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Abstract—Effective memory bandwidth for irregular 
applications such as a CG (Conjugate Gradient) solver and 
graph processing for larger sparse matrices must be 
accelerated with lower power in the future. Since the total 
performance of such HPC (High Performance Computing) 
applications is limited by memory bandwidth, smart memory 
is a possible lower power accelerator than GPUs (Graphics 
Processing Units).  In this paper, we propose a GPU based 
HPC system using memory accelerators with gather functions 
and a HMC (Hybrid Memory Cube) interface. We 
implemented CG solver for it. The memory accelerator 
converts indirect accesses, which are unsuitable for cache and 
device memory, into direct accesses using gather functions. 
This paper presents the performance of the proposed memory 
architecture with University of Florida Sparse Matrix 
Collection. The result shows 1.01 to 1.20 times acceleration by 
the memory accelerator against the texture cache, even in the 
case of small matrices that take advantage of texture cache 
effects. The ratio will dramatically increase when the gap of 
the cache capacity and the matrices size increases. The 
scalability of the proposed method is guaranteed by the 
scalable broadcast thorough interconnection network. 

Keywords-high performance computing; memory 
architecture; smart memory; irregular processing; CG solver 

I.  INTRODUCTION 
The computation ability of vector processor based 

supercomputers can be substituted with COTS (Commercial 
Off-The-Shelf) CPUs or GPUs in many cases. The 
computation ability of a high-end GPU reaches to one Tera 
FLOPS (FLoating point Operation Per Second) to be widely 
used for various applications known as GPGPU (General 
Purpose computing on Graphics Processing Units). The peak 
performance of GPUs seems to continuously and steadily 
increase in FLOPS according to the Moore's law [1]. If such 
performance progress is not given with sufficient device 
memory bandwidth for the peak performance, the memory 
wall problem gets more serious year by year. Hierarchical 
memory systems, typified by cache memory, do not address 
the problem when data reusability is small. However, in the 
case of some applications such as solving a system of linear 
equations consisting of kernels of SpMV (sparse matrix-
vector multiplication), data reusability cannot be exploited so 
much. When matrices are small, such as a benchmark 
collection for a sparse matrix [2], the problem is not critical 
because GPU's cache works well for the small size matrices. 
The larger the target sparse matrices are, the more frequent 
and inefficient accesses to the external memory the cache 

needs to make, thus degrading performance. When large 
enough sparse matrices are to get regular accesses, most 
accesses can be converted to coalesced accesses of GPUs so 
that each cache miss takes a cache line with possible data to 
be accessed later. On the other hand, when the same sparse 
matrices are to get irregular accesses because the cache line 
size or the shortest burst length of GDDR5(Graphics Double 
Data Rate 5) memory is 128 bytes, it is reported that a cache 
miss exhausts the memory bandwidth 16 times (double 
precision) or 32 times (single precision) [3]. The line size of 
the last level cache (L2 cache) on a new generation GPU is 
larger than that of texture cache on older GPUs. Therefore, 
effective bandwidth degradation for huge SpMV (i.e. in the 
situation with low cache hit rates) of the newer GPU will be 
larger than that of the older GPUs. 

To solve the above problem, an extended large capacity 
functional memory (memory accelerator) system with PCI 
(Peripheral Component Interconnect) express based interface 
and a set of scalable SpMV algorithms for GPUs are 
proposed in [3]. Although the experiment results of the 
SpMV algorithms and the functional memory system show 
four times performance improvement at a maximum, the 
contribution of the algorithms and the functional memory for 
the performance improvement is not described separately. In 
the meantime, they show that the bottleneck of the proposed 
algorithms and the functional memory lies in the PCI express. 

The main contributions of this paper are summarized 
below: 

• We propose new interfaces for the functional 
memory on a future GPU cluster to avoid the PCI 
express bottleneck, where Hybrid Memory Cube 
ports are promising.  

• We analyze the relation between the cache hit rate 
and the matrix size for an SpMV executed on two 
kinds of GPUs. A tendency of hit rate degradation of 
texture cache and L1 cache is observed when row 
vector size increases.  

• We implement a CG (Conjugate Gradient) solver 
including SpMVs for the proposed memory system 
to evaluate the performance improvement against a 
cache based system. Since we use the same 
algorithms for the evaluation, the improvement of 
memory system is estimated separately.  

• During the execution of the CG solver on the 
proposed memory system, we get its breakdowns to 
detect hidden problems.  
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• To solve the above new problems, we improve the 
implementation based on CUBLAS, which is a 
numerical calculation library by Nvidia. 

The rest of this paper is organized as follows: In Section 
2, we introduce related works. In Section 3, we explain the 
architecture of our proposed memory system. In Section 4, 
the target workload (i.e. CG solver) on the proposed 
architecture is explained. We present the performance 
evaluation results in Section 5. In Section 6, we conclude the 
work and present future considerations. 

II. RELATED WORKS 
Recently, there are many research results that SpMV on 

GPU is accelerated to take the advantage of larger memory 
bandwidth of GPU rather than CPU [3]-[12]. So far, some 
sparse matrix libraries are already open to the public, such 
as in Nvidia [13][14]. While most studies are about storage 
formats for sparse matrix [3]-[12], some studies make use of 
GPU's texture cache for high-speed access to column vectors 
of the sparse matrix [4]-[12]. Although GPU's texture 
memory is read-only memory from the GPU, it can be used 
for storing column vectors, which are reusable, by the GPU 
with dedicated functions such as tex1Dfetch and tex2D to 
access the column vectors. Since the texture memory is 
cached on the texture cache, accesses to the device memory 
would be reduced if appropriate disposition of non-zero 
elements of sparse matrices are given. 

Latest GPUs (e.g., Fermi architecture GPUs in the case 
of Nvidia) contain general purpose L1 and L2 caches for 
global memory on the device memory as well as texture 
memory. Using such general purpose caches, the column 
vectors can be cached without any dedicated functions to 
reduce device memory accesses.  

Among many studies for accelerating SpMV, there are 
very few studies for accessing huge sparse matrices from 
many GPUs. In such studies, the huge sparse matrices should 
be decomposed for each device memory on the GPUs. 
Unless smart decomposition methods are used, considerable 
numbers of fine grain random communications, which 
degrade the scalability, are generated. In [5], the reduction of 
inter-GPU communication by hyper graph partitioning is 
reported, but the efficiency heavily depends on the matrix 
shape and/or the number of GPUs. 

III. MEMORY ACCELERATOR 

A. Basic concept 
Figure 1(a) illustrates the mapping of applications and 

their suitable hardware accelerators categorized by the 
density of memory access and computation. The memory 
accelerator is hardware for the fast execution of memory 
bandwidth intensive applications such as irregular SpMVs 
that are difficult to be optimized for existing hardware 
accelerators. When a series of cache misses are issued, 
inefficient memory accesses where only four or eight bytes 
out of a 128 byte cache line are valid would be repeated. In 
such the case, the accesses to column vectors, which occupy 
one third of the total accesses, require the memory 

bandwidth 32 times for single precision and 16 times for 
double precision. 

The memory accelerator has a memory controller with 
hardwired scatter/gather functions on the memory-side, i.e. 
between a block of external memory chips and a network-on-
chip (NoC). The hardwired scatter/gather functions on the 
memory-side have been implemented in DIMMnet-2[15]. 
Figure 1(b) gives the concept of our proposed system 
including memory chips connected by many memory 
channels with a small number of wires for random memory 
accesses. 

Recently, a memory subsystem that supports gather/ 
scatter capabilities is announced as a focus area [16] by IAA 
which is an organization for an Exa-FLOPS machine of the 
United States. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.  The concept of Memory accelerator: (a) Pourpose, (b) Proposed 

architecture. 

B. Architectural improvement 
In this paper, we propose an architectural improvement to 

the architecture of [3], where the interface of the memory 
accelerator is PCI express. Although it is reported in [3] that 
four times acceleration is observed with the combinatorial 
use of memory accelerator and pre-processing algorithms, it 
turned out that the bottleneck lies in the PCI express. As a 
short-term solution, we have adopted PCI express [3] as the 
host interface for the memory accelerator. For the middle and 
long term solutions, we are to adopt the GDDR5 device 
memory interface and the HMC (Hybrid Memory Cube) [17] 
interface, respectively. The current GDDR5 DRAM 
(Dynamic Random Access Memory) provides the bandwidth 
of 28GB/s. 

We propose that the memory accelerator is implemented 
with 3D stacking as an HMC to integrate its hardwired 
scatter/gather functions inside the logic base chip of the 
HMC as shown in Fig. 1(b). Since each host interface of the 
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HMC provides 160 to 320GB/s bandwidth, the bottleneck 
problem would be resolved. The HMC with gather functions 
can randomly and effectively access many narrow memory 
banks using short low powered wires. It transmits just 
effective data on long off-chip wires. Therefore, the 
proposed memory system architecture must be low power 
and have high performance. Since the gather function can be 
implemented on a logic base of the HMC, the additional cost 
for the proposed architecture must be considerably smaller 
than that of conventional vector supercomputers. This 
improved memory can be a candidate for a new accelerator 
of future power constrained HPC platforms. 

The cost of the proposed architecture with HMC 
interface is very low, since HMC essentially has a logic base 
chip which can easily have proposed gather functions. HMC 
is seen to be a low cost commonly used memory in the future. 
If the proposed logic is listed in the standard of future HMC, 
the hardware cost of the proposed architecture can be 
negligible. 

IV. TARGET WORKLOAD FOR THE PROPOSED SYSTEM  
In this paper, we use a CG solver for the evaluation of the 

proposed system as one of the target workloads. SpMV is the 
main part of the CG solver. In [3], an inter GPU 
communication reduction method for SpMV with keeping 
high scalability against the matrix shape and the number of 
GPUs is presented. The approach in [3] presents one of the 
best SpMVs from comprehensive standpoint considering 
scalability, load balancing and memory access efficiency. 

As shown in Figure 2, an SpMV can be divided into 
multiplications of a set of row vectors and a column vector. 
Since there is no data dependence among the multiplications, 
it is quite easy to decompose the sparse matrix for each GPU 
by row vector according to the memory capacity constraint. 
The SpMV algorithm of [3] guarantees the scalability to 
remove the inter node communications by the strategy 
shown in Figure 2. In the case of the proposed architecture 
for accelerating CG, the resultant column vectors must be 
written back to the memory accelerator. In the case of 
multiple memory accelerators, the resultant column vectors 
must be multicasted to each memory accelerator. This 
multicast can be implemented so that it does not depend on 
the number of memory accelerators by using appropriate 
interconnection networks. Furthermore, the application of 
streaming would overlap the execution of the SpMV and 
multicast data transfer of resultant column vectors. 

Furthermore, [3] proposes some pre-processing 
algorithms shown in Figure 3 to accelerate the performance 
of SpMVs. The pre-processes are padding, folding, and 
transposition to get better disposition of non-zero elements of 
the sparse matrix to GPUs. The use of the pre-processes in 
combination with the proposed hardware gives a maximum 
performance improvement of four times compared to [7].  In 
this paper, we follow [3] to use the SpMV algorithms and the 
hardware except the host interface of the GPUs.  

In the CG solver, two parameters are generated from 
inner product operations to dense matrices, and using the two 
parameters each column vector of a sparse matrix is updated 
to apply SpMVs. The operation number of the dense 

matrices inner product is proportional to the number of 
unknowns of the simultaneous equations (the row number of 
the coefficient matrix), and the number of SpMVs is 
proportional to the number of non-zero elements of the 
coefficient matrix. It depends exactly on the disposition of 
non-zero elements.  In general, the more non-zero elements 
per row the sparse matrix has, the more computation for the 
SpMVs the total operations contain.  The less non-zero 
elements per row, the more computation there is for dense 
matrix inner product. Especially in the latter case, if the 
dense matrix inner product is not performed at the GPU but 
sent to the host to be calculated, it seems to have a risk to 
move the bottleneck to the host as well as data transfer 
overhead. Therefore, all the calculation should be performed 
in the GPU. 
 

 
 
 
 
 
 
 
 

Figure 2.  Strategy of scalable Sparse Matrix-Vector Multiplication in [3]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Flow of SpMV in [3]. 
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V. EVALUATIOＮ 

A. Evaluation environment and test matrices 
The evaluation environment is illustrated in Table I 

(Tesla C1060) and Table II (Tesla C2050). Table III shows 
the test matrices. The test matrices are chosen from 
University of Florida Sparse Matrix Collection [2]. Although 
these sparse matrix problems are insufficient for our goal, 
namely not "so large problems that each vector cannot be 
stored in GPU device memory", we assume that the test 
matrices have the same characteristics to the too large 
vectors distributed among GPUs of the proposed system for 
parallel execution. In previous work [8], the same kinds of 
matrices were chosen for the performance evaluation of 
SpMV. In this paper, we chose the sparse matrices in [8]. 
Note that the chosen test matrices are not large enough. The 
size of the largest vector to be multiplied is so small (6.3MB) 
as to be insignificant compared with the device memory size. 
Therefore, we can say that the evaluation experiments are 
performed in a condition that cache effect is stronger (the 
condition that the cache-based previous work is profitable) 
than the finally supposed case (the condition that the 
problem is too large). Actually our method does not need 
cache effect so much. 

TABLE I.  EVALUATION ENVIRONMENT (C1060) 

CPU Intel®a Core(TM) i7 CPU920 @ 2.67GHz 
GPU Nvidia Tesla C1060 

(# of core=240, 4GB, Memory bandwidth103GB/s) 
Host I/F PCI express x16 Gen2  (bandwidth 8GB/s) 
OS Fedora10 
CUDA Cuda3.0 

TABLE II.  EVALUATION ENVIRONMENT (C2050) 

CPU Intel® Xeon®a CPU X5670 @ 2.93GHz 
GPU Nvidia Tesla C2050 

(# of core=448, 3GB, Memory bandwidth144GB/s) 
Host I/F PCI express x16 Gen2  (bandwidth 8GB/s) 
OS Red Hat Enterprise Linux Client release 5.5  
CUDA Cuda3.2 
ECC Off 

a. Intel, Intel Core, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries. 

TABLE III.  TEST MATRICES 

Non-0 elements Name # of rows 
Total Ave. Max σ 

Na5 5,832 155,731 26 185 35.7 
msc10848 10,848 620,313 57 300 49.4 
thermal2 147,900 3,489,300 23 27 6.9 
hood 220,542 5,494,489 24 51 13.3 
F1 343,791 13,590,452 39 306 20.0 
ldoor 952,203 23,737,339 24 49 12.9 
G3_circuiit 1,585,478 4,623,152 2 4 2.2 

 
When we solve a large problem for the same kind of 

applications, it is expected that the number of non-zero 
elements per row of the sparse matrices is considered as a 
constant for most cases. When a large matrix is decomposed 
for multiple GPUs by row based on the strategy described in 

Figure 2, the memory accesses to the matrix issued by each 
GPU does not change so much when the matrix size is small. 
Since the indirect referenced column vector size increases 
when the problem size is large, the cache hit rate of existing 
cache based systems deteriorates. In the meantime, in the 
case of the proposed method, such performance degradation 
does not occur when the column vector size increases 
because the proposed method is based on a vector processor 
architecture. Furthermore, the strategy described in Figure 2 
does not include any point-to-point communication, namely 
it is scalable. In short, the effect of the proposed method to 
the performance gain for small matrices to be evaluated for a 
GPU gives the lower limit of the performance gain for large 
matrices to be evaluated for GPU clusters. 

B. Implementation of CG solver 
For the evaluation of the proposed architecture, we 

implement three types of CG solvers with different accesses 
to the column vectors in the kernel, as explained below. In 
either case, pre-processes described in the previous section 
are applied to perform SpMV so that we analyze the relation 
between the access types of vectors and acceleration 
efficiency. 

1)  Texture memory version: In this version, column 
vectors are stored in GPU texture memory so that Tex2D 
function is called to make use of texture cache. This version 
gives the criteria of performance to be compared with other 
versions, and the number of iterations to be converged in 
this version is given to (3) as described later. 

2) Shared memory version: In this version, column 
vectors on device memory are accessed via shared memory. 
In the case of Fermi C2050, those accesses are accelerated 
by L1 and L2 caches. 

3) Proposed architecture version: In this version, 
column vectors on device memory, which get disposition 
operations in advance (fairing and transposition), are 
accessed. Because of the disposition operations, the original 
indirect references are converted to direct references in the 
source code so that they are in the form of burst and 
coalesced access. We assume that we have enough memory 
bandwidth of memory accelerator. 

Note that the proposed method assumes the use of the 
mixed precision iterative refinement algorithm [19]. 
Although the algorithm [19] mostly consists of a single 
precision CG solver, it provides rich convergence ability to 
be comparable with double precision operations. For this 
reason, we measure the execution speed of a single precision 
CG solver in this evaluation. In the case that there is a matrix 
not to be converged with single precision operations, we just 
measure the execution speed of the loop which includes the 
matrix for a fixed number of interactions. 

C. Texture cache hit rate 
We measure the texture cache hit rate of the texture 

memory version to be executed on a C1060 with profiling. 
CUDA 3.0 provides performance counters tex_cache_hit and 
tex_cache_miss. Figure 4 shows the relation between the 
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matrix size (the number of rows) and the texture hit rate. As 
the number of rows increases, the texture cache hit rates 
decreases because column vector accesses protrude the small 
texture cache. In Figure 4, we show the linear approximation 
by the black line, which shows a precipitously falling 
diagonal stroke from top left to bottom right. The linear 
approximation indicates that when the matrix size increases 
further, any cache effect is not expected. 

 
Figure 4.   Matrix size and the texture hit rate. 

 
 
 
 
 
 
 
 
 
 

Figure 5.   Matrix size and the L1 cache hit rate. 

 
 
 
 
 
 
 
 
 
 

Figure 6.   Processing speed ratio of SpMV. 

 

 

 

 

 

Figure 7.  Matrix size and GFLOPS of SpMV. 

Actually, among the matrices in this experiment, the 
largest one G3_circuit (1,585,478 rows) gets the cache hit 
rate of 7.74%, which reveals that the texture cache has spilt 
out. In the meantime, in G3_circuit the average number of 
non-zero elements per row is 2, and this means there are very 
few reusable data in each cache line, which makes the cache 
hit rate low, too. 

D. General purpose cache hit rate 
We measure the general purpose cache (L1) hit rate of 

the shared memory version to be executed on a C2050 with 
profiling. CUDA 3.0 provides performance counters 
L1_global_load_hit and L1_global_load_miss. 

Figure 5 shows the relation between the matrix size (the 
number of rows) and the L1 cache hit rate, where the 
preference of L1 cache is LARGER (L1 cache is 48KB 
while shared memory is 16KB). As in the case of texture 
cache, the L1 cache hit rate decreases when the matrix size is 
large. G3_circuit gets the cache hit rate of 26.5% which is 
better than 7.74% on C1060. In the case of F1, the L1 cache 
hit rate is 23.9% which is lower than the texture cache hit 
rate. This phenomenon can be explained as follows. The L1 
cache tries to keep any row vectors even if they do not have 
reusable data. Since F1 contains a large number of non-zero 
elements, F1 gets the lower cache hit rate as the result. To 
avoid this situation, when the row vector without reusable 
data is loaded, a special instruction, which skips L1 cache to 
directly load vector data, should be used. 

E. SpMV execution times for three implementations 
Figure 6 shows the processing speed ratio of each 

execution time of SpMV kernel to the execution time of the 
texture memory version on C1060. At a glance, it turns out 
that the proposed architecture version on both C1060 and 
C2050 is better than other implementations. Note that the 
effect of the additional hardware for the proposed 
architecture is very limited because the target matrices are so 
small. In other words, the proposed architecture provides 
more throughputs without any cache effect than the 
throughputs of GPUs with a certain amount of texture or L1 
cache effect for relatively small matrices. Since the previous 
experiment shows that the use of larger matrices decreases 
the cache effect, the proposed architecture provides much 
more throughput for larger matrices compared with other 
implementations. 

Considerable performance improvement is observed also 
in the shared memory version on C2050 compared with 
C1060 because of the improvement of device memory 
bandwidth and L1/L2 cache effect on C2050. This 
performance improvement seems to be given mainly by L2 
cache effect. Since L2 cache is not so large compared with 
L1 cache, the performance improvement is limited when the 
target matrices are larger. 

 In [10],  M. M. Baskaran et al. reports the execution 
times of F1 and ldoor with double precision SpMV in the 
JDS format on C2050. Our shared memory version on 
C2050 is 4.1 times and 2.74 times faster than in [10] for F1 
and ldoor, respectively. Although our shared memory 
version is single precision that naturally makes two times 
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performance improvement because of the difference of the 
device memory bandwidth (double vs. single), the pre-
processing (folding) of our shared memory version achieves 
more performance improvement than their implementation. 

 Figure 7 shows the relation between matrix size and 
GFLOPS of SpMV on C2050. The shape of the graph of 
GFLOPS values with L1/L2 is similar to that of the L1 cache 
hit rate (Figure 5). We observe a tendency of performance 
degradation for L1/L2 as the matrix size increases. On the 
contrary, we observe an improving tendency of matrix size 
for Gather. This result predicts that the performance ratio 
between Gather and L1/L2 cache will increase when the gap 
of cache capacity and solution vector size increases. 

F. CG solver execution times for three implementations 
When the SpMVs are fully accelerated on the GPU, the 

inner product operations performed on the host PC become a 
bottleneck. The inner product of dense matrices can be 
calculated in parallel, and seems to be accelerated using 
CUBLAS [18]. After the above consideration, we apply 
CUBLAS to the inner product operations and move most of 
the miscellaneous operations (except residual operations to 
be executed on the host PC) to the GPU. Figure 8(a) shows 
the speed ratio of the CG solver using CUBLAS applied to 
various matrices on C2050 with three implementations.  

Each matrix is symmetric but some matrices are not 
positive definite. Furthermore, they are single float 
operations. So, the number of iterations is totally different by 
matrix, and some matrices cause the CG solver not to 
converge. Taking into account the above problems, we 
measure partial iterations to calculate the average execution 
time by iteration. Since the shared version program could not 
be executed for ldoor on our environment, the result is not 
available.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8.  Performance of the CG solver using CUBLAS based inner 

products on C2050:  (a) Speed ratio, (b) Breakdown. 

The result is that the proposed architecture version works 
1.01 to 1.20 times faster than texture memory version 
although the matrices are small enough to take advantage of 
the texture cache effect. These speed ratios are not attainable 
by the kernels shown in Figure 6. This is because operations 
other than SpMVs and inner products are executed on the 
host PC.  

To investigate the performance effect of non-kernel 
operations, we measure other operations of the CG solver. 
Figure 8(b) shows the breakdown of the execution times by 
our proposed architecture using CUBLAS based inner 
products on C2050. It turns out that the post SpMV 
operations which are reductions of partial inner products of 
folded vectors and the main part of SpMVs do not take the 
major part of the processes, but the other calculations on the 
CPU and the data transfer between the host PC and the GPU 
dominate the total processes. This is one of the reasons why 
the speed-up ratio in Figure 8(a) is not so large. The second 
reason why the speed-up ratio in Figure 8(a) is not so large is 
that the workload matrix is too small for the L2 cache hit rate 
and the device memory bandwidth to dominate the 
performance. If workload matrices are large enough that 
these parameters dominate the performance, the speed-up 
ratio must be increased since the proposed memory system is 
based on the vector architecture whose performance does not 
decrease when the vector length is larger. 

The amount of inner product operations depends on 
unknown variables of the linear equation. In the case of 
G3_circuit where the average number of non-zero elements 
per row is two, the amount of SpMVs is almost as same as 
inner product operations. This is the reason why 
miscellaneous operations dominate the execution time of 
G3_circuit. As the result of reducing CPU execution times, 
the data transfer between the host and the GPU comes to 
dominate the total execution time. If the complete 
optimization, namely all operations on a GPU such as Kepler 
by Nvidia, was achieved, the data transfer between the host 
and the GPU would be reduced and higher acceleration 
would be expected. 

VI. CONCLUSIONS AND FUTURE WORK 
In this paper, we evaluate texture and general purpose 

cache hit rates for conventional SpMVs. We confirm that 
relatively small matrices (several hundred Kilo Byte to 
several Mega Byte) taken from University of Florida Sparse 
Matrix Collection [2] generate cache hit rates of 10% to 70%, 
which are low.  Larger matrices tend to degrade cache hit 
rates and FLOPS performance. 

To keep high scalability of the number of GPUs, each 
GPU should contain a copy of the target column vector in its 
device memory. When the target is a mesh of 1,000 cubic, 
the column vector size becomes 8GB and exceeds the 
capacity of the device memory. In this case, the overhead of 
data transfer via PCI express would make the performance 
worse. The memory accelerator, which has gather functions 
and a huge capacity of memory optimized for short bursts, 
has been proposed in [3]. The memory accelerator can 
replace cache memory so that it treats huge problems that 
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matrices and column vectors are too large to be stored in the 
device memory. 

The problem of the memory accelerator in [3] is that 
SpMV on GPUs reveals PCI express is the bottleneck. In this 
paper, we proposed that a memory accelerator is connected 
to the GDDR5 port or the HMC port of GPUs. In these cases, 
the bandwidth per port increases, and the total bandwidth 
additionally increases using multiple ports. 

The previous evaluation could not explain the 
performance effects by replacing cache memory with the 
memory accelerator and by pre-processing algorithms 
separately. In this paper, we evaluate the performance effects 
on University of Florida Sparse Matrix Collection [2] with 
different memory systems including the memory accelerator. 
As a result, even in the case of small matrices where texture 
cache is effective, it turned out that our proposed architecture 
works 1.01 to 1.20 times faster than the texture cache based 
existing method. If workload matrices are large enough that 
the L2 cache hit rate and the device memory bandwidth 
dominate the performance, speed-up ratio will be greater 
since proposed memory system is based on vector 
architecture whose performance does not decrease when the 
vector length is larger. If the complete optimization, namely 
all operations on a GPU such as Kepler by Nvidia, was 
achieved, higher acceleration would be expected. 

While the previous evaluation was just for SpMV, in this 
paper we evaluate the CG solver including SpMV. In the CG 
method execution, the full acceleration of SpMV on a GPU 
exposes the other processes of dense matrix inner product on 
a CPU and data transfer latency between the CPU and the 
GPU. Shifting some part of the miscellaneous processes to 
the GPU side, we observe considerable performance 
improvement. 

Our future work includes the implementation and 
evaluation of streaming that hides the write-back latency for 
the memory accelerator, the exact evaluation of L2 cache 
effect for larger matrices, the evaluation of the scalability of 
many GPUs and memory accelerators, and the design and 
evaluation of a memory accelerator with large capacity 
optimized with short bursts. 
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