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Abstract - Association rule mining is one of the important data 

mining techniques. Association rule mining is used to discover 

associations between different items in large datasets. The 

Apriori algorithm for association rule mining forms the basis 

for most other association rule mining algorithms. The original 

Apriori algorithm runs on a single node or computer. This 

limits the algorithm’s capability to run on large datasets due to 

the limited computational resources available. There have been 

various studies for parallelizing the algorithm. In this paper, 

Apache Hadoop was chosen as the distributed framework to 

implement the Apriori algorithm and to evaluate the 

performance of the algorithm on Hadoop. The Apriori 

algorithm was modified to be run on Hadoop. Performance 

analysis shows that Hadoop is a promising platform for 

distributed association rule mining.   

Keywords - Cloud computing; association rule mining; data 

mining; Hadoop. 

I. INTRODUCTION 

Business Intelligence has become an integral part of 

many successful organizations. Analyzing data and making 

decisions based upon the analysis is very important for an 

organization’s growth. Data mining techniques help analyze 

the substantial data available to assist in decision-making. 

Among the most frequently used data mining techniques, 

association rule mining is a very important one. For 

example, in market analysis, association rule mining helps 

identify what items are purchased together by customers and 

generate interesting rules (depending on the measure of 

interestingness selected) based on the transactional data. 

Many approaches [2,3,10,12,14] have been proposed to 

mine association rules but a majority of them depend on the 

Apriori algorithm as the basis [2]. Due to huge size of the 

datasets, running these algorithms and mining association 

rules on a single computer is not very efficient because it is 

limited by the processor capacity, RAM, storage, and 

various other factors. Hence, it is necessary to develop 

distributed algorithms to perform association rule mining. 

Performing large-scale computing and data mining is one of 

the issues in future computing.  

It was observed that most algorithms for association rule 

mining ran out of memory even for small datasets and a 

small support count. There are some parallelized algorithms 

for association rule mining, but all of them handle the 

communication in the network, load balancing or other 

distributed tasks [1,4,5,6,9,13,15,17,18]. The goal of this 

work was to see if there would be a distributed framework 

where data intensive tasks could be performed without the 

overhead of the programmer managing the distributed part 

of the system. Apache Hadoop was shown to be a good 

framework for this task [16]. Very little research has been 

done on implementing association rule mining algorithms 

on Hadoop, although there are a few studies on 

implementing association rule mining using cloud 

computing [7,11,16]. For this study, Apache Hadoop was 

chosen as the distributed framework to implement the 

Apriori algorithm [2] and to evaluate the performance of the 

algorithm on Hadoop. 

The rest of the paper is organized as follows. Section II 

introduces the background related to association rule mining 

and Hadoop. Section III details the proposed framework, 

algorithm, and implementation. Section IV presents 

evaluation followed by the conclusion and future work in 

Section IV. 

 

II.   BACKGROUND 

This section introduces the concepts of association rule 

mining, the original Apriori algorithm for association rule 

mining, previous approaches to parallelize Apriori algorithm, 

the MapReduce framework, and Hadoop. 

A.  Association Rule Mining 

Association rule mining was originally proposed for 

Market Basket Analysis [2]. By searching for frequent 

patterns in transactional data sets, interesting associations 

and correlations between item sets in transactional and 

relational databases may be discovered.  

Market Basket Analysis is a modeling technique based 

upon the theory that if you purchase a particular group of 

items, you are more likely to purchase another group of 

items. For example, if a customer purchases some pizza 

dough, it is more likely he/she will also purchase some pizza 

sauce. Placing them at the same aisle in the store or even 

bundling them together could help increase profits. Just the 

knowledge that customers often purchase certain items in 

groups could open up new possibilities in businesses. 

In the aforementioned example, the set of items a 

customer purchases is referred to as an itemset, and market 

basket analysis seeks to find relationships between itemsets. 

Typically the relationship will be in the form of a rule, such 

as: customer purchases pizza dough  customer purchases 

pizza sauce. 
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There are two measures, support and confidence, which 

can be used to measure the interestingness of the rules. 

Support indicates the frequency of the occurring pattern 

while confidence measures the strength of the association.  

B. Apriori Algorithm  

The Apriori algorithm [2] has been the basis for many 

other algorithms in association rule mining. Subsequently, 

there were many modifications and other algorithms to mine 

frequent patterns in data [3,10,12,14]. A brief summary of 

the Apriori algorithm is given below. 

The Apriori algorithm is an iterative approach to 

generate frequent itemsets based upon a user provided 

minimum support and confidence. Candidate itemsets of 

size k are generated based upon frequent itemsets of size k-1. 

The basic algorithm works as follows (Fig. 1): 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Apriori algorithm 

 

A major drawback of this algorithm is the high I/O costs. 

The database needs to be scanned during each iteration, 

which is expensive. With huge datasets, this may consume 

significant system resources in order to scan and hold the 

transactions in memory. 

C.  Parallel versions of Apriori 

The authors of the Apriori algorithm also proposed three 

parallelized versions of the algorithm to run on multiple 

nodes [1], including Count Distribution, Data Distribution, 

and Candidate Distribution algorithms.  

The Count Distribution algorithm uses a simple principle 

of allowing redundant computations in parallel on otherwise 

idle processors to avoid communication. The basic idea is 

that each processor will scan the local data asynchronously 

in parallel to do the local counting, but the candidate 

itemsets that each processor counts are identical except 

during the first pass. At the end of each pass, they must 

synchronize to calculate the global counts. Additional 

details may be found in [1].   

The main disadvantage of the Count Distribution 

algorithm is that it does not exploit the aggregate memory of 

the cluster. The Data Distribution algorithm attempts to 

address this issue. Unlike the Count Distribution algorithm, 

the Data Distribution algorithm counts mutually exclusive 

candidate items. Hence, as the number of nodes increases, 

more candidate itemsets may be counted in one pass. The 

major downside of this algorithm is the additional overhead 

of transmitting the local data along with the candidate 

itemsets.  

The Candidate Distribution algorithm does not require 

data or candidate itemset communication between 

processors. This addresses some of the problems associated 

with count and data distribution methods. In the 

aforementioned two approaches, dependencies exist 

between the processors; if the load balancing and 

synchronization is not performed properly, the algorithm 

slows down considerably. Candidate Distribution eliminates 

this by removing the node communication. The basic idea is 

to divide the candidate itemsets and data among the nodes in 

such a way that each processor or node can perform the 

counting of candidates independently of the other processors. 

This division is performed after a certain number of passes, 

which is determined heuristically during the iterations.  

During the tests performed by the authors, they found 

that the Count Distribution algorithm is the best way to 

parallelize the Apriori algorithm. 

D. MapReduce Model 

MapReduce [8] is a distributed software framework 

introduced by Google in 2004 to support distributed 

computing on large datasets on clusters of computers.  

MapReduce was derived from the mapreduce feature of 

functional programming languages but was adapted to 

distributed computing. It consists of two steps: Map and 

Reduce. 

The Map phase consists of a Mapper class that receives 

an input (key, value) pair and produces a set of intermediate 

key/value pairs. The MapReduce library groups together all 

intermediate values associated with the same intermediate 

key and passes them to the Reduce function. It essentially 

emits all the key/value pairs containing the same key to the 

reducer. 

The Reducer class contains the reduce function that 

accepts an intermediate key and a set of values for that key. 

It merges together these values to form a possibly smaller 

set of values and writes them to the specified output.  

The basic MapReduce architecture is shown in Fig. 2.  

 
Figure 2. MapReduce architecture 

Ck: Candidate itemset of size k 
Lk: frequent itemset of size k 

 

L1= {frequent items of size 1}; 

for (k = 1; Lk! =∅; k++) do begin 

       Ck+1= candidates generated from Lk;  
       for each transaction t in database do 

           Increment the count of all candidates in Ck+1 that are 

contained in t 
       Lk+1= candidates in Ck+1 with min_support 

end 

return ∪k Lk; 
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To use the MapReduce programming model, each task 

must be represented as some computation on a list of key-

value pairs.  

E. Apache Hadoop 

The following is a description of Hadoop from the 

official Apache website [20]: “Hadoop MapReduce is an 

open source software framework for writing applications 

which process vast amounts of data (multi-terabyte data-

sets) in-parallel on large clusters (thousands of nodes) of 

commodity hardware in a reliable, fault-tolerant manner.” 

Hadoop MapReduce makes use of the Hadoop File 

System (HDFS) as the underlying distributed file system 

architecture. HDFS is responsible for distributing the data 

across multiple nodes and the number of replications, etc. 

There are many parameters which can be configured based 

on the requirement from the configuration files provided by 

the Hadoop distribution. 

Minimally, applications specify the input/output 

locations and supply map and reduce functions via 

implementations of appropriate interfaces and/or abstract-

classes. Further details may be found on the Apache Hadoop 

website [20]. 

Hadoop has three modes of operation: Standalone mode, 

Pseudo-Distributed mode, and Fully Distributed mode. 

In Standalone mode, also known as local mode, there are 

no daemons running and everything runs within a single 

JVM (Java Virtual Machine). This is the default mode of 

operation and is suitable for running MapReduce programs 

during development, since it is easy to test and debug. In 

this mode, a single Hadoop node is created but does not use 

the Hadoop Distributed File System (HDFS). This means 

that all input and output files are read from and written to 

the underlying OS file system; thus, there appear to be no 

benefits in using HDFS. 

In Pseudo-distributed mode, all of the Hadoop daemons 

run on the local machine, thus simulating a cluster on a 

single machine. Other than where the Hadoop processes are 

running (one machine vs. one machine per node), this mode 

is the same as distributed mode. In this mode, Hadoop starts 

all of the processes for all of the configured nodes on the 

same machine. This mode is useful because it allows the 

architect to observe how applications respond to running on 

a Hadoop cluster, but without the overhead of setting up the 

individual machines for the nodes of the cluster. While the 

task is much easier for a software architect using a cloud 

and Hadoop, there is still some overhead involved. Because 

the HDFS is used by default, benefits may be gained from 

using it. 

In Fully distributed mode, the Hadoop daemons run on a 

cluster of machines. Each Hadoop node is started on the 

specified machine. As with pseudo-distributed, HDFS is 

used. 
 

III.       IMPLEMENTATION 

The Count Distribution strategy was chosen for 

implementing the Apriori algorithm on a Hadoop cluster. 

Hadoop is not suited to implement the Data Distribution 

strategy since the data distribution cannot be controlled on 

Hadoop. It does not make sense in the MapReduce world to 

transmit data to other nodes. The Candidate Distribution 

strategy does not work either because a particular data block 

cannot be assigned to a particular node in Hadoop. 

A very high-level view of the modified algorithm is 

provided below in Fig. 3.  

 
Figure 3. Design of the algorithm 

The algorithm works as follows. By using the HDFS file 

system and configuring it, Hadoop can automatically split 

the data files into smaller chunks and distribute them over 

the Hadoop cluster. The replication factor can be specified 

to replicate the data on multiple nodes so that the algorithm 

works even if a node does not work during the execution. 

The output files containing the frequent itemsets are stored 

in the output folder of the HDFS. These files need to be 

retrieved to the local system to generate subsequent 

candidates. 

For performing the counting in parallel, each map job is 

configured to have the candidate itemset list and each node 

in the cluster has certain data blocks. The jobs are run 

multiple times for each frequent itemset having the 

minimum support. Each Map task that runs on a node reads 

the chunks present locally and emits the candidate, a count 

of 1 for each time the candidate is found in the file. The 

reduce function then aggregates all these counts for a 

particular key and writes the candidate to the output file 

only if it satisfies the minimum count. The output file is 

then read and the candidate list for the next iteration is 

generated. Thus, the counting step is parallelized. 

IV.     EVALUATION 

To evaluate how well the design of the algorithm scales 

on multiple nodes and whether Hadoop as a framework is a 

good fit to perform association rule mining, some analyses 

were performed. The following section details how the data 

were generated and various analyses performed.   
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A. Datasets used and Data Generation 

We generated many datasets with varying parameters, 

but for the analysis we used four of them. We used a 

synthetic data generator to generate the transactions to 

perform frequent pattern mining. But the generated data 

would not be a perfect way to test the system as it was 

arbitrarily generated and may not really reflect real world 

data. Hence, we also used a dataset from the FIMI 

repository [19]. The dataset and a brief description of the 

dataset are given below. 

1) Dataset: Accidents.dat 

This dataset of traffic accidents was originally obtained 

from the National Institute of Statistics (NIS) for the region 

of Flanders (Belgium) for the period from 1991 to 2000.  In 

total, 340,184 traffic accident records are included in the 

dataset with 572 different attribute values. On average, 45 

attributes are filled out for each accident. More details about 

the attributes can be found in the FIMI repository. 

2) Synthetically generated Datasets 

The authors of the Apriori algorithm at IBM have 

developed their own tool to generate datasets to test their 

algorithm. They used different parameters to generate the 

dataset. The major factors are: 

 Average size of the transaction (Ts) 

 Number of transactions (Tn) 

 Average size of maximal potentially frequent itemsets (P) 

 Number of maximally potentially frequent itemsets (L) 

 Number of items (N) 

Many other studies used the aforementioned IBM Data 

generator to generate synthetic data generator. However the 

tool is now obsolete. Hence, ARtool[21], another open 

source tool package, was chosen for generating the synthetic 

data. The tool is an open source tool developed at the 

University of Massachusetts at Boston and it provides 

options to mimic the parameters and datasets. By using this 

tool, four datasets were generated. They are summarized in 

Table I: 

TABLE I. DATASETS 

   Dataset      Tn    Ts    L  P    N 

200K_f50 200000 50 2000 6 1000 

200K_f30 200000 30 2000 6 1000 

200K_f20 200000 20 2000 6 1000 

100K_50 100000 50 2000 6 1000 

B.  Cluster Setup 

Hadoop, as explained earlier, runs in three different 

modes. All three modes of operation were used while 

developing and testing the algorithm. 

Standalone mode: When the Hadoop and MapReduce 

framework were tested, many test programs had to be 

written to test Mappers and Reducers performing tasks in 

parallel. For the purpose of testing the basics of Hadoop,  

the NetBeans IDE with a plug-in called Karmasphere was 

used to test Hadoop applications that had been written. 

Karmasphere simulates Hadoop and provides Mappers and 

Reducers within a single node. It uses only the local file 

system and no distribution of data occurs. The first basic 

version of Apriori was developed according to MapReduce 

framework in this mode and was tested on small datasets to 

determine if the core algorithm was generating correct 

results. 

Pseudo-Distributed Mode:  This mode uses the HDFS 

system and distributes data albeit in a single node. It 

simulates the Hadoop environment on a single node. 

Essentially it is a cluster with just one node in it. The 

Mapper and Reducer run as separate daemons in the system. 

This mode was used to test whether the program was 

reading and writing files correctly from and to the HDFS 

and local file system and vice versa.  

Fully Distributed Mode: This is the mode where we have 

a full Hadoop cluster with multiple nodes running the 

program. Initially a Hadoop cluster was built with two 

nodes, i.e., a system and a VM within the system to test the 

application. We used this to test if the cluster was setup 

correctly and to understand the complexity of setting up a 

Hadoop cluster. The IBM smart cloud was then chosen to 

test the algorithm and the framework. IBM smart cloud is a 

PAAS (Platform as a Service) that provides Hadoop master 

and data nodes. The programmer does not need to create the 

cluster nor perform installation and maintenance of the 

cluster. This is automatically performed by the cloud 

provider. With access to 5 nodes in the cloud, multiple tests 

were performed to generate some interesting and promising 

results. The following sections describe those results. 

C. Analysis on Number of Nodes vs. Running Time 

In this analysis, the goal was to test if there would be an 

improvement in the running time as the number of nodes 

increased. The accident.dat from the FIMI repository was 

used as a dataset and the program was run on 2, 3, 4, and 5 

nodes. The results are shown below in Table II and Fig. 4. 

TABLE II. NUMBER OF NODES VS. RUNNING TIME 

Dataset Support Nodes Time(min) 

Accidents.dat 0.8% 2 197 

Accidents.dat 0.8% 3 152 

Accidents.dat 0.8% 4 107 

Accidents.dat 0.8% 5 92 

 
Figure 4. Number of nodes vs. running time 
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As is evidenced, as the number of nodes increases, the 

running time of the algorithm decreases drastically. But the 

decrease in time is not always at the same rate. This depends 

upon the size of the data, and more importantly, the split 

factor of the data. When the files are transferred from the 

local file system to HDFS, a block size needs to be specified 

for the file to be split into. Each block is then assigned to a 

node and all the operations on that block are performed by 

only that node. If the number of nodes exceeds the number 

of blocks, it is a waste of resources. So, at some point, 

increasing the number of nodes would not lead to the 

decrease in time. This point could not be reached in this 

analysis as there were a limited number of nodes in the 

cluster. 

The important conclusion from this analysis is that 

running the Apriori algorithm parallel on individual data 

blocks on Hadoop does lead to a significant performance 

increase and Hadoop as a distributed framework is a good 

platform to use to perform data intensive computations. 

Another observation that should be noted is the advantage of 

using a cloud platform to achieve this. Both the individual 

cluster and the IBM smart cloud were utilized and clearly, in 

terms of adding new nodes to the cluster and scalability, 

using a cloud is much more advantageous than building 

one’s own cluster. Substantial maintenance costs could be 

associated with maintaining one’s own Hadoop cluster as 

typically such mining tasks are not run every day but rather 

once in two weeks or once a month. There are many cloud 

providers offering a Hadoop cluster and using these cloud 

vendors is much less expensive and also much more 

efficient than running it on one’s own cluster.  

D. Analysis on Running Time Comparison Based on Dataset 

In this analysis, the goal was to test the performance of 

the algorithm on different datasets. The percentage decrease 

in time was used as a measure for testing the performance. 

The two datasets were synthetically generated, i.e., 100k_50 

and 200K_50, and run on the Hadoop cluster with varying 

number of nodes. The algorithm was run on both datasets on 

2, 3, 4 and 5 nodes in order to compare the decrease in time 

needed to run the algorithm. The results obtained are shown 

in Table III and Fig. 5. 

Fig. 5 provides some really interesting insights into 

Hadoop and the algorithm in general. The running time on 

two nodes was used as a reference to compare the decrease 

in time when running the algorithm on the two datasets on 

different number of nodes. As shown in Fig. 5, as the size of 

the dataset increases, the time gained by running the 

algorithm on multiple nodes increases considerably.  

Consider the case of running the program on the 200K 

transactions dataset. The percentage decrease in time by 

running it on 5 nodes is close to 64% as compared to 

running it on 2 nodes. This is a significant increase in the 

efficiency of the algorithm. 

 
TABLE III. RUNNING TIME ON DIFFERENT DATASETS 

Nodes Percentage drop in time 

100K 200K 

2 0 0 

3 25.9 32.9 

4 29.84 36.68 

5 27.8 64.37 

 
Figure 5. Comparison of running time on different datasets 

Another interesting result observed is that the program 

scales well for larger datasets. As is evidenced, in almost 

every instance the time saved by running the larger dataset 

on multiple nodes is higher than the time saved by running 

the program on smaller dataset. This can be attributed to the 

fact that when running the algorithm in parallel on 

individual data blocks, the amount of time needed to 

perform the counting decreases. In Hadoop, we use HDFS 

as the distributed file system.  HDFS splits the entire file 

into a number of blocks. So, if the number of nodes working 

on individual data blocks simultaneously is increased, the 

time is reduced. Thus, it is very important to choose the 

cluster size and file split size depending upon the data. 

 Another important observation relates to the 100K 

transaction. When running the algorithm on 4 nodes and 

then on 5 nodes, instead of time decrease which was 

expected, there was actually an increase in time. The job 

specifics were studied in order to understand this result and 

it was found that even though there were 5 nodes in the 

cluster, as a result of the division of the file, only 4 nodes 

were participating in the Map and Reduce phases. This 

unnecessarily caused some overhead in communication. So, 

it is very important to fix the file split size appropriately 

depending on the cluster. This is the same reason why there 

was a spike in the decrease in percentage of time as we 

added one more node to 4 nodes in the case of 200K 

transactions. The JobTracker was again studied to see what 

caused such a spike and noticed that when there were 5 

nodes in the cluster, each Map task worked on an individual 

data block. A Map task is nothing more than a running 

instance of the Map class on the client node. Whereas in the 

case of 4 nodes, there were some pending map tasks which 

had to be computed again. Hence, it caused the steep 

increase in performance of the program. This reiterates how 

important the factors controlling the Hadoop environment 

are. There are many other factors to affect how Hadoop may 
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be configured, such as setting the number of map tasks, 

reduce tasks, defining our own split function, etc.  

E. Analysis on Running Time vs. Transaction Length 

In this analysis, the goal was to test how the running 

time varies based on the length of the transaction. The tests 

confirmed what was expected. A 200K transaction database 

generated synthetically was chosen. The average lengths of 

the transactions were chosen to be 20, 30, and 50. The 

results are shown in Table IV and Fig. 6. 

TABLE IV. RUNNING TIME VS. TRANSACTION LENGTH 

Data Time(min) 

200k_50 28 

200k_30 16 

200k_20 4.5 

 
Figure 6. Running time vs. transaction length 

The results for this analysis are straight-forward. When 

the transaction size is small, there is fast processing to count 

the candidate itemsets; hence, less time.  

V.  CONCLUSION 

In this paper, the design, implementation, and evaluation 

of using Hadoop as a distributed framework for association 

rule mining was presented. This proves that a parallelized 

version of the Apriori could be very efficient and easy to 

port to Hadoop. The IBM smart cloud was also used and it 

shows the huge potential that cloud computing has to offer 

to organizations performing data mining tasks. The cloud 

provides an easy-to-use interface and web consoles to 

launch the cluster with pre-installed software and network 

connectivity. This is particularly useful as the programmer 

can instead concentrate on writing efficient algorithms and 

optimizing the data analysis rather than worrying about the 

maintenance of the Hadoop cluster.  

For this paper, the main goal was not to optimize the 

Apriori algorithm but to test whether it can be implemented 

on Hadoop with satisfactory results. A modified version of 

the algorithm was designed and provided very good results 

with respect to the platform; yet it is currently slow. The 

speed of the algorithm may be improved to a large extent by 

using Tries and other alternative implementations for 

counting the candidates.  
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