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Abstract— Virtual screening has proven a very effective 
method on grid infrastructures. Operating a dedicated virtual 
screening platform on grid resources requires optimizing the 
scheduling policy. The scheduling can be done at 2 levels; at 
site level and at platform level. Site scheduling is done at each 
site independently. Each site allocates time slots for different 
groups of users. Platform scheduling is done at group level: 
inside a time slot jobs from many users are allocated. Pilot 
agents are sent to sites and act as a container of actual users 
jobs.  They pick up users jobs from a central queue where the 
platform scheduling is done.  This paper focus on finding 
platform scheduling policy for pilot-agent platform shared by 
many virtual screening users. They need a suitable scheduling 
algorithm at platform level to ensure a certain fairness 
between users.  

    Keywords-Virtual screening; grid computing; scheduling; 
fairness; stretch; online-algorithm; cloud computing; multilevel 
queue scheduling; SimGrid. 

I. INTRODUCTION  
In silico (i.e., computer-assisted) drug discovery [1] 

offers an efficient alternative to reduce the cost of drug 
development and to speed-up the discovery process. Virtual 
screening (VS) is achieved through a pipeline analysis,  first 
step of which requires using a docking software, such as 
Autodock [2], Dock [3] or FlexX [4] to predict potential 
interacting complexes of small molecules in protein binding 
sites. Large scale virtual screening, and especially its 
docking step, consumes large computing resources. As 
docking is an embarrassingly parallel process where 
thousands to millions of compounds are tested in silico 
against a biological target, it was successfully deployed on 
grid computing to reduce the computation time. Some large 
scale VS projects in the past have been deployed 
successfully on grids, such as WISDOM [5][6], and 
WISDOM-II [8] on malaria, and Avian Flu Data Challenge 
[7]. 

Pilot-agent platforms are tools used for submitting and 
controlling a large number of user jobs on grid 
infrastructures. Several pilot agent platforms have been 
developed, such as WPE [8], DIRAC [9], DIANE [10], 
glideinWMS [11], and PanDA [12]. The DIRAC pilot-agent 
platform is now available to the users of several 
multidisciplinary virtual organizations on EGI (the European 

Grid Initiative) [9]. As many users share the DIRAC pilot-
agent platform, it is important to define a scheduling policy 
to ensure a certain degree of fairness so that users receive a 
fair share of system resources. The scheduling policies used 
on the existing pilot-agent platforms on EGI, are respectively 
FIFO policy in WPE platform and Round Robin policy in 
DIRAC platform. The VS project has specific properties, 
such as divisibility in many independent docking tasks, no 
order of execution constraints and comparable execution 
time of all docking tasks. In this paper, we focus on 
evaluating suitable online scheduling policies for the VS 
application on the pilot-agent platform to improve user’s 
satisfaction in the system.  

Our research is also relevant to applications which have 
the same properties of VS application (divisibility in many 
independent tasks, no order of execution constraints and 
comparable execution time of all tasks) on pilot agent 
platform on grid/cloud. These applications are used in a 
variety of scenarios, including data mining, massive 
searches, parameter sweeps [38], simulations, fractal 
calculations, computational biology [39], and computer 
imaging [40][41].  

This paper is organized as follows. Section 2 describes 
the problem and our research objectives. Section 3 presents 
related works. Section 4 introduces our solution based on 
multi-queue scheduling. Section 5 discusses our results and 
presents our simulator based on SimGrid [26]. Finally, we 
conclude in Section 6 and give some perspectives on this 
research. 

 

II. PROBLEM STATEMENT 
In this paper, we evaluate the performances of many 

scheduling policies applied on the central pool of pilot jobs.  
The criterion used is the stretch for all users. We, then, 
explore new scheduling policy based on  multiplexing  user 
group queues depending onsome probability parameter. We 
will first describe our computing platform in details, then 
we will explain our scheduling policies and evaluate them 
with the help of simulation based on real workload traces.     
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A. Pull model, 2-level scheduling and limited machine 
availability property of scheduling  
A pilot-agent platform uses pull model for efficient 

submission and controlling of user tasks: tasks are no longer 
pushed through the grid scheduler but are put in a master 
pool and pulled by pilot agents running on computing nodes. 
Scheduling job is the process of ordering tasks in this pool. 
List scheduling is applied in it. The pilot-agent itself is a 
regular grid job that is started through a grid resource 
manager. It is automatically submitted by platform and run 
on a computing machine on grid. We can see a pilot agent as 
container of jobs. The pull model adapts to heterogeneous 
property of grid (faster machine will pull more tasks than the 
other), reduces faults (resubmission of failed tasks) and 
improves latency (the waiting time of job in grid scheduler is 
reduced). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Pull model in pilot agent platform on grid. 

As shown in Figure 1, a pilot-agent platform has two 
main modules, the Task Manager and the Agent Manager. 

The pilot agents are submitted automatically to grid by 
Agent Manager. Then each pilot agent communicates with 
Task Manager and asks a user task to be executed. Task 
Manager receives tasks from user and control queue of user 
tasks. Also, it receives request from pilot agent, choose some 
task from queue and sends it to pilot agent. 

Scheduling of pilot agent platform on grid takes place at 
site and platform level. The site level scheduling takes place 
in the site scheduler. Pilot agents sent by the platform are 
distributed to the sites according to the grid scheduling 
policy. The platform level scheduling is done by the 
platform’s Task Manager. User sends the VS project to the 
Task Manager, where docking tasks are put in the task 
queue. The Task Manager Scheduler calculates task 
priorities, and responds to pilot agents requests by sending to 
them tasks ranked with the highest priority. There are 
underlying grid architectural scheduling and logical 
scheduling for the specific grid applications. We are 
concerned with scheduling issue for many virtual screening 
application users who share the grid resources given to the 
same group privilege. 

Moreover, the platform level scheduling has limited 
machine availability property. Because each computing 
center requires some limits to the maximum computing time 
for grid job, each pilot agent is available for a limited period. 
Therefore, the number of machines available for the platform 
changes over time. This specific property makes our analysis 
directly relevant to cloud infrastructures where users buy 
computing resources for a limited time. 

This paper focuses on finding out the most suitable 
scheduling policy at platform level to optimize the 
satisfaction of VS users. 

B. The stretch – a measure for user’s satisfaction in 
platform 
To work on the fairness of scheduling policy, we need to 

define a good metric for the satisfaction of an individual user 
on platform. In the parallel scheduling literature, metrics 
used to measure the performance of scheduling policies can 
be classified in two groups: System-centric metrics and Job-
centric metrics: 

- System-centric metrics to assess platform utilization: 
Cj denotes the completion time of job j. Makespan 
(the maximum of the job termination time, maxjCj) 
or the sum of completion time (∑jCj) are common 
objective functions. Minimization of makespan or 
sum of completion times is conceptually a system-
centric approach. 

- Job-centric metrics (Flow time, stretch, etc.) to 
assess user experience: Flow time F is the time an 
individual job spends in the platform. The stretch S 
(also called slowdown) is a particular case of 
weighted flow time: for job j with size Wj and flow 
time Fj, the stretch is defined as Fj/Wj. In the context 
of variable job sizes, the stretch is more relevant to 
describe user experience than the flow time [24].  

This paper focuses on user-centric metric. The stretch is 
here measured for a group of jobs all belonging to the same 
user. Assume that user has U jobs, Fj is flow time of job j, W 
is total size of U jobs, the stretch is then defined as 
maxjϵUFj/W  
 

 
Figure 2.  Example of the stretch for two users. 

Figure 2 illustrates the mean of stretch in the case of two 
users sending jobs to a platform. User 1 has a job with size 
10 that reaches the platform at t=0s. User 2 has a job with 
size 5 that reaches the platform at t=5s. User 1 job is 
executed before user 2 job. As in Figure 2, user 1 finishes at 
t=10s. Because user 2 has to wait user 1 job completion, he 
finishes at t=15s. Although the two users spent the same time 
on the platform (10s), user 2 satisfaction is worse than user 
1’s. The stretch of user 1 is equal to 10/10=1 while the 
stretch for user 2 is equal to 10/5=2. This example illustrates 
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why the stretch S measures the user experience on the 
platform: the larger the stretch, the lower the satisfaction.  

Our goal is to identify the best scheduling policy to 
minimize the stretch of all VS users of a shared pilot-agent 
platform. We use the max-stretch (Smax) metrics to measure 
of fairness in our scheduling problem. In our latest research 
[37], we have compared two well-known scheduling 
policies, Shortest Processing Time (SPT-the user with the 
least number of tasks has the highest priority) and Longest 
Processing Time (LPT: the user with the greatest number of 
tasks has the highest priority), to the scheduling policies 
currently used on the existing platforms (FIFO and Round 
Robin). Simulation result and experimentation result on real 
platform has shown that SPT is the best policy in these 4 
policies for online job-centric stretch optimization with 
virtual screening application on pilot-agent platform on 
grid/cloud [37].  

Although SPT policy is very good online algorithm for 
optimization of the stretch, this policy has a disadvantage, 
i.e., it has the tendency to push users with many tasks to the 
end of the task queue. Sometimes, these users have to wait a 
long time for a long series of users with less number of jobs. 
In the worst case, they have to wait forever. Furthermore, 
research on grid workloads in [27] showed that there are two 
types of grid users: normal users and data challenge users. 
Normal user submits to the grid little number of tasks, but 
the number of user in this group is very large. While data 
challenge user group submit to the grid very large number of 
jobs, but the number of users in this group is small. If we use 
the original SPT policy for all of users in the pilot agent 
platform, data challenge user will be negatively affected due 
to large number of user in normal group.  

In this paper, we propose a new scheduling policy named 
SPT-SPT for platform level scheduling in pilot agent 
platform using multi-level queue scheduling techniques to 
improve the stretch of VS users. Instead of using one task 
queue implemented by SPT policy for all users, we use two 
separate task queues: one for normal user group and another 
one for data challenge user group. These two task queues are 
both using SPT policy to optimize the user's stretch in each 
one. Moreover, a task queue is assigned a parameter p (p ϵ 
[0, 1]) and the rest one with 1 - p. This parameter is the 
probability that task queue will be selected by Task Manager 
when Task Manager receives request from pilot agents. We 
can see that for p > 0, this policy ensures that the data 
challenge group did not have to wait for the normal group to 
be entirely empty. Therefore, all users will get an 
opportunity to utilize grid resources efficiently. The rest of 
paper is organized as follows.  

III. RELATED WORK 

A.Grid scheduling 
Grid scheduling has been abundantly studied: some 

surveys of grid scheduling algorithms are proposed in 
[14][15] and performance of some priority rule scheduling 
algorithms is presented in [33]. DIET platform [17] is a 
GridRPC middleware relying on the client/agent/server 
paradigm. The scheduling on DIET changes from FIFO, 

Round Robin and CPU-based scheduling. But, the operation 
of DIET platform is different with pilot-agent platform: 
DIET use both “push” and “pull” scheduling. Mandatory 
requests are pushed from clients to resources, whereas 
optional requests are pulled by resources from clients. Pilot-
agent platform takes most scheduling decisions in a 
centralized agent, in contrast, each client and each server 
contributes to taking scheduling decisions in DIET. 
Therefore, the solutions brought by research of scheduling 
problem on DIET platform are not directly applicable to our 
problem statement. 

Berman et al. [18] presented a scheduling solution in 
application level called AppLeS. They describe an 
application specific approach to scheduling individual 
parallel applications on production heterogeneous systems. 
They utilize comprehensive information about application 
and resource to optimize execution time of application on 
grid. Our goal is not to optimize the execution time of all 
users but the quality of service for each user.  

Existing pilot agent platforms such as DIANE [10], WPE 
[8], PanDA [12], DIRAC [9] and glideInWMS [11] have 
different scheduling policies:  WPE and DIANE platforms 
use FIFO while DIRAC uses Round Robin policy. The VS 
projects have specific properties, such as divisibility in many 
docking tasks and no order of execution constraints. 
Therefore, we need to find a suitable online scheduling 
policy for the VS application on the pilot-agent platform. 
Fortunately, in some platform, such as DIRAC platform, we 
can configure the specific scheduling policy for a user group 
sharing the same application. So, we can apply suitable 
policy in a VS user group to improve fairness. 

B. Cloud scheduling 
As mentioned earlier, the limited machine availability 

property of the scheduling problem on pilot agent platform is 
similar with scheduling on cloud environment because on 
cloud environment, user buys some resources with limited 
duration. When a VS project is deployed on an Infrastructure 
As A Service (IAAS) cloud, docking task will be executed 
on a virtual machine with limited availability.  

Some researches on cloud scheduling, such as [19][20], 
have presented their scheduling algorithms on cloud to 
optimize the speed of resources allocation, the price to pay 
and the utilization of system resource. But our object is 
optimization of the fairness of users when they share pilot-
agent platform together. 

Luckow et al. [21] proposed the design and 
implementation of a SAGA-based Pilot-Job system, which 
supports a wide range of application types, and is usable over 
a broad range of infrastructures from grids/clusters to cloud 
computing. Fifield et al. [22] showed also an extension of the 
pilot agent platform DIRAC on cloud computing by 
submitting pilot agent on Virtual Machine on cloud, such as 
Amazon EC2. Therefore, our research is also relevant to 
pilot-agent platforms on Cloud environments. 
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C. Scheduling for stretch optimization with limited 
machine availability constraints 
Many groups have conducted research on optimizing job-

centric stretch in the context of dedicated machines (i.e. 
always available). Muthukrishnan et al. [23] presented the 
efficiency of the optimal on-line algorithm SPT on 
uniprocessor and multi-processor. Their objective is 
optimizing the average of the stretch. Legrand et al. [24] has 
shown that SPT is quite effective at max-stretch and sum-
stretch optimization in problems with continuous machines. 
But, compared to these studies, our scheduling problem uses 
a user-centric definition of stretch and adds an additional 
constraint: machines have limited availability. With this 
property, the number of machines available for platform 
changes over time and the complexity of problem increases. 
Schmidt [16] have reviewed some scheduling algorithm in 
the context of limited machine availability. LPT is one of the 
online scheduling algorithms proposed in this research. But 
these researches are done on system-centric metrics 
(makespan, sum of completion time, etc.). In our latest 
research for scheduling for stretch optimization with limited 
machine availability constraints, we compared two well-
known scheduling policies, SPT and LPT, to the scheduling 
policies currently used on the existing platforms (FIFO and 
Round Robin). Simulation result and experimentation result 
on real platform showed that SPT policy is the best policy in 
these 4 policies for optimization of user stretch in the context 
of limited machine availability.  

D. Multi-level queue scheduling 
Various algorithms for multilevel queue are discussed in 

[34] to improve different CPU scheduling factors as 
turnaround time, waiting time, starvation problem, etc. These 
researches are done on multi-level queue scheduling 
technique used for CPU scheduling in operating system in a 
computer. In contrast, grid is a distributed computing 
environment. User tasks are executed by many distributed 
pilot agent on grid. Therefore, we need to evaluate multi-
level queue technique on distributed computing environment 
of grid computing. 

Chouhan et al. [35] and Kumaresh et al. [36] presented a 
scheduling policy for grid computing  using multilevel 
feedback queue scheduling technique and multilevel queue 
scheduling to avoid the starvation of low priority jobs in the 
global scale of grid. However, in our context we need to find 
out a policy for platform level scheduling of pilot agent 
platform. And our objective is minimization of the user 
stretch, a measure for user experience. 

In conclusion, to the best of our knowledge, no research 
on optimizing user stretch was conducted in the case of 
limited machine availability. In the next section, we describe 
solution proposed and our simulator used to evaluate and 
compare the performance of new policy to original SPT 
scheduling policy. 

IV. SOLUTION PROPOSED 
In this section, we briefly explain the proposed solution 

using multilevel queue technique in Task Manager of pilot 

agent platform. Administrator of pilot agent platform creates 
two groups for VS users: Normal group and Data Challenge 
group. VS user is assigned to Normal group by default. 
When someone needs to process a big virtual screening 
project, he will contact with administrator of pilot agent 
platform to change his role to Data Challenge group in some 
days or some weeks.  

 
 
 
 
 

 
 
 
 
 
 
 

Figure 3.  SPT-SPT policy with two task queues. 

In the Task Manager module of the platform, we build 
two separate task queues: one queue for normal group and 
another one for data challenge group. Task queue of normal 
group is assigned priority p and task queue of data challenge 
group is assigned priority 1 – p. These indices are the 
probability that task queue is chosen by Task Manager to 
send pilot agent their task when Task Manager receives 
request from pilot agent.  

According to our latest research, SPT is better than FIFO, 
LPT, RR for minimizing the user stretch. Therefore these 
both task queues use SPT policy for optimizing the stretch of 
user on each one (We tried with policy SPT-RR: SPT on 
normal group task queue and Round Robin in data challenge 
task queue and SPT-FIFO: SPT on normal group task queue 
and FIFO on data challenge task queue. The result of SPT-
RR and SPT-FIFO is worse than SPT policy). We use 
algorithm SPT-SPT to control user task in Task Manager as 
described in Algorithm 1. The platform administrator can 
change value of parameter p in the configuration of pilot 
agent platform. 

 
Algorithm 1: SPT-SPT policy in Task Manager scheduler 
INPUT:  
  p = normal user group task queue parameter 
  Pilot agent requests are received online  
OUTPUT: 
  Scheduling of tasks to pilot agents 
 
for all pilot agent request received 
do 
  if empty(data challenge task queue)  
     AND empty(normal task queue) 
  then 
    Push pilot agent to pilot agent queue 
  else if empty(data challenge task queue) 
  then 
    Send task of normal task queue to pilot agent 
  else if empty(normal task queue) 
  then 

Pilot agent 
agent request 

Task queue of 
Data Challenge 

 
Task queue of 
Normal group 

 

1 - p 

p 
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    Send task of data challenge task queue to pilot agent 
  else 
    if ( random(0,1) < p ) 
    then  
      Send task of normal task queue to pilot agent 
    else   
      Send task of data challenge task queue to pilot agent 
   end if 
end if 

This is an online scheduling algorithm and it is linear in 
time complexity. We can see that with 0 < p < 1 there are 
always pilot agents taking a task from Data Challenge group. 
Therefore, Data Challenge user does not have to wait for a 
long series of normal users having less tasks. We will use our 
simulator to find out the best value of p to decrease Smax of 
Data Challenge group and do not increase very much Smax of 
Normal group. 

V. EXPERIMENTATION ON SIMULATOR  

A. Scenario description  
There are three parameters for our experimentation: 

Configuration of grid infrastructure, VS user workload and 
parameter for pilot-agent platform. 

1) Configuration of grid infrastructure 
To simulate realistically the operation of a pilot-platform, 

we used archives of the AuverGrid regional multidisciplinary 
grid infrastructure in Auvergne (France) in 2004-2005, 
available on the Grid Workload Archive site. The AuverGrid 
infrastructure in this period is detailed in Table 1, including 
machines relative speeds. All machines in a cluster have the 
same speed. 

TABLE I.  CONFIGURATION OF THE AUVERGRID INFRASTRUCTURE 

 
 

Cluster name 

Number 
of Worker 

Node 

Relative 
speed of 
Worker 
Node 

Limitation of 
computing 

time (second) 

CLRLCGCE01 112 1 258220 
CLRLCGCE02 84 1.1 258220 
CLRLCGCE03 186 1.6 258220 

IUT15 38 0.8 172800 
OPGC 55 1.4 172800 

 
2) Virtual screening user workload 

 According to the research on the real grid workload done 
by Medernach [27], we use their model to generate workload 
example for virtual screening user as below: 

Normal group has Xnormal users, for each user normal

iU  in 
this group (ref. section 3.1: Mathematical model): 

 ( )

normal

j iN , the number of docking tasks of project j 
submitted by user i, is generated by a Geometric 
random distribution : ia b    , parameter a 
corresponds to the first user mean number of 

docking tasks and parameter b is the geometric 
progression.  

 [ ( )

normal

j ir , 1( )

normal

j ir


], the interval between submissions of 
two projects consecutive of user i, is generated 
within a Poisson random distribution with parameter 

ic d   , parameter c corresponds to the first user 
mean inter-arrival time and parameter d is the 
geometric progression.  

 We require max_time = 400 seconds to generate VS 
user workload example: ( )

normal

j ir < max_time 
The same model is used for generating workload for data 

challenge group. In our simulation, we used the following 
parameters: 

 Normal user group has parameters: 
401, 20, 600a b d c     

 Data Challenge group has parameters: 
2060000, 10, 30000a b d c     

The workloads of normal user and data challenge user are 
combined in VS workload example. We generated 500 VS 
workload examples for each dataset. There are 4 datasets: 
case 00, case 01, case 02 and case 03 with different numbers 
of users in each group as table 2.  

TABLE II.  NUMBER OF USER IN EACH GROUP ON DATASET 

 Number of 
Normal users 

Number of Data 
Challenge users 

Max time 
(second) 

Case 00 119 1 400.000 
Case 01 195 5 400.000 
Case 02 190 10 400.000 
Case 03 185 15 400.000 

 

B. Simulation result and analysis 
For each dataset (from case 00 to case 03), we run 

simulation on 500 VS workload examples for FIFO policy, 
SPT policy and SPT-SPT policy with the percentage of pilot 
agent for normal group p = 0%, 10%, 30%, 50%, 70%, 90% 
and 100% (ref. Algorithm 1). We calculate the 

max
DCS and max

normalS on each VS workload example as formula 1 

and 2. Next, we figure out the average of max
DCS and max

normalS in 
each dataset. Figure 4 presents simulation results for case 00, 
case 01, case 02 and case 03. The more percentage of pilot 
agents for normal group, the more grid resource is reserved 
for normal user group and the less grid resource for data 
challenge group. Therefore, we can see in Figure 4 that, 
when p increases, the max

normalS decreases and the max
DCS  

augments.  From the result of case 00, case 01, case 02 and 
case 03, we chose p = 70%, where the max-stretch of normal 
user group changes a little but the max-stretch of data 
challenge user decreases very much in comparison with 
original SPT policy. With this value of p, SPT-SPT policy 
improves user experience compare to original SPT policy. 
The best value of p depends on the number of task of two 
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groups. In SPT-SPT policy, administrator of pilot agent 
platform can adjust this parameter according to the actual 
situation for optimizing the stretch of two groups. 

Table 3 presents the number of users of group in each 
dataset, the value max

normalS and max
DCS  in SPT-SPT policy with p 

= 70%, in the original SPT policy and in FIFO policy. We 
can see that, in all cases the max

normalS and max
DCS in FIFO policy 

are higher than this one in SPT and SPT-SPT policy. For 
example, a normal user arrives just after a data challenge 
user, he has to wait very long time, so that Smax is very large 
in FIFO policy. The result shows that FIFO policy is not 
good to minimize the user stretch. Comparison between SPT 
and SPT-SPT policy (with p=70%), we can see that max

normalS  is 

approximate but max
DCS in SPT-SPT policy is smaller than SPT 

policy. Moreover, from case 00 to case 03, we can see that 
the more data challenge users, the more max

DCS is smaller than 
this one in SPT policy. This means that in the context with 
many data challenge users, the SPT-SPT policy is very much 
better than SPT policy. 

VI. CONCLUSION AND PERSPECTIVE 
The paper described a new scheduling policy for virtual 

screening application on pilot agent platform for optimizing 
the stretch of user. We proposed SPT-SPT policy using 
multilevel queue technique for platform level scheduling on 
pilot agent platform. This approach, based on the research of 
grid workload, has shown that there are two types of users : 
many users submitting small number of tasks and a little 
number of users submitting a large number of tasks. 
Simulation results showed that SPT-SPT policy (with 70% 
of pilot agent reserved for normal user group and 30% of 
pilot agent reserved for data challenge group) has better 
result on user stretch than original SPT policy. The stretch of 
data challenge user group decreases and the stretch of normal 
user is almost unchanged. 

Infrastructure as a Service cloud is similar to our problem 
with limited availability of pilot agent on grid because their 
users buy access to computing resources for a limited time. 
Therefore, we also propose to implement SPT-SPT in 
deployment of virtual screening application on cloud 
environments. 
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Figure 4.  Average of max-stretch of two groups versus % pilot agent for normal user group in case 00, 01, 02, 03 
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