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Abstract—Mobile computing has significantly gained impor-
tance during the past years and is expected to remain one of the
most relevant future computing trends. Smartphones represent
a key component of mobile computing based solutions and
allow end users to conveniently access services and information.
Due to their continuously growing importance and popularity,
smartphones have recently become a common target for malware.
Unfortunately, capabilities of malware-detection applications on
smartphones are limited, as implemented security features such as
sandboxing or fine-grained permission models restrict capabilities
of third-party applications. These restrictions prevent malware-
detection applications from accessing information, which is re-
quired to identify malware, and hence render the implementation
of reliable malware-detection solutions on smartphones difficult.
To overcome this issue, we propose an alternative malware-
detection method for smartphones that relies on the smartphone’s
measured power consumption. We propose two different machine-
learning techniques that allow for a classification of applications
according to their power consumption and hence facilitate the
identification of suspicious and potentially malicious software
components. The capabilities of the proposed techniques have
been assessed by means of an evaluation with real-world ap-
plications running on physical smartphones. The results of this
evaluation process demonstrate the applicability of power con-
sumption based classification and malware-detection approaches
in general and of the two proposed machine-learning techniques
in particular.

Keywords—Android; power consumption; application classifi-
cation; malware detection; machine learning

I. INTRODUCTION

Powered by the emergence of smartphones, mobile com-
puting has significantly gained popularity and relevance during
the past years. Smartphones have become part of our daily life
and have significantly changed the way we access informa-
tion, communicate, and interact with each other. Considering
current sales and usage statistics [1], it can be expected that
mobile computing in general and smartphone based solutions
in particular will continue to play a major role in future.

The recent success of popular smartphone platforms such
as Apple iOS [2] or Google Android [3] has unfortunately
turned these platforms into attractive targets for malware.
Recent reports [4] show that smartphone malware must be
expected to evolve to a major issue in mobile computing

in future. By exploiting specific functionality provided by
the infected smartphone platform, smartphone malware can
cause financial losses by calling premium-rate numbers or
by compromising smartphone based authentication schemes
of e-banking solutions. During the past years, especially the
Android platform has been frequently targeted by smartphone
malware. A recent example is Eurograbber. In 2012, this
Android malware has been used to steal 47 million USD
from European bank accounts by intercepting SMS based
authentication processes of e-banking portals [5]. Android
seems to be especially prone to malware due to the platform’s
support of alternative application sources that usually lack
extensive malware checks, and due to the broad functionality
offered by Android’s public APIs. These APIs grant applica-
tion developers as well as attackers for instance full access
to incoming and outgoing SMS messages, or facilitate the
execution of arbitrary background tasks.

The factual vulnerability of the Android platform against
malware raises the need for reliable methods to distinguish
benign apps from malicious ones and to detect unwanted be-
havior on smartphones. In the desktop-computer domain, this
functionality is typically implemented by anti-virus software,
which is able to detect malicious software at runtime. Unfor-
tunately, the deployment of anti-virus software on smartphone
platforms in general, and on Android in particular is difficult.
This is mainly due to the fact that Android (as well as other
smartphone platforms) implements several security features on
operating-system level that limit access rights and capabili-
ties of third-party applications. For instance, all smartphone
applications are executed in a sandbox and unable to access
resources of other applications being installed and executed
on the same device. While implemented security features
definitely improve the system’s basic security, they render the
implementation of supplementary security software difficult.
For instance, the implemented sandbox feature prevents anti-
virus software on Android smartphones from collecting infor-
mation that is required to reliably detect smartphone malware
at runtime.

The integrated security features that limit the capabilities
of classical malware-detection methods can theoretically be
bypassed by rooting the smartphone’s operating system. How-
ever, this is not really an option in practice, as it significantly
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decreases the smartphone’s overall security and enables addi-
tional attack vectors.

The reliable detection of malware on non-rooted smart-
phones is still an unsolved problem that definitely needs to be
addressed to assure the security of future mobile computing.
To overcome this problem, we propose a new technique that
compensates the lack of required information about running
applications by making use of side-channel information being
available on non-rooted Android smartphones. Concretely,
our technique measures and analyses the power consumption
of applications running on Android smartphones. We show
that an application’s power consumption correlates with its
implemented functionality and that applications can hence be
classified according to their power consumption. We further
show that this classification can be used to identify malicious
applications.

The remainder of this paper is structured as follows. In Sec-
tion II, existing malware-detection approaches for smartphones
are briefly surveyed and limitations of these approaches are
identified. Subsequently, Section III introduces the PowerTutor
tool [6] and explains our approach to measure the power
consumption of applications on smartphones. In Section IV, we
propose two methods to analyze collected power-consumption
measurements based on approved machine-learning tech-
niques. We evaluate the capabilities of the proposed methods
to classify applications and to distinguish benign applications
from malicious ones in Section V. Finally, conclusions are
drawn in Section VI.

II. RELATED WORK

During the past years, several approaches to detect and
analyze malware on mobile platforms have been introduced.
Basically, existing approaches can be classified into static
and dynamic analysis methods. Static analysis refers to the
inspection of an application’s source code or binary package
without running it, whereas dynamic analysis involves running
the application to capture additional information.

Dynamic analysis includes techniques such as Information
Flow Analysis, where private data is labeled and prevented
from leaving the device. TaintDroid [7] is an Android kernel
extension that follows this approach and allows for dynamic
taint tracking. Dynamic approaches, which apply machine-
learning techniques to distinguish benign applications from
malicious ones, include [8] by Shabtai et al. and [?] by
Burguera et al. Both references include extensive listings of
related Android-based malware-detection systems. Most of
these approaches run candidate applications in a sandbox
to derive measurements, such as system-call intervals and
networking usage.

A comprehensive overview of dynamic malware-analysis
techniques is provided by Egele et al. in [9]. Many of
these methods are highly advanced in detecting and analyzing
malware. However, these methods usually require complex
external analysis frameworks and can hardly be deployed on
non-rooted end-user devices, due to their requirement to deeply
integrate into the smartphone’s operating system.

The technique presented in this paper addresses this
problem and facilitates dynamic malware detection directly

on non-rooted Android phones by analyzing the devices’
power consumption. A related approach to analyze the power-
consumption in order to detect malware has been followed
by Jacoby and Davis [10], who have proposed an intrusion
detection system that correlates various attack scenarios to
typical power consumptions. Additional work has been pub-
lished by Buennemeyer et al. [11] [12], who propose systems,
which use power profiles of phones to detect malware targeting
battery drainage. Our technique follows a similar approach but
extracts more detailed information from the collected power-
consumption measurements in order to classify applications
and to detect malware.

Obviously, the collection of accurate power-consumption
measurements on smartphones is a key aspect of our technique.
We discuss details of this aspect in the next section.

III. MEASURING THE POWER CONSUMPTION OF
SMARTPHONES

Measurements of a smartphone’s power consumption build
the basis of the proposed classification and malware detection
techniques. To collect the required power-consumption mea-
surements, we rely on the PowerTutor tool by Zhang et al.
[6]. Another tool that would allow for the acquisition of this
kind of information is Trepn [13]. In contrast to PowerTutor,
Trepn uses hardware sensors and thus promises more exact
measurements. However, Trepn is limited to the Snapdragon
mobile development platform [14] and can hence not be
applied on typical Android based end-user devices.

The PowerTutor tool is basically a smartphone applica-
tion that measures the power-consumption of all applications
running on the same smartphone. For each application, the
power consumption of the six smartphone components CPU,
Audio, Display, Wi-Fi, 3G and GPS is measured separately.
Figure 1 shows the measured power consumption of the CPU
component caused by the two applications Android Browser
and Lookout Mobile Security.
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Fig. 1: One minute plots of CPU power consumption

Although there are obvious differences in the power con-
sumption of these two applications, an immediate identification
and classification of applications based on such measurements
is usually not possible. This is due to the fact that the measured
power consumption is not only influenced by the application
itself, but also by other effects, such as varying user inputs, the
processed data, different screen orientations, the deployment of
hardware acceleration techniques, or 3G or WiFi signal recep-
tion. Figure 2, which shows two different measurements of the
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Fig. 2: One minute plots of CPU energy consumption

same application, illustrates this fact. Although stemming from
the same application, the two measured power-consumption
traces are quite different.

Disturbing influences render the determination of a simple
and unique power-consumption signature for a given applica-
tion or smartphone state impossible. To overcome this problem,
we propose two analysis techniques that rely on approved
machine-learning approaches. The proposed techniques can be
used to classify smartphone applications according to their
power consumption. Details of the proposed techniques are
discussed in the next section.

IV. CLASSIFICATION TECHNIQUES

During the past years, different machine-learning tech-
niques for the classification of data have been proposed. For
the given scenario, i.e., the classification of smartphone ap-
plications based on their power consumptions, two techniques
have been chosen and adapted to the given requirements. Both
techniques consist of a learning phase and a classification
phase. During the learning phase, well-known input data is
used to train a model. In the subsequent classification phase,
the trained model is used to classify unknown input data. The
two techniques are discussed in more detail in the following
subsections.

A. Power-Consumption Histograms

This technique is rather simple and counts how often a
specific application is on a certain power-consumption level.
In order to model this, we have computed power histograms
by dividing the interval between 0% power consumption and
100% power consumption into 15 disjoint and equal-sized
intervals. A histogram is then created by simply assigning
each data point to exactly one interval and counting the data
points in each interval. In order to cope with differences
in the absolute power consumption, the values have been
normalized appropriately. During the learning phase, the av-
erage histograms have been created by measuring the power
consumption of well-know applications. Figure 3 shows some
examples of average histograms for different applications that
have been obtained during the training phase.

In the classification phase, the histograms of applications to
be classified are compared with the trained average histograms
by applying distance-measures such as cosine similarity. To
assess the capabilities of this approach, this technique has been
evaluated in a real-world scenario. Results of this evaluation
process are presented and discussed in Section V.
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Fig. 3: Average histograms of different applications

B. MFC Coefficients and Gaussian Mixture Models

This technique makes use of Mel Frequency Cepstral
Coefficients (MFCC) to classify smartphone applications based
on their power consumption. This technique has originally
been introduced for speaker-recognition systems [15] [16] and
is also frequently used for music similarity finders [17][18].
In such systems, MFC coefficients and their distribution are
extracted from recorded voice or music using complex trans-
formations as implemented by the melcepst function [19].
The distributions of the extracted MFCC are then used to
create a Gaussian Mixture Model (GMM) for each MFCC. The
resulting GMM define a unique representation of the recorded
voice or music. Later recordings of voice or music can be
compared to existing representations in order to implement
voice-recognition and music-similarity finders.

Our intention behind using a speaker recognition approach
was to map the problem of matching voice recordings to a
person to the problem of matching power measurements to
an application. Spoken voice recordings vary in pitch and
frequency and are very unlikely to be equal between two
recordings. This, naively speaking, resembles the problem we
face with power-consumption measurements.

Our implementations are based on an existing speaker-
recognition implementation by Anil Alexander [20]. This
implementation relies on GMM and MFCC and can be cus-
tomized with a number of parameters including the number
of Gaussians and the number of MFCC to use. Experiments
have shown that for our purposes best results can be achieved
with three Gaussians and twelve MFCC. Hence, during the
learning phase the distributions of twelve MFCC are computed
from power-consumption measurements for each class of ap-
plication. The computed distributions of the twelve MFCC are
then approximated using a GMM with three Gaussians. The
resulting GMM finally represents the result of the learning
phase. Figure 4 illustrates the distribution of two different
MFCC and the resulting GMM.
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During the classification phase, MFCC are derived from
power-consumption measurements of the application to be
classified. For each derived MFCC, the best matching GMM
is selected out of all GMM that have been obtained during the
learning phase. By combining the classification results of all
twelve MFCC, the best matching application class is finally
determined.

Fig. 4: Gaussian Mixture Models of two MFCC derived from
power-consumption measurements

V. EVALUATION

We have evaluated the reliability and efficiency of the
proposed feature extraction techniques by testing prototype
implementations of the two techniques in a real-world scenario.
Required power-consumption measurements have been ac-
quired using the PowerTutor tool. For convenience reasons, the
classification itself has been performed off the mobile device,
as the learning phase (especially for the speaker recognition
based approach) is rather slow. This subsection describes the
model that has been used to classify applications, discusses
details of the dataset creation, and presents results that have
been obtained by applying the two classification techniques
introduced in Section IV.

A. Classification Model

Applications with the same or almost the same purpose are
expected to cause similar power consumptions. Therefore, we
have roughly grouped applications into distinct sets according
to their purpose. The resulting list of groups is no com-
prehensive classification scheme of all available applications.
It is merely a logical grouping of the power-consumption
measurements we gathered in this experiment and does raise no
claim to completeness. Based on the gathered measurements,
the following six groups of applications have been defined:
Games, Internet, Idle, Malware, Music, and Multimedia. Note
that malware and security software have been assigned to
the same group. Both malware and security software usually
remain idle in the background until being activated by a
certain event (e.g., reception of a command message via
SMS). This comparable behavior leads to a comparable power
consumption too and justifies a common classification of these
both types of application.

B. Dataset Creation

PowerTutor provides specific measurements for each run-
ning application. However, in practice these application spe-
cific measurements have turned out to be not as reliable
and accurate as desired. Therefore, we have refrained from

using application specific measurements and have relied on
system-wide power-consumption measurements provided by
PowerTutor instead.

We have further limited subsequent analysis steps to
the measured power consumption of the smartphone’s CPU.
Although PowerTutor also provides measurements for other
smartphone components such as the display or the GPS re-
ceiver, measurements of these components have been omitted
in order to reduce computation costs when learning and due
to the fact that these components often lack activity.

To evaluate the proposed classification techniques, we
finally created 96 system-wide power-consumption measure-
ments (CPU) using a customized instance of PowerTutor. To
facilitate a subsequent analysis, we have adapted PowerTutor
such that beside the measurement values themselves also the
device model, the capture date, and the sample rate have been
stored. The 96 captured measurements (sixteen measurements
per application group) have been limited to the length of about
one minute, with a total of 247 data points per measurement.
We have cut off the trace length after about one minute,
as this is a realistic time-frame for real-world scenarios. In
total, six devices have been used to collect the measurements
(three Samsung Galaxy S2 smartphones and three HTC Desire
devices). To reduce noise, only the application to be measured
and PowerTutor have been active during the measurements.

C. Results

The 96 captured measurements have been used to evaluate
the efficiency and reliability of the proposed classification
techniques. As quality indicators, the positive predictive value
(PPV, also referred to as precision), the true positive rate (TPR,
also referred to as recall or sensitivity), the true negative rate
(TNR, also referred to as specifity), the accuracy, and the area
under the receiver operating characteristic (AUC) have been
used. According to its definition, PPV refers to the correct
positive classification in relation to all positive classifications.
Accordingly, TPR refers to true positives given all real pos-
itives. TNR denotes true negatives (TN) given all negatives.
Accuracy is the relation between correctly classified samples
given all samples. The receiver operating characteristic is a
graphical representation of the trade-off between TPR and FPR
(1-TNR). AUC (also sometimes denoted as AUROC) refers to
the area below this resulting curve.

TABLE I: HISTOGRAM BASED APPROACH: CONFUSION
MATRIX FOR CATEGORIES GAMES (G), INTERNET (IN),
IDLE (ID), MALWARE (MW), MUSIC (MU), AND MULTI-
MEDIA (MM)

G IN ID MW MU MM

G 13.98 1 0 1.02 0 0
IN 1 13.14 0 0 0 1.86
ID 0 0 12 4 0 0

MW 0 0 3.97 10.07 1.96 0
MU 0 0 0 2 9.24 4.76
MM 0.27 0.75 0 0 0 14.98

In order to appropriately divide the available measurements
in training and test data, we have folded the available dataset
using 10-fold cross validation. To enhance the robustness of the
obtained results, average values over 100 runs are presented.
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TABLE II: CLASSIFICATION RESULTS (HISTOGRAM
BASED APPROACH)

Category PPV TPR TNR Accuracy AUC

Games 0.87 0.92 0.98 0.97 0.95
Internet 0.82 0.88 0.98 0.95 0.93
Idle 0.75 0.75 0.95 0.92 0.85
Malware 0.63 0.59 0.91 0.87 0.75
Music 0.58 0.83 0.98 0.91 0.90
Multimedia 0.94 0.69 0.92 0.92 0.80

For our performance evaluation, a confusion matrix for the six
predefined application categories has been created, which can
be interpreted in the following way: Values in the diagonal of
the matrix have been classified correctly (true positives), values
within a row not in the diagonal represent false negatives and
values within a column not in the diagonal represent false
positives. Other values are considered true negatives.

TABLE III: MFCC AND GMM BASED APPROACH: CON-
FUSION MATRIX FOR CATEGORIES GAMES (G), INTER-
NET (IN), IDLE (ID), MALWARE (MW), MUSIC (MU),
AND MULTIMEDIA (MM)

G IN ID MW MU MM

G 10.40 3.46 0.01 0 0.55 1.58
IN 2.07 12.67 0 0 0.26 1
ID 0.39 0 11.65 3.6 0.18 0.18

MW 0.07 0.01 2.56 13.15 0 0.21
MU 0.22 0.81 0 0.97 9.39 4.61
MM 0.96 2.97 0.01 0.03 1.20 10.83

TABLE IV: CLASSIFICATION RESULTS (GMM BASED
APPROACH)

Category PPV TPR TNR Accuracy AUC

Games 0.65 0.74 0.95 0.90 0.85
Internet 0.79 0.64 0.91 0.89 0.78
Idle 0.73 0.82 0.97 0.93 0.90
Malware 0.82 0.75 0.94 0.92 0.85
Music 0.59 0.82 0.97 0.91 0.90
Multimedia 0.68 0.59 0.91 0.87 0.75

Obtained results of the histogram based approach are
shown in Table I and Table II. In case of the MFCC based
approach, best results have been achieved with 3 Gaussians
and twelve MFCC. The performance evaluation results of the
MFCC based approach are outlined in Table III and Table IV.

D. Discussion

From these results, various findings can be derived. Mobile
security applications and malware running in the background
can generally be distinguished from application being active at
the moment (with the exception of system services). Games,
Internet, music and multimedia applications are distinguishable
as well. Music and multimedia applications are more difficult
to distinguish correctly. However, given their relating purposes
this is plausible. Streaming a YouTube video with sound is
not too different from listening to music while reading related
information displayed by the music player.

The obtained results have also revealed that the MFCC
based approach works better for the distinction between the

categories Idle and Malware. Therefore, this approach seems to
be more suitable for malware-detection purposes. On the other
hand, the histogram approach constitutes a fast classification
method, suitable for mobile devices with limited computational
power.

VI. CONCLUSION AND FUTURE WORK

Malware on smartphones is a growing issue and a major
challenge for future mobile computing solutions. To overcome
this challenge, new and innovative methods to detect malware
on smartphones are needed. In this paper, we have tested
the hypothesis that the power consumption of smartphones
correlates with the kind of applications being executed on the
smartphone and that this correlation allows for a classification
of applications and a detection of malicious software. To test
this hypothesis, we have proposed two machine-learning tech-
niques that can be used to classify unknown applications ac-
cording to their power consumption. We have further assessed
the validity of the general hypothesis and the capabilities of the
proposed machine-learning techniques by means of a concrete
prototype implementation and a succeeding evaluation in a
real-world scenario. The conducted assessment has corrobo-
rated the constructed hypothesis and has shown the capabilities
of the proposed techniques to correctly classify smartphone
applications according to their power consumptions.

Although first results are promising, this work mainly
represents a proof of concept and a solid basis for future
work. In a next step, we plan to port the entire classification
onto a smartphone in order to render external classification
frameworks unnecessary. Power measurements can already
be collected directly on the smartphone using tools such as
PowerTutor. Since information on the smartphone’s power
consumption is publicly available on Android smartphones, our
solution does not require root access to the operating system
and is hence applicable on virtually all end-user devices. We
are also planning to refine the proposed techniques and to
enhance the current prototype in order to achieve even more
accurate results and to be able to classify multiple applications
running simultaneously on a smartphone.
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