal group, the more grid resource is reserved
for normal user group and the less grid resource for data
challenge group. Therefore, we can see in Figure 4 that,
when p increases, the max

normalS decreases and the max
DCS

augments. From the result of case 00, case 01, case 02 and
case 03, we chose p = 70%, where the max-stretch of normal
user group changes a little but the max-stretch of data
challenge user decreases very much in comparison with
original SPT policy. With this value of p, SPT-SPT policy
improves user experience compare to original SPT policy.
The best value of p depends on the number of task of two

36Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

groups. In SPT-SPT policy, administrator of pilot agent
platform can adjust this parameter according to the actual
situation for optimizing the stretch of two groups.

Table 3 presents the number of users of group in each
dataset, the value max

normalS and max
DCS in SPT-SPT policy with p

= 70%, in the original SPT policy and in FIFO policy. We
can see that, in all cases the max

normalS and max
DCS in FIFO policy

are higher than this one in SPT and SPT-SPT policy. For
example, a normal user arrives just after a data challenge
user, he has to wait very long time, so that Smax is very large
in FIFO policy. The result shows that FIFO policy is not
good to minimize the user stretch. Comparison between SPT
and SPT-SPT policy (with p=70%), we can see that max

normalS is

approximate but max
DCS in SPT-SPT policy is smaller than SPT

policy. Moreover, from case 00 to case 03, we can see that
the more data challenge users, the more max

DCS is smaller than
this one in SPT policy. This means that in the context with
many data challenge users, the SPT-SPT policy is very much
better than SPT policy.

VI. CONCLUSION AND PERSPECTIVE
The paper described a new scheduling policy for virtual

screening application on pilot agent platform for optimizing
the stretch of user. We proposed SPT-SPT policy using
multilevel queue technique for platform level scheduling on
pilot agent platform. This approach, based on the research of
grid workload, has shown that there are two types of users :
many users submitting small number of tasks and a little
number of users submitting a large number of tasks.
Simulation results showed that SPT-SPT policy (with 70%
of pilot agent reserved for normal user group and 30% of
pilot agent reserved for data challenge group) has better
result on user stretch than original SPT policy. The stretch of
data challenge user group decreases and the stretch of normal
user is almost unchanged.

Infrastructure as a Service cloud is similar to our problem
with limited availability of pilot agent on grid because their
users buy access to computing resources for a limited time.
Therefore, we also propose to implement SPT-SPT in
deployment of virtual screening application on cloud
environments.

ACKNOWLEDGMENT
We are grateful to “Agence Universitaire de la
Francophonie” for their grant support. The authors are also
thankful to France Grilles and EGI for providing computing
resources used on the Biomed Virtual Organization. We also
acknowledge FKPPL and FVPPL LIAs support for travel
and exchange between research groups in France, Korea and
Vietnam. We warmly thank Vanessa Hamar and Andrei
Tsaregorodtsev for their assistance with the DIRAC
platform.

REFERENCES
[1] V. S. Rao and K. Srinivas,. “Modern drug discovery process: an in

silico approach.”, Journal of Bioinformatics and Sequence Analysis,
2(5), 2011, pp. 89-94.

[2] D. S. Goodsell, G. M. Morris, and A. J. Olson, “Automated docking
of flexible ligands: applications of AutoDock.”, Journal of Molecular
Recognition, 9(1), 1996, pp. 1-5.

[3] R. G. Coleman and K. A. Sharp, “Protein pockets: inventory, shape,
and comparison,” Journal of chemical information and modeling,
50(4), 2010, pp. 589-603.

[4] I. Schellhammer and M. Schellhammer, “FlexX‐Scan: Fast,
structure‐based virtual screening,” PROTEINS: Structure, Function,
and Bioinformatics, 57(3), 2004, pp. 504-517.

[5] N. Jacq, V. Breton, H. Y. Chen, L. Y. Ho, M. Hofmann, H. C. Lee,
and M. Zimmermann, “Large scale in silico screening on grid
infrastructures,” [arXiv preprint cs/0611084].

[6] N. Jacq, J. Salzemann, F. Jacq, Y. Legré, E. Medernach, J.
Montagnat, and V. Breton, “Grid-enabled virtual screening against
malaria,” Journal of Grid Computing, 6(1), 2008, pp. 29-43.

[7] H. C. Lee, J. Salzemann, N. Jacq, H. Y. Chen, L. Y. Ho, I. Merelli,
and Y. T. Wu, “Grid-enabled high-throughput in silico screening
against influenza A neuraminidase,”, IEEE transactions on
nanobioscience, 2006, pp. 288-295.

[8] V. Kasam, J. Salzemann, M. Botha, A. Dacosta, G. Degliesposti, R.
Isea, D. Kim, A.Maass, C. Kenyon, G. Rastelli, M. Hofmann-Apitus
and V. Breton, “WISDOM-II: Screening against multiple targets
implicated in malaria using computational grid infrastructures,”
Malaria Journal, 2009, 8(1), pp. 88-103,

[9] E. van Herwijnen, J. Closier, M. Frank, C. Gaspar, F. Loverre, S.
Ponce, and M. Gandelman, “Dirac—distributed infrastructure with
remote agent control,” Conference for Computing in High-Energy
and Nuclear Physics (CHEP 03), 2003.

[10] J. T. Mościcki, “Distributed analysis environment for HEP and
interdisciplinary applications,” Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, 502(2), 2003, pp. 426-429.

[11] I. Sfiligoi, “glideinWMS—a generic pilot-based workload
management system,” Journal of Physics: Conference Series, vol.
119, No. 6, IOP Publishing, Jul. 2008

[12] T. Maeno, “PanDA: distributed production and distributed analysis
system for ATLAS,” Journal of Physics: Conference Series, vol. 119,
No. 6, IOP Publishing, 2008

[13] R. F. Da Silva, S. Camarasu-Pop, B. Grenier, V. Hamar, D. Manset, J.
Montagnat, and T. Glatard, “Multi-infrastructure workflow execution
for medical simulation in the Virtual Imaging Platform,” Proceedings
of the 9th HealthGrid Conference. 2011, pp. 1-10.

[14] D. Maruthanayagam and R. Uma Rani, “Grid scheduling algorithms:
a survey,” International Journal of Current Research. vol. 11 , Dec.
2010, pp. 228-235.

[15] C. Jiang, C. Wang, X. Liu, and Y. Zhao, “A survey of job scheduling
in grids,” Advances in Data and Web Management, Springer Berlin
Heidelberg, 2007, pp. 419-427.

[16] G. Schmidt, “Scheduling with limited machine availability”,
European Journal of Operational Research, 121(1), 2000, pp. 1-15.

[17] P. Marrow, E. Bonsma, F. Wang, and C. Hoile, “DIET—a scalable,
robust and adaptable multi-agent platform for information
management,” BT technology journal, 21(4), 2003, pp. 130-137.

[18] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao,
“Application-level scheduling on distributed heterogeneous
networks,” Proceedings of Supercomputing. vol. 96. 1996, pp. 1-28.

[19] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm
optimization-based heuristic for scheduling workflow applications in
cloud computing environments,” AINA '10: Proceedings of the 2010,
24th IEEE International Conference on Advanced Information
Networking and Applications. Washington, DC, USA, IEEE
Computer Society, 2010, pp. 400-407.

37Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

[20] W. Li, J. Tordsson, and E. Elmroth, “Modeling for dynamic cloud
scheduling via migration of virtual machines,” Proceedings of the 3rd
IEEE International Conference on Cloud Computing Technology and
Science (CloudCom 2011), 2011, pp. 163-171.

[21] A. Luckow, L. Lacinski, and S. Jha, “SAGA BigJob: An extensible
and interoperable pilot-job abstraction for distributed applications and
systems,” Cluster, Cloud and Grid Computing (CCGrid), 10th
IEEE/ACM International Conference, 2010, pp. 135-144.

[22] T. Fifield, A. Carmona, A. Casajús, R. Graciani, and M. Sevior,
“Integration of cloud, grid and local cluster resources with DIRAC”,
Journal of Physics: Conference Series, vol. 331, No. 6, 2011. [ref.
062009, doi:10.1088/1742-6596/331/6/062009]

[23] S. Muthukrishnan, R. Rajaraman, A. Shaheen, and J. E. Gehrke,
“Online scheduling to minimize average stretch,” IEEE Symposium
on Foundations of Computer Science, 1999, pp. 433-442.

[24] A. Legrand, A. Su, and F. Vivien, “Minimizing the stretch when
scheduling flows of biological requests,” Proceedings of the
eighteenth annual ACM symposium on Parallelism in algorithms and
architectures, 2006, pp. 103-112.

[25] B. Chen, C. N. Potts, and G. J. Woeginger, “A review of machine
scheduling: Complexity, algorithms and approximability” Handbook
of combinatorial optimization, ch 3, 1998, pp. 21-169.

[26] H. Casanova, A. Legrand, and M. Quinson, “SimGrid: a generic
framework for large-scale distributed experiments” Proceeding 10th
International Conference Computer Modeling and Simulation, Mar.
2008, pp. 126-131

[27] E. Medernach, “Workload analysis of a cluster in a grid environment”
Job scheduling strategies for parallel processing, Springer Berlin
Heidelberg. 2005, pp. 36-61.

[28] E. L. Lawler, J. K. Lenstra, and A. R. Kan, “Sequencing and
scheduling: Algorithms and complexity,” Handbooks in operations
research and management science, 4, 1993, pp. 445-522.

[29] T. C. E. Cheng and C. C. S. Sin, “A state-of-the-art review of
parallel-machine scheduling research,” European Journal of
Operational Research, 47(3), 1990, pp. 271-292.

[30] Jain, Raj, “The art of computer systems performance analysis,” vol.
182. Chichester: John Wiley & Sons, 1991.

[31] A. B. Downey, “A parallel workload model and its implications for
processor allocation,” Cluster Computing 1.1, 1998, pp. 133-145.

[32] Feitelson, G. Dror “Packing schemes for gang scheduling,” Job
Scheduling Strategies for Parallel Processing, Springer Berlin
Heidelberg, 1996.

[33] Z. R. M. Azmi, K. A. Bakar, A. H. Abdullah, M. S. Shamsir, and
W. N. W. Manan, “Performance Comparison of Priority Rule
Scheduling Algorithms Using Different Inter Arrival Time Jobs in
Grid Environment,” International Journal of Grid and Distributed
Computing, 4(3), 2011, pp. 61-70.

[34] C. Vaishali. and R. Supriya “A Review of Multilevel Queue and
Multilevel Feedback Queue Scheduling Techniques,” International
Journal of Advanced Research in Computer Science and Software
Engineering, vol. 3, iss. 1, pp. 110-113.

[35] D. Chouhan, S. M. Dilip Kumar, and B. P. Vijaya Kumar, “Multilevel
Feedback Queue Scheduling Technique for Grid Computing
Environments”, in Proceedings of International Conference on
Advances in Computing SE - 1, vol. 174, A. Kumar M., S. R., and T.
V. S. Kumar, Eds. Springer India, 2012, pp. 1–7.

[36] V.S Kumaresh,S. Prasidh, B. Arjunan,S Subbhaash and M.K.
Sandhya, “Multilevel Queue-Based Scheduling for Heterogeneous
Grid Environment”, International Journal of Computer Science
Issues, vol. 9, Issue 6, No 3, Nov. 2012, Springer India, 2012.

[37] T. Q. Bui, E. Medernach, V. Breton, H. Q. Nguyen, and Q. L. Pham,
“Stretch Optimization For Virtual Screening on Multi-user Pilot-
agent Platforms on Grid/Cloud”, Proceedings of the Fourth
Symposium on Information and Communication Technology, 2013.

[38] D. Abramson, J. Giddy and L. Kotler. “High Performance Parametric
Modeling with Nimrod/G: Killer Application for the Global Grid,”
IPDPS'2000, Cancun Mexico, IEEE CS Press, 2000, pp. 520-528.

[39] J. R. Stiles, T. M. Bartol, E. E. Salpeter, and M. M. Salpeter, “Monte
Carlo Simulation of Neuromuscular Transmitter Release Using
MCell, a General Simulator of Cellular Physiological Processes,”
Computational Neuroscience, 1998, pp. 279-284.

[40] S. Smallen, W. Cirne and J. Frey et al, “Combining Workstations and
Supercomputers to Support Grid Applications: The Parallel
Tomography Experience,” Proceeding of the HCW'2000-
Heterogeneous Computing Workshop, 2000

[41] S. Smallen, H. Casanova, and F. Berman, “Applying Scheduling and
Tuning to On-line Parallel Tomography,” Proceedings of
Supercomputing 01, Denver, Colorado, USA, Nov. 2001

38Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

Figure 4. Average of max-stretch of two groups versus % pilot agent for normal user group in case 00, 01, 02, 03

39Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

