
Exploring HADOOP as a Platform for Distributed Association Rule Mining

Shravanth Oruganti, Qin Ding, Nasseh Tabrizi
Department of Computer Science,

East Carolina University,

Greenville, North Carolina, USA

o.shravanth@alumni.ecu.edu, dingq@ecu.edu, tabrizim@ecu.edu

Abstract - Association rule mining is one of the important data

mining techniques. Association rule mining is used to discover

associations between different items in large datasets. The

Apriori algorithm for association rule mining forms the basis

for most other association rule mining algorithms. The original

Apriori algorithm runs on a single node or computer. This

limits the algorithm’s capability to run on large datasets due to

the limited computational resources available. There have been

various studies for parallelizing the algorithm. In this paper,

Apache Hadoop was chosen as the distributed framework to

implement the Apriori algorithm and to evaluate the

performance of the algorithm on Hadoop. The Apriori

algorithm was modified to be run on Hadoop. Performance

analysis shows that Hadoop is a promising platform for

distributed association rule mining.

Keywords - Cloud computing; association rule mining; data

mining; Hadoop.

I. INTRODUCTION

Business Intelligence has become an integral part of

many successful organizations. Analyzing data and making

decisions based upon the analysis is very important for an

organization’s growth. Data mining techniques help analyze

the substantial data available to assist in decision-making.

Among the most frequently used data mining techniques,

association rule mining is a very important one. For

example, in market analysis, association rule mining helps

identify what items are purchased together by customers and

generate interesting rules (depending on the measure of

interestingness selected) based on the transactional data.

Many approaches [2,3,10,12,14] have been proposed to

mine association rules but a majority of them depend on the

Apriori algorithm as the basis [2]. Due to huge size of the

datasets, running these algorithms and mining association

rules on a single computer is not very efficient because it is

limited by the processor capacity, RAM, storage, and

various other factors. Hence, it is necessary to develop

distributed algorithms to perform association rule mining.

Performing large-scale computing and data mining is one of

the issues in future computing.

It was observed that most algorithms for association rule

mining ran out of memory even for small datasets and a

small support count. There are some parallelized algorithms

for association rule mining, but all of them handle the

communication in the network, load balancing or other

distributed tasks [1,4,5,6,9,13,15,17,18]. The goal of this

work was to see if there would be a distributed framework

where data intensive tasks could be performed without the

overhead of the programmer managing the distributed part

of the system. Apache Hadoop was shown to be a good

framework for this task [16]. Very little research has been

done on implementing association rule mining algorithms

on Hadoop, although there are a few studies on

implementing association rule mining using cloud

computing [7,11,16]. For this study, Apache Hadoop was

chosen as the distributed framework to implement the

Apriori algorithm [2] and to evaluate the performance of the

algorithm on Hadoop.

The rest of the paper is organized as follows. Section II

introduces the background related to association rule mining

and Hadoop. Section III details the proposed framework,

algorithm, and implementation. Section IV presents

evaluation followed by the conclusion and future work in

Section IV.

II. BACKGROUND

This section introduces the concepts of association rule

mining, the original Apriori algorithm for association rule

mining, previous approaches to parallelize Apriori algorithm,

the MapReduce framework, and Hadoop.

A. Association Rule Mining

Association rule mining was originally proposed for

Market Basket Analysis [2]. By searching for frequent

patterns in transactional data sets, interesting associations

and correlations between item sets in transactional and

relational databases may be discovered.

Market Basket Analysis is a modeling technique based

upon the theory that if you purchase a particular group of

items, you are more likely to purchase another group of

items. For example, if a customer purchases some pizza

dough, it is more likely he/she will also purchase some pizza

sauce. Placing them at the same aisle in the store or even

bundling them together could help increase profits. Just the

knowledge that customers often purchase certain items in

groups could open up new possibilities in businesses.

In the aforementioned example, the set of items a

customer purchases is referred to as an itemset, and market

basket analysis seeks to find relationships between itemsets.

Typically the relationship will be in the form of a rule, such

as: customer purchases pizza dough  customer purchases

pizza sauce.

62Copyright (c) IARIA, 2013. ISBN: 978-1-61208-272-1

FUTURE COMPUTING 2013 : The Fifth International Conference on Future Computational Technologies and Applications

There are two measures, support and confidence, which

can be used to measure the interestingness of the rules.

Support indicates the frequency of the occurring pattern

while confidence measures the strength of the association.

B. Apriori Algorithm

The Apriori algorithm [2] has been the basis for many

other algorithms in association rule mining. Subsequently,

there were many modifications and other algorithms to mine

frequent patterns in data [3,10,12,14]. A brief summary of

the Apriori algorithm is given below.

The Apriori algorithm is an iterative approach to

generate frequent itemsets based upon a user provided

minimum support and confidence. Candidate itemsets of

size k are generated based upon frequent itemsets of size k-1.

The basic algorithm works as follows (Fig. 1):

Figure 1. Apriori algorithm

A major drawback of this algorithm is the high I/O costs.

The database needs to be scanned during each iteration,

which is expensive. With huge datasets, this may consume

significant system resources in order to scan and hold the

transactions in memory.

C. Parallel versions of Apriori

The authors of the Apriori algorithm also proposed three

parallelized versions of the algorithm to run on multiple

nodes [1], including Count Distribution, Data Distribution,

and Candidate Distribution algorithms.

The Count Distribution algorithm uses a simple principle

of allowing redundant computations in parallel on otherwise

idle processors to avoid communication. The basic idea is

that each processor will scan the local data asynchronously

in parallel to do the local counting, but the candidate

itemsets that each processor counts are identical except

during the first pass. At the end of each pass, they must

synchronize to calculate the global counts. Additional

details may be found in [1].

The main disadvantage of the Count Distribution

algorithm is that it does not exploit the aggregate memory of

the cluster. The Data Distribution algorithm attempts to

address this issue. Unlike the Count Distribution algorithm,

the Data Distribution algorithm counts mutually exclusive

candidate items. Hence, as the number of nodes increases,

more candidate itemsets may be counted in one pass. The

major downside of this algorithm is the additional overhead

of transmitting the local data along with the candidate

itemsets.

The Candidate Distribution algorithm does not require

data or candidate itemset communication between

processors. This addresses some of the problems associated

with count and data distribution methods. In the

aforementioned two approaches, dependencies exist

between the processors; if the load balancing and

synchronization is not performed properly, the algorithm

slows down considerably. Candidate Distribution eliminates

this by removing the node communication. The basic idea is

to divide the candidate itemsets and data among the nodes in

such a way that each processor or node can perform the

counting of candidates independently of the other processors.

This division is performed after a certain number of passes,

which is determined heuristically during the iterations.

During the tests performed by the authors, they found

that the Count Distribution algorithm is the best way to

parallelize the Apriori algorithm.

D. MapReduce Model

MapReduce [8] is a distributed software framework

introduced by Google in 2004 to support distributed

computing on large datasets on clusters of computers.

MapReduce was derived from the mapreduce feature of

functional programming languages but was adapted to

distributed computing. It consists of two steps: Map and

Reduce.

The Map phase consists of a Mapper class that receives

an input (key, value) pair and produces a set of intermediate

key/value pairs. The MapReduce library groups together all

intermediate values associated with the same intermediate

key and passes them to the Reduce function. It essentially

emits all the key/value pairs containing the same key to the

reducer.

The Reducer class contains the reduce function that

accepts an intermediate key and a set of values for that key.

It merges together these values to form a possibly smaller

set of values and writes them to the specified output.

The basic MapReduce architecture is shown in Fig. 2.

Figure 2. MapReduce architecture

Ck: Candidate itemset of size k
Lk: frequent itemset of size k

L1= {frequent items of size 1};

for (k = 1; Lk! =∅; k++) do begin

 Ck+1= candidates generated from Lk;
 for each transaction t in database do

 Increment the count of all candidates in Ck+1 that are

contained in t
 Lk+1= candidates in Ck+1 with min_support

end

return ∪k Lk;

63Copyright (c) IARIA, 2013. ISBN: 978-1-61208-272-1

FUTURE COMPUTING 2013 : The Fifth International Conference on Future Computational Technologies and Applications

To use the MapReduce programming model, each task

must be represented as some computation on a list of key-

value pairs.

E. Apache Hadoop

The following is a description of Hadoop from the

official Apache website [20]: “Hadoop MapReduce is an

open source software framework for writing applications

which process vast amounts of data (multi-terabyte data-

sets) in-parallel on large clusters (thousands of nodes) of

commodity hardware in a reliable, fault-tolerant manner.”

Hadoop MapReduce makes use of the Hadoop File

System (HDFS) as the underlying distributed file system

architecture. HDFS is responsible for distributing the data

across multiple nodes and the number of replications, etc.

There are many parameters which can be configured based

on the requirement from the configuration files provided by

the Hadoop distribution.

Minimally, applications specify the input/output

locations and supply map and reduce functions via

implementations of appropriate interfaces and/or abstract-

classes. Further details may be found on the Apache Hadoop

website [20].

Hadoop has three modes of operation: Standalone mode,

Pseudo-Distributed mode, and Fully Distributed mode.

In Standalone mode, also known as local mode, there are

no daemons running and everything runs within a single

JVM (Java Virtual Machine). This is the default mode of

operation and is suitable for running MapReduce programs

during development, since it is easy to test and debug. In

this mode, a single Hadoop node is created but does not use

the Hadoop Distributed File System (HDFS). This means

that all input and output files are read from and written to

the underlying OS file system; thus, there appear to be no

benefits in using HDFS.

In Pseudo-distributed mode, all of the Hadoop daemons

run on the local machine, thus simulating a cluster on a

single machine. Other than where the Hadoop processes are

running (one machine vs. one machine per node), this mode

is the same as distributed mode. In this mode, Hadoop starts

all of the processes for all of the configured nodes on the

same machine. This mode is useful because it allows the

architect to observe how applications respond to running on

a Hadoop cluster, but without the overhead of setting up the

individual machines for the nodes of the cluster. While the

task is much easier for a software architect using a cloud

and Hadoop, there is still some overhead involved. Because

the HDFS is used by default, benefits may be gained from

using it.

In Fully distributed mode, the Hadoop daemons run on a

cluster of machines. Each Hadoop node is started on the

specified machine. As with pseudo-distributed, HDFS is

used.

III. IMPLEMENTATION

The Count Distribution strategy was chosen for

implementing the Apriori algorithm on a Hadoop cluster.

Hadoop is not suited to implement the Data Distribution

strategy since the data distribution cannot be controlled on

Hadoop. It does not make sense in the MapReduce world to

transmit data to other nodes. The Candidate Distribution

strategy does not work either because a particular data block

cannot be assigned to a particular node in Hadoop.

A very high-level view of the modified algorithm is

provided below in Fig. 3.

Figure 3. Design of the algorithm

The algorithm works as follows. By using the HDFS file

system and configuring it, Hadoop can automatically split

the data files into smaller chunks and distribute them over

the Hadoop cluster. The replication factor can be specified

to replicate the data on multiple nodes so that the algorithm

works even if a node does not work during the execution.

The output files containing the frequent itemsets are stored

in the output folder of the HDFS. These files need to be

retrieved to the local system to generate subsequent

candidates.

For performing the counting in parallel, each map job is

configured to have the candidate itemset list and each node

in the cluster has certain data blocks. The jobs are run

multiple times for each frequent itemset having the

minimum support. Each Map task that runs on a node reads

the chunks present locally and emits the candidate, a count

of 1 for each time the candidate is found in the file. The

reduce function then aggregates all these counts for a

particular key and writes the candidate to the output file

only if it satisfies the minimum count. The output file is

then read and the candidate list for the next iteration is

generated. Thus, the counting step is parallelized.

IV. EVALUATION

To evaluate how well the design of the algorithm scales

on multiple nodes and whether Hadoop as a framework is a

good fit to perform association rule mining, some analyses

were performed. The following section details how the data

were generated and various analyses performed.

64Copyright (c) IARIA, 2013. ISBN: 978-1-61208-272-1

FUTURE COMPUTING 2013 : The Fifth International Conference on Future Computational Technologies and Applications

A. Datasets used and Data Generation

We generated many datasets with varying parameters,

but for the analysis we used four of them. We used a

synthetic data generator to generate the transactions to

perform frequent pattern mining. But the generated data

would not be a perfect way to test the system as it was

arbitrarily generated and may not really reflect real world

data. Hence, we also used a dataset from the FIMI

repository [19]. The dataset and a brief description of the

dataset are given below.

1) Dataset: Accidents.dat

This dataset of traffic accidents was originally obtained

from the National Institute of Statistics (NIS) for the region

of Flanders (Belgium) for the period from 1991 to 2000. In

total, 340,184 traffic accident records are included in the

dataset with 572 different attribute values. On average, 45

attributes are filled out for each accident. More details about

the attributes can be found in the FIMI repository.

2) Synthetically generated Datasets

The authors of the Apriori algorithm at IBM have

developed their own tool to generate datasets to test their

algorithm. They used different parameters to generate the

dataset. The major factors are:

 Average size of the transaction (Ts)

 Number of transactions (Tn)

 Average size of maximal potentially frequent itemsets (P)

 Number of maximally potentially frequent itemsets (L)

 Number of items (N)

Many other studies used the aforementioned IBM Data

generator to generate synthetic data generator. However the

tool is now obsolete. Hence, ARtool[21], another open

source tool package, was chosen for generating the synthetic

data. The tool is an open source tool developed at the

University of Massachusetts at Boston and it provides

options to mimic the parameters and datasets. By using this

tool, four datasets were generated. They are summarized in

Table I:

TABLE I. DATASETS

 Dataset Tn Ts L P N

200K_f50 200000 50 2000 6 1000

200K_f30 200000 30 2000 6 1000

200K_f20 200000 20 2000 6 1000

100K_50 100000 50 2000 6 1000

B. Cluster Setup

Hadoop, as explained earlier, runs in three different

modes. All three modes of operation were used while

developing and testing the algorithm.

Standalone mode: When the Hadoop and MapReduce

framework were tested, many test programs had to be

written to test Mappers and Reducers performing tasks in

parallel. For the purpose of testing the basics of Hadoop,

the NetBeans IDE with a plug-in called Karmasphere was

used to test Hadoop applications that had been written.

Karmasphere simulates Hadoop and provides Mappers and

Reducers within a single node. It uses only the local file

system and no distribution of data occurs. The first basic

version of Apriori was developed according to MapReduce

framework in this mode and was tested on small datasets to

determine if the core algorithm was generating correct

results.

Pseudo-Distributed Mode: This mode uses the HDFS

system and distributes data albeit in a single node. It

simulates the Hadoop environment on a single node.

Essentially it is a cluster with just one node in it. The

Mapper and Reducer run as separate daemons in the system.

This mode was used to test whether the program was

reading and writing files correctly from and to the HDFS

and local file system and vice versa.

Fully Distributed Mode: This is the mode where we have

a full Hadoop cluster with multiple nodes running the

program. Initially a Hadoop cluster was built with two

nodes, i.e., a system and a VM within the system to test the

application. We used this to test if the cluster was setup

correctly and to understand the complexity of setting up a

Hadoop cluster. The IBM smart cloud was then chosen to

test the algorithm and the framework. IBM smart cloud is a

PAAS (Platform as a Service) that provides Hadoop master

and data nodes. The programmer does not need to create the

cluster nor perform installation and maintenance of the

cluster. This is automatically performed by the cloud

provider. With access to 5 nodes in the cloud, multiple tests

were performed to generate some interesting and promising

results. The following sections describe those results.

C. Analysis on Number of Nodes vs. Running Time

In this analysis, the goal was to test if there would be an

improvement in the running time as the number of nodes

increased. The accident.dat from the FIMI repository was

used as a dataset and the program was run on 2, 3, 4, and 5

nodes. The results are shown below in Table II and Fig. 4.

TABLE II. NUMBER OF NODES VS. RUNNING TIME

Dataset Support Nodes Time(min)

Accidents.dat 0.8% 2 197

Accidents.dat 0.8% 3 152

Accidents.dat 0.8% 4 107

Accidents.dat 0.8% 5 92

Figure 4. Number of nodes vs. running time

0

50

100

150

200

250

2 3 4 5

Ti
m

e

Nodes

Time (min)

65Copyright (c) IARIA, 2013. ISBN: 978-1-61208-272-1

FUTURE COMPUTING 2013 : The Fifth International Conference on Future Computational Technologies and Applications

As is evidenced, as the number of nodes increases, the

running time of the algorithm decreases drastically. But the

decrease in time is not always at the same rate. This depends

upon the size of the data, and more importantly, the split

factor of the data. When the files are transferred from the

local file system to HDFS, a block size needs to be specified

for the file to be split into. Each block is then assigned to a

node and all the operations on that block are performed by

only that node. If the number of nodes exceeds the number

of blocks, it is a waste of resources. So, at some point,

increasing the number of nodes would not lead to the

decrease in time. This point could not be reached in this

analysis as there were a limited number of nodes in the

cluster.

The important conclusion from this analysis is that

running the Apriori algorithm parallel on individual data

blocks on Hadoop does lead to a significant performance

increase and Hadoop as a distributed framework is a good

platform to use to perform data intensive computations.

Another observation that should be noted is the advantage of

using a cloud platform to achieve this. Both the individual

cluster and the IBM smart cloud were utilized and clearly, in

terms of adding new nodes to the cluster and scalability,

using a cloud is much more advantageous than building

one’s own cluster. Substantial maintenance costs could be

associated with maintaining one’s own Hadoop cluster as

typically such mining tasks are not run every day but rather

once in two weeks or once a month. There are many cloud

providers offering a Hadoop cluster and using these cloud

vendors is much less expensive and also much more

efficient than running it on one’s own cluster.

D. Analysis on Running Time Comparison Based on Dataset

In this analysis, the goal was to test the performance of

the algorithm on different datasets. The percentage decrease

in time was used as a measure for testing the performance.

The two datasets were synthetically generated, i.e., 100k_50

and 200K_50, and run on the Hadoop cluster with varying

number of nodes. The algorithm was run on both datasets on

2, 3, 4 and 5 nodes in order to compare the decrease in time

needed to run the algorithm. The results obtained are shown

in Table III and Fig. 5.

Fig. 5 provides some really interesting insights into

Hadoop and the algorithm in general. The running time on

two nodes was used as a reference to compare the decrease

in time when running the algorithm on the two datasets on

different number of nodes. As shown in Fig. 5, as the size of

the dataset increases, the time gained by running the

algorithm on multiple nodes increases considerably.

Consider the case of running the program on the 200K

transactions dataset. The percentage decrease in time by

running it on 5 nodes is close to 64% as compared to

running it on 2 nodes. This is a significant increase in the

efficiency of the algorithm.

TABLE III. RUNNING TIME ON DIFFERENT DATASETS

Nodes Percentage drop in time

100K 200K

2 0 0

3 25.9 32.9

4 29.84 36.68

5 27.8 64.37

Figure 5. Comparison of running time on different datasets

Another interesting result observed is that the program

scales well for larger datasets. As is evidenced, in almost

every instance the time saved by running the larger dataset

on multiple nodes is higher than the time saved by running

the program on smaller dataset. This can be attributed to the

fact that when running the algorithm in parallel on

individual data blocks, the amount of time needed to

perform the counting decreases. In Hadoop, we use HDFS

as the distributed file system. HDFS splits the entire file

into a number of blocks. So, if the number of nodes working

on individual data blocks simultaneously is increased, the

time is reduced. Thus, it is very important to choose the

cluster size and file split size depending upon the data.

 Another important observation relates to the 100K

transaction. When running the algorithm on 4 nodes and

then on 5 nodes, instead of time decrease which was

expected, there was actually an increase in time. The job

specifics were studied in order to understand this result and

it was found that even though there were 5 nodes in the

cluster, as a result of the division of the file, only 4 nodes

were participating in the Map and Reduce phases. This

unnecessarily caused some overhead in communication. So,

it is very important to fix the file split size appropriately

depending on the cluster. This is the same reason why there

was a spike in the decrease in percentage of time as we

added one more node to 4 nodes in the case of 200K

transactions. The JobTracker was again studied to see what

caused such a spike and noticed that when there were 5

nodes in the cluster, each Map task worked on an individual

data block. A Map task is nothing more than a running

instance of the Map class on the client node. Whereas in the

case of 4 nodes, there were some pending map tasks which

had to be computed again. Hence, it caused the steep

increase in performance of the program. This reiterates how

important the factors controlling the Hadoop environment

are. There are many other factors to affect how Hadoop may

0

20

40

60

80

100

2 3 4 5

%
 d

ro
p

 in
 t

im
e

Nodes

200K

100K

66Copyright (c) IARIA, 2013. ISBN: 978-1-61208-272-1

FUTURE COMPUTING 2013 : The Fifth International Conference on Future Computational Technologies and Applications

be configured, such as setting the number of map tasks,

reduce tasks, defining our own split function, etc.

E. Analysis on Running Time vs. Transaction Length

In this analysis, the goal was to test how the running

time varies based on the length of the transaction. The tests

confirmed what was expected. A 200K transaction database

generated synthetically was chosen. The average lengths of

the transactions were chosen to be 20, 30, and 50. The

results are shown in Table IV and Fig. 6.

TABLE IV. RUNNING TIME VS. TRANSACTION LENGTH

Data Time(min)

200k_50 28

200k_30 16

200k_20 4.5

Figure 6. Running time vs. transaction length

The results for this analysis are straight-forward. When

the transaction size is small, there is fast processing to count

the candidate itemsets; hence, less time.

V. CONCLUSION

In this paper, the design, implementation, and evaluation

of using Hadoop as a distributed framework for association

rule mining was presented. This proves that a parallelized

version of the Apriori could be very efficient and easy to

port to Hadoop. The IBM smart cloud was also used and it

shows the huge potential that cloud computing has to offer

to organizations performing data mining tasks. The cloud

provides an easy-to-use interface and web consoles to

launch the cluster with pre-installed software and network

connectivity. This is particularly useful as the programmer

can instead concentrate on writing efficient algorithms and

optimizing the data analysis rather than worrying about the

maintenance of the Hadoop cluster.

For this paper, the main goal was not to optimize the

Apriori algorithm but to test whether it can be implemented

on Hadoop with satisfactory results. A modified version of

the algorithm was designed and provided very good results

with respect to the platform; yet it is currently slow. The

speed of the algorithm may be improved to a large extent by

using Tries and other alternative implementations for

counting the candidates.

REFERENCE

[1] R. Agrawal and J. Shafer. “Parallel Mining of Association

Rules,” IEEE Trans. Knowledge and Data Eng., Vol. 8, No. 6,

1996, pp. 962–969.

[2] R. Agrawal and R. Srikant, “Fast algorithms for Mining

Association Rules,” Proc. Int’l Conf. Very Large Database, 1994,

pp. 487-499.

[3] S. Brin, R. Motwani, J. D. Ullman, S. Tsur, “Dynamic Itemset

Counting and Implication Rules for Market Basket Data,” Proc.

ACM Conf. Management of Data, 1997, pp. 255-264.

[4] D. Cheung et al., “A Fast Distributed Algorithm for Mining

Association Rules,” Proc. Int’l Conf. Parallel and Distributed

Information Systems, 1996, pp. 31–42.

[5] D. Cheung and Y. Xiao, “Effect of Data Skewness in Parallel

Mining of Association Rules,” Proc. Pacific-Asia Conf.

Knowledge Discovery and Data Mining, Lecture Notes in

Computer Science, Vol. 1394, Springer-Verlag, 1998, pp. 48–60.

[6] F. Coenen and P. Leng, “Partitioning Strategies for Distributed

Association Rule Mining,” The Knowledge Engineering Review,

Vol. 21, No. 1, 2006, pp. 25 - 47.

[7] J. Cryans, S. Ratté, R. Champagne, “Adaptation of Apriori to

MapReduce to Build a Warehouse of Relations between Named

Entities across the Web,” Proc. Int’l Conf. Advances in Databases,

Knowledge, and Data Applications, 2010, pp. 185-189.

[8] J. Dean and S. Ghemawat, “Mapreduce: Simplified data

processing on large clusters,” Communications of the ACM, Vol.

51, No. 1, 2008, pp. 107-113.

[9] E.H. Han, G. Karypis, V. Kumar, “Scalable Parallel Data

Mining for Association Rules,” ACM Conf. Management of Data,

1997, pp. 277–288.

[10] J. Han, J. Pei, Y. Yin, “Mining Frequent Patterns without

Candidate Generation,” Proc. Conf. Management of Data, 2000, pp.

1-12.

[11] L. Li and M. Zhang, “The Strategy of Mining Association

Rule Based on Cloud Computing,” Proc. Int’l Conf. Business

Computing and Global Informatization, 2011, pp. 475-478.

[12] J.S. Park, M. Chen, P. S. Yu, “An effective Hash-Based

Algorithm for Mining Association Rules,” Proc. ACM Conf.

Management of Data, 1995, pp. 175-186.

[13] J.S. Park, M. Chen, P.S. Yu, “Efficient Parallel Data Mining

for Association Rules,” Proc. Int’l Conf. Information and

Knowledge Management, 1995, pp. 31–36.

[14] A. Savasere, E. Omiecinski, S. Navathe, “An Efficient

Algorithm for Mining Association Rules in Large Databases,” Proc.

Int’l Conf. Very Large Database, 1995, pp. 432-444.

[15] T. Shintani and M. Kitsuregawa, “Hash Based Parallel

Algorithms for Mining Association Rules,” Proc. Int’l Conf.

Parallel and Distributed Information Systems, 1996, pp. 19–30.

[16] X. Yang, Z. Liu, Y. Fu, “MapReduce as a programming

model for association rules algorithm on Hadoop,” Proc. Int’l Conf.

Information Sciences and Interaction Sciences, 2010, pp. 99-102.

[17] M.J. Zaki, S. Parthasarathy, M. Ogihara , W. Li, “Parallel

Algorithms for Fast Discovery of Association Rules,” Data Mining

and Knowledge Discovery: An Int’l J., Vol. 1, No. 4, 1997, pp.

343-373.

[18] M. J. Zaki. Parallel and Distributed Association Rule Mining:

A Survey. IEEE Concurrency, Vol. 7, No. 4, 1999, pp. 14-25.

[19] http://fimi.ua.ac.be

[20] http://hadoop.apache.org

[21] http://www.cs.umb.edu/~laur/ARtool/index.html

0 10 20 30

200k_50

200k_30

200k_20

Time

D
at

as
e

t

Time(min)

67Copyright (c) IARIA, 2013. ISBN: 978-1-61208-272-1

FUTURE COMPUTING 2013 : The Fifth International Conference on Future Computational Technologies and Applications

