
Eliminating the Operating System via the Bare Machine Computing Paradigm

Uzo Okafor, Ramesh K. Karne, Alexander L. Wijesinha, and Patrick Appiah-Kubi
Department of Computer and Information Sciences

Towson University

Towson, MD 21252 USA

uokafo1@students.towson.edu, {rkarne, awijesinha, appiahkubi}@towson.edu

Abstract - Computer applications typically run under the

control of intermediary system software that is in the form of

an operating system such as Windows or Linux, or a small

kernel. The application could also be embedded within the

operating system or kernel itself. This paradigm makes

applications dependent on an intermediary software layer. An

alternative approach is to eliminate this layer by writing

computer applications that can run directly on the hardware.

This approach takes a small or tiny kernel to its extreme,

eliminating the operating system, which results in a novel bare

machine computing paradigm. In this paper, we describe the

bare machine paradigm, and illustrate how to build self-

supporting bare machine applications by eliminating

application dependence on an operating system or kernel. The

new paradigm requires that the developer be aware of the

underlying hardware resources and use them efficiently for

the needs of a given application suite. We also describe a set of

generic bare interfaces that can be used across many

pervasive devices as well as ordinary desktops and laptops.

These interfaces have made it possible to build large bare

applications. The bare machine paradigm paves the way for

software interfaces to be incorporated into a chip, introducing

a computing model where applications are independent of any

intermediary software.

Keywords - bare machine applications; bare machine

computing; middleware; direct hardware interfaces; operating

systems.

I. INTRODUCTION

Building bare machine applications, which are

independent of any intermediary software, is daunting due

to constraints imposed by the existing computer

architecture and development environments. Most CPUs

are designed to work with an operating system (OS) or

kernel and do not provide any interfaces to directly control

the hardware. In some cases, the kernel or virtual machine

may allow an application direct hardware access, but does

not fully relinquish its control to the application. However,

for certain specialized applications and secure systems,

even the presence of a small kernel may prevent the

application from fully controlling its environment and

managing the hardware.

We propose to eliminate the OS (or kernel) and give

full control to applications. These applications are then able

to run on the bare hardware without the need for any

additional software layers. There is no persistent storage or

any other resource to secure on a bare machine, device, or

computing system. Moreover, only one bare application

suite runs at a time. When an application is not running, the

machine is not running any other code. It simply has

memory, processors and an I/O controller to communicate

with the applications when needed. Instead of an OS or

kernel providing resources, an application suite manages

the hardware. This does not mean that the applications

replicate OS functionality. Rather, applications only

contain code that is required for a given application suite.

An application suite is modeled as an Application Object

(AO) [6] that carries its own application and execution

environment. For example, an AO may consist of a text

processor/editor, a Webmail client, and a Web browser, and

bare interfaces to the hardware. An AO programmer needs

to have knowledge of the underlying resources, since an

AO controls and manages all the hardware when it runs. A

bare machine user carries a removable mass storage device

to boot, load and run the application suite, thus making the

machine bare when the AO is not loaded (since no OS or

kernel is needed to run the suite).

When such bare machines are built, they become

ownerless and can be used by anyone, anytime, and

anywhere. Many complex bare applications have been built

to illustrate the bare machine computing (BMC) paradigm.

These include a Web server [4], Webmail server [1],

conventional (non-HTTP) email server and client, VoIP

soft-phone [9], SIP server, and bare PC clusters using split

servers [13]. The development of such applications served

as the motivation for designing the direct hardware

interfaces to a bare PC (x86 architecture). These interfaces

are generic and can be used to construct any bare machine

application. One can make these interfaces and the BIOS

part of the hardware in the future, thus creating a pure

BMC environment, where there is no other software needed

to run computer applications. A high-level methodology for

developing bare machine applications was outlined

previously [10]. Here, we provide details of how to develop

such bare machine applications by using a set of generic

hardware interfaces. In particular, this paper describes the

direct hardware interfaces needed to eliminate the

intermediary OS.

The rest of the paper is organized as follows. Section II

provides the motivation for this work. Section III describes

the bare machine computing paradigm and its

characteristics. Section IV illustrates the development of

bare machine applications using a step-by-step process.

Section V presents the direct generic hardware interfaces.

Sections VI, VII and VIII respectively cover the use of a

bootable USB, memory map, and the novel features of this

approach. Finally, Section IX gives the conclusion.

1Copyright (c) IARIA, 2013. ISBN: 978-1-61208-272-1

FUTURE COMPUTING 2013 : The Fifth International Conference on Future Computational Technologies and Applications

II. MOTIVATION

The following considerations serve as the motivation

for developing BMC applications based on the underlying

paradigm: the proliferation of operating systems (OS) and

frequent new releases to replace them; the rapid

obsolescence of existing computer applications; the myriad

of programming languages and interfaces; and the

heterogeneity of computer architectures and platforms.

While many arguments can be given to support the current

evolution of conventional systems/platforms and their

advantages, the BMC paradigm has been shown to be

feasible for building a variety of complex applications such

as the servers, clients, and high-performance systems noted

above.

Most current systems use complex concurrency control

mechanisms, paging, virtual memory, and other well-

known concepts that have evolved due to lack of large

memory, memory costs, shared resources, and the need to

serve multiple users. Under those conditions, computing

evolved towards complex systems with rapid obsolescence

and less security. The BMC paradigm [7] enables

applications to directly communicate with hardware, thus

eliminating all middleware. Using this paradigm,

applications can be written in C/C++ or other languages,

where an AO programmer can directly call hardware

interfaces, as originally proposed in [8]. This paper extends

those ideas to address general purpose development of bare

machine computing applications and a set of generic

interfaces to the hardware.

III. BARE MACHINE COMPUTING PARADIGM

The BMC paradigm was originally referred to as

dispersed operating system computing (DOSC) [7], but we

have seen further evolution of DOSC into the BMC

concepts as shown in Fig 1. A conventional OS, kernel or

embedded software acts as middleware between the

hardware and an application. An application programmer is

isolated from an application’s execution environment,

resource control and management.

Figure 1. Conventional OS versus BMC paradigms

That is, the programmer has no direct control of the

program’s execution or the resources needed. In the BMC

paradigm as shown in Fig 1, the OS is eliminated and the

AO programmer is totally responsible for managing

hardware resources. The AO programmer has knowledge

and full control over a given application as well as its

execution. Each AO only carries its needed controls and the

direct hardware interfaces. The AO programmer is a

domain expert for a given set of applications that are

contained in a given AO. The BMC paradigm differs from

conventional computing in two major ways. First, the

machine is bare with no existing software and protected

resources. Second, an AO programmer controls the

program’s execution and manages the hardware.

The BMC paradigm makes a computing device owner-

less and simplifies the design of secure systems since there

are less avenues of attack and no underlying middleware

that an attacker can control. Viewed another way, when a

device is bare and contains no valuable resources such as a

hard disk or kernel, there is nothing to own or protect. In

BMC, mass storage is external and detachable. The mass

storage can also be on a network. In this approach, an AO

is built for a given set of applications to run at a time on a

machine as a single monolithic executable. The boot, load,

executable, data and files are stored on a mass storage

device such as a USB. When a USB is plugged into a

computer, the machine boots and runs its own program

without using any extra software or external programs. This

implies that no dynamic link libraries (DLLs) or virtual

machine code are allowed in this approach. What runs in

the machine, is exactly what has been loaded (and nothing

else).

This computing paradigm is different from

conventional computing approaches since it is based on

applications instead of computing environments. This is not

a mini-OS or kernel, as there is no centralized program

running in the machine to manage resources. Instead, the

resources are managed by the applications themselves and

run without using any OS/kernel or intermediary software.

A variety of attempts have been made to eliminate OS

abstractions or bypass the OS. However, none eliminate the

kernel or OS altogether. Thus, while the BMC paradigm

resembles approaches that reduce OS overhead and/or use

lean kernels such as Exokernel [2], IO-Lite [12], Palacio

[11], and the Hardware Abstraction Layer [14] in Java,

there are significant differences. These include self

controlled applications and programmer-driven execution,

and the lack of centralized code that manages system

resources. A model to analyze tradeoffs between feature-

rich and minimalist or “barebone” systems is presented in

[15]. While such minimalist systems usually require an

operating system or kernel, they may have also some

characteristics in common with BMC systems.

IV. BMC APPLICATION DEVELOPMENT

In BMC, a suite of applications such as a text

processor, Webmail server and Web browser can be

bundled together and run without any OS or kernel support.

Fig. 2 illustrates the major steps involved in developing

Hardware +

BIOS

Operating System

Components

Device Drivers

Applications (Desktop,

Database, Networking,
etc.)

User Interfaces (Text, Graphics,

Navigators, Browsers, Multi-
media, etc..)

Users

Text processing,

Spreadsheets,
Presentations,

Email, Web
browser, VoIP

softphone, Web

server, etc..

End user

applications

Hardware +

BIOS

Users

Conventional Computing
Bare Machine Computing

2Copyright (c) IARIA, 2013. ISBN: 978-1-61208-272-1

FUTURE COMPUTING 2013 : The Fifth International Conference on Future Computational Technologies and Applications

BMC applications. First, a choice has to be made about the

suite of applications; next, the architecture of the CPU on

which they will run has to be identified. Using today’s

CPUs, constructing a BMC application is a daunting task as

they provide neither direct hardware interfaces, nor a

development environment that facilitates building

applications independent of an OS. For example, a bare PC

requires the BIOS to boot, and an ARM processor requires

a UBOOT tool. The program counter of a given processor

is not directly accessible to the programmer. In a machine

with an x86 CPU, the program counter can only be loaded

by jumping to the task segment, where its value is stored

and updated by the CPU. In a bare machine application, the

program counter must be handled inside an application and

not controlled by an OS or other software.

Memory needs or requirements must be considered for

a given application’s code, data and stack. The application

programmer has to determine memory areas for the code,

data and stack, as these applications run in a real memory.

Real memory is cheap and affordable today. It is therefore

feasible to avoid paging and virtual memory overhead, and

the associated management. The absence of any other

software in the system eliminates many unnecessary

features commonly found in today’s technology. Most

BMC application suites only require small amounts of

memory compared to OS-based applications. For very large

applications, one can use mass storage to provide extended

storage using swapping techniques. Section 7 describes

details of the memory map created for some real-world

applications using the BMC paradigm.

The next step is to construct an application suite using

programs that are independent of any OS. This application

suite should be able to run on any compatible CPU without

changes or adaptations. Different CPU architectures have

different compilers to compile code. This requires that I/O

related code be identified and direct hardware interfaces be

deployed. One of the key elements in writing BMC code is

being able to differentiate between code that is OS

dependent, code that is OS independent and code that is I/O

related. For example, file I/O is OS dependent code and a

for-loop is OS independent code. User interfaces to support

keyboard, mouse and display are all I/O related code.

Figure 2. Steps in developing bare machine applications

Once OS dependent code and I/O related code are

written (as hardware interfaces), they can all be integrated

with the rest of the OS independent code and run as a single

monolithic executable. The above approach introduces

many challenges that must be addressed when developing

BMC applications. They include the boot-up process and

loading of an application suite. Each computing device is

different in its boot process and the internal details are

often hidden. Similarly, loading an application on a bare

device also poses difficulties as it requires readily available

tools that are OS dependent. Developing an OS

independent loader requires a thorough knowledge of the

CPU architecture and its development environment.

Domain knowledge and related expertise for each CPU

device are required to develop the bare boot and load

processes.

V. DIRECT HARDWARE INTERFACES

Conventional computer applications and programming

languages use OS calls or system calls injected at link time

from an OS such as Windows [16] or Linux [3]. These calls

include memory, keyboard, terminal screen, network, mass

storage, and interrupts. Some OSs include in their

repertoire other commonly used OS-independent functions

such as memory copy, string operations and concurrency

control that require system calls. Computer applications

and the programmer expect these calls or interfaces to be

included at compile and link time by a given compiler and

linker.

Bare machine applications require system call

equivalents (direct hardware interfaces) that are

independent of any OS or kernel. These interfaces are

directly controlled and accessed by an AO programmer. All

of the above are factors to consider in determining the

number of direct hardware interfaces needed for a suite of

BMC applications. Some direct hardware interfaces used in

BMC applications are discussed below.

A. Static and Dynamic Memory

Static memory needs depend on the size of code, data

and stack needed to run a program. When an executable is

created, this information is available to the programmer.

Thus, for a given executable, one can specify its

requirements for memory. An AO can also be designed that

can read the existing memory and restructure its code, data

and stack in real memory and external mass storage or

network. The code image is small as there is only one AO

running at a time in the machine, and applications that are

related are grouped to run together.

Dynamic memory needs are however not known until

run time. In a bare machine application, an AO programmer

estimates the dynamic memory. Appropriate exceptions for

memory can be set to manage dynamic memory; when

large dynamic memory needs arise, one can use secondary

storage in place of large dynamic memory. System calls

similar to malloc() and free() can be designed to support

dynamic memory management. One can allow the memory

START

Choose a set of end
user applications

Write code that is
independent of any OS

Identify memory
requirements

Identify CPU
architecture

Select suitable boot &
load process for a device

Merge non-OS and
I/O related code

Direct hardware interfaces
for Memory, CPU, I/O

Write I/O devices-
related code

END

3Copyright (c) IARIA, 2013. ISBN: 978-1-61208-272-1

FUTURE COMPUTING 2013 : The Fifth International Conference on Future Computational Technologies and Applications

controller to communicate with an AO and thus provide

appropriate memory interfaces to manage memory in the

AO. As memory technology improves and becomes

cheaper, it is also conceivable to assume full address space

(4GB in a 32-bit architecture) in a machine to avoid all

memory management issues and provide direct control to a

given AO.

B. User Interfaces

The most common user interfaces are keyboard,

mouse, touch-screen and terminal screen. These resources

are managed by the OS in conventional systems. In bare

machine applications, keyboard interfaces are part of an

AO where the keyboard interrupt code places the data in a

user buffer. Similarly, mouse data is also placed in a user

buffer. An AO programmer designs the code to directly

interface with a keyboard or a mouse. The terminal screen

is usually controlled by a video memory or its graphics

adaptor. An AO programmer can directly store output in

video memory or write a bare video driver to control the

screen. All device drivers supporting a bare application

have to be bare and provide direct hardware interfaces to

applications. They cannot, as is done, when an OS is

present, be hidden from the application programmer. Other

user interfaces have to be handled in a similar manner to

the above interfaces.

C. Network Interfaces

Most ordinary computing devices today have one

wired and one wireless network interface. The device

drivers for a network interface are controlled by underlying

OS. Bare machine device drivers that provide direct

network interfaces to an AO are needed in BMC. Instead of

current OS-dependent network drivers, an AO programmer

can initialize a network driver, configure relevant internal

registers, and read or write to buffers and control registers.

Such a design allows direct communication to applications

and avoids the need for any middleware. As the drivers are

now encapsulated within an AO, the network hardware is

not accessible to other applications when a given

application suite is running in the machine. A bare PC USB

device driver and its implementation are described in [5].

D. Process Interfaces

Many computer applications require process creation,

deletion and management, which are usually controlled by

an OS. In Intel x86 processors, process control and state are

maintained by the CPU in a task segment. Interrupt gates

are used to switch from one task to another. That can be

done in a bare environment since these interfaces are

accessible to an AO programmer. Control of the CPU is

placed in an application program for creation of a new

process (or a task). The global descriptor table (GDT) and

local descriptor table (LDT) entries are used by the AO

programmer to control task memory. Thus, when a machine

becomes bare, the CPU and tasks are managed by an AO

programmer. Task management in a bare machine is much

simpler than in a conventional system, and the code size is

also smaller compared to an OS-supported system. A

conventional Web server system may be complex and

create over 7000 tasks (in an x86 box) to provide high

performance [4]. Process interfaces can eventually be

generalized and made available to an AO programmer for

any given CPU architecture. Today’s machines hide all

these interfaces under an OS or some form of similar

middleware.

E. File Interfaces

In conventional systems, a file system is part of the

operating system. File systems use some standard

specifications such as FAT32 or NTFS. Files can be

transported across multiple operating systems and

applications if they use standard specifications in their

design. In bare machine applications, persistent data is

under the control of an AO programmer and the data itself

is part of an AO. Programmers can use their own file

storage specification or use a standard specification to

transport files to non-bare systems. One can also do a raw

file system in an AO to avoid all file management

complexities and hide the files within an AO (the only AO

in which they are visible). This may be the most secure way

to implement a file system. File transfers can also be

accomplished through a network or by message passing. A

given file system interface uses a bare device driver and

controls the relevant device operations.

 F. Boot and Load Interfaces

Boot and load facilities are usually under control of the

OS and the underlying BIOS calls. In BMC, these

interfaces are controlled by the AO programmer to facilitate

bare machine applications. Soft and hard boot can be used

to control the machine when needed in bare machine

applications. These interfaces also vary across platforms;

ideally, a standard boot and load mechanism to run bare

machine applications across multiple CPU architectures

and machines is the best solution (what is described in

Section VII, is a method that has been implemented for x86

Intel CPUs).

 G. Compile, Link and Library Issues

Compilers and linkers generate different formats for

executables, which pose problems in loading and running

bare machine applications. There is a need for

homogenization in these tools to develop common bare

machine applications that can run on many pervasive

devices. New programming tools can be developed to

compile bare machine applications using existing libraries

and batch files, or new features can be added into existing

Microsoft Visual Studio and Eclipse development tools to

provide bare machine compilation options. Common

libraries such as string operations, memory operations,

locking, shared memory, message passing, and concurrency

4Copyright (c) IARIA, 2013. ISBN: 978-1-61208-272-1

FUTURE COMPUTING 2013 : The Fifth International Conference on Future Computational Technologies and Applications

control are system dependent and part of the OS libraries.

However, they can be generalized and designed to run

across many CPU architectures.

VI. BOOTABLE USB

In the BMC paradigm, applications are carried on a

removable storage medium such as a CD/DVD or a flash

drive. This device also carries a boot program to boot and

load its own application object suite. A typical way to

create a bootable USB is as follows. A bootable USB is

created using a special tool written in C and assembly

language. This tool is a batch file that runs in a DOS

window. The USB is formatted for FAT32 before its use.

The bootable USB should have three files as shown in Fig.

3b. The boot file is stored in the boot sector (#0), the

prcycle.exe file is stored at 0x3be000, and the application

file (shown in Fig. 3a as shell.exe), is stored at 0x3c4000.

The prcycle.exe file (22, 037 bytes in size) contains

assembly code to boot a bare PC, provides the user

interface/menu, and facilitates the loading of AOs (in this

instance, shell.exe). It enables the switching from real to

protected mode and vice versa for handling low-level

interfaces. It also contains, IDT, GDT, TSS and BIOS

interrupts to provide the AO programmer with direct

control of the CPU. This part of the application code thus

plays a key role in enabling the programmer to manage the

hardware resources in a bare PC. In summary, the batch file

copies files onto the USB, installs a boot program, and

creates a bootable USB. This entire process does not

require any software other than what resides on the USB

(and is thus part of the bare PC application). There is no

dependence on any specialized commercial tool or

software. This enables bare PC applications to be

independent of any OS-related environments and tools. It is

also possible to use existing boot tools to create a bootable

USB; however those tools must guarantee high security if

needed in a system. The approach proposed here

demonstrates building bare machine computer applications

in a single environment where every aspect of software

development is controlled by an AO programmer with no

other dependencies. This approach facilitates enhanced

security to computer applications.

Figure 3. USB layout

VII. MEMORY MAP

As discussed in section 4, the AO programmer needs to

design the real memory layout when developing a bare PC

application. Fig. 4 shows a typical memory layout for a

given application suite. An AO programmer prepares this

map before designing a given application suite. The

prcycle.exe program is used on the bare platform to load

the AO at 0x600 in real mode memory. The main() entry

point for prcycle.exe is located at 0x3100, which can be

obtained from the prcycle.map. When the PC is booted, it

must jump to 0x3900 as instructed by this memory map. A

user loads the example application (shell.exe) by using the

menu provided by prcycle.exe (not shown here). The

executable for this AO is loaded at 0x00111E00 as shown

in Fig. 4. The reason for using this particular address for

loading shell.exe is discussed below. Visual Studio 8.0 (and

later editions) of compilers behave differently than the

previous versions when generating an exe file. In previous

versions, when the entry point in shell.map indicates

0001:00000000, it usually implies that the main entry point

in shell.exe is at 0x1000. In newer versions, this is not the

case. In Visual Studio 8.0 (C++ versions), the executable

starts at address 0x400 instead of at 0x1000. As shown in

Fig. 4, the AO (shell.exe) is located at 0x00111E00. The

higher 16-bit address 0x0011 indicates that it is loaded

above 1 MB to load it in a protected mode memory

address.

The lower 16-bit address 0x1E00 is derived as follows.

The compiler start address for shell.exe is 0x0000, but it

actually starts at 0x400. It was observed in the executable

that the offset used by this compiler is 0x1e00 more than

the actual offset in the executable. Thus, when the

executable is relocated at 0x1e00, the references to the

variables were correct as it was generated by the compiler.

The main entry point for shell.exe should be at 0x1e00 +

0x400 as shown in Fig. 4. A generic tool is needed to

resolve such intricacies involved in generating a memory

map for a mass storage device. This tool should consider

compiler options, executable formats and map files to

create a memory map that is suitable for a given bare

machine device.

Figure 4. Memory map

PSP

Info

Exe

shell.exe Layout

0

X0200

X0400

X74000

0

PSP

prcycle.exe

main()

Boot

shell.exe

main()

3BE000

(1DF0)

3C4000

(1E20) +0x400

x3100(RCODESEG) in

map filex3C1300

(a)

926 Sectors

USB Layout

(b)

PSP prcycle.exe

prcycle.exe
main()

PSP shell.exe
main()

Dynamic Memory

Stack

0

x0600

x0800

x00111E00

x00185A00

x10000000

x400

x00112200

5Copyright (c) IARIA, 2013. ISBN: 978-1-61208-272-1

FUTURE COMPUTING 2013 : The Fifth International Conference on Future Computational Technologies and Applications

Figure 5. BMC device architecture

VIII. NOVEL FEATURES

BMC applications provide a new and innovative

computer architecture that is based on current trends in

technology. Fig. 5 illustrates a vision of future computing.

This shows a BMC device that communicates with standard

units such as memory, network card, wireless card, USB

device, keyboard, mouse, display and mass storage. These

units are common to many pervasive devices today. It is

thus useful to write computer applications that target the

BMC device as a baseline. Each device can run its own

native application while using the standard hardware API

as illustrated in the figure. All applications can access these

interfaces and yet the hardware itself is bare. Until then, we

can continue to provide these interfaces as software. The

BMC architecture avoids heterogeneity in hardware,

software, programming and tools.

IX. CONCLUSION

We described the BMC paradigm and showed how to

build applications based on it. We identified the generic

direct bare hardware interfaces needed to eliminate the

OS/kernel. The BMC paradigm/approach enables these

hardware interfaces to be incorporated in the hardware, thus

making the latter more intelligent and able to communicate

with the software. The interfaces were used to construct

complex bare PC applications that have a small code

footprint, are simple to use, provide high performance, and

are inherently secure in design. We also presented a bare

machine application architecture that enables a BMC

device to be used for many pervasive applications. The new

paradigm and approach will make it possible to save time,

energy, and resources, while reducing the cost of

developing applications for each pervasive device. The

BMC paradigm demonstrates a new approach to computing

based on completely self-supporting applications that

eliminate all intermediary software.

REFERENCES

[1] P. Appiah-Kubi, R. K. Karne and A.L. Wijesinha, “The

Design and Performance of a Bare PC Webmail Server,” The

12th IEEE International Conference on High Performance

Computing and Communications, AHPCC, pp. 521-526,

Sept. 2010.

[2] D. Engler, “The Exokernel Operating Systems Architecture,”

Dept. of Elec. Eng. and Computer Science, Massachusetts

Institute of Technology, Ph.D. Dissertation, 1998.

[3] FreeBSD/Linux Kernel Cross Reference,

http://fxr.watson.org/fxr/source/kern/syscalls.c.

[4] L. He, R. K. Karne, and A. L. Wijesinha, “Design and

Performance of a bare PC Web Server,” International Journal

of Computer and Applications, vol. 15, pp. 100-112, June

2008.

[5] R. K. Karne, S. Liang, A. L. Wijesinha and P. Appiah-Kubi,

“Bare PC Mass Storage USB Driver,” International Journal

of Computer and Applications, March 2013.

[6] R. K. Karne, “Application-oriented Object Architecture: A

Revolutionary Approach,” 6th International Conference,

HPC Asia, Dec. 2002.

[7] R. K. Karne, V. Jaganathan, T. Ahmed and N. Rosa, “DOSC:

Dispersed Operating System Computing,” OOPSLA,

Onward Track, 20th Annual ACM Conference on Object

Oriented Programming, Oct. 2005.

[8] R. K. Karne, V. Jaganathan and T. Ahmed, “How to run C++

Applications on a bare PC,” 6th ACIS International

Conference on Software Engineering, Artificial Intelligence,

Networking, and Parallel/Distributed Computing (SNPD),

pp. 50-55, May 2005.

[9] G. H. Khaksari, A. L., Wijesinha, R. K., Karne, L., He and

S. Girumala, “A Peer-to-Peer Bare PC VoIP Application,”

IEEE Consumer and Communications and Networking

Conference (CCNC), pp. 803-807, Jan. 2007.

[10] G. H. Khaksari, A. L. Wijesinha, and R. K. Karne, “A Bare

Machine Development Methodology,” International Journal

of Computer Applications, vol. 19, no.1, pp. 10-25, Mar.

2012.

[11] J. Lange. et. al, “Palacios and Kitten: New High

Performance Operating Systems for Scalable Virtualized

and Native Supercomputing,” 24th IEEE International

Parallel and Distributed Processing Symposium , Apr. 2010.

[12] V. S. Pai, P. Druschel and Zwaenepoel, “IO-Lite: A Unified

I/O Buffering and Caching System,” ACM Transactions on

Computer Systems, vol.18 (1), pp. 37-66, Feb. 2000.

[13] B. Rawal, R. K.Karne, A. L. Wijesinha, “Mini Web Server

Clusters for HTTP Request Splitting,” IEEE International

Conference on High Performance Computing and

Communications, pp. 94-100, Sep. 2011.

[14] M. Schoeberl, S. Korsholm, T. Kalibera and A. P. Ravn, “A

Hardware Abstraction Layer in Java,” ACM Transactions on

Embedded Computing Systems, vol.10, no. 4, Article 42,

Nov. 2011.

[15] S. Soumya, R. Guerin and K. Hosanagar, “Functionality-rich

vs Minimalist Platforms: A Two-sided Market Analysis”,

ACM Computer Communication Review, vol. 41, no. 5, pp.

36-43, Sep. 2011.

[16] Windows System Call Table, Googlecode.com, retrieved Feb

16, 2012. http://miscellaneuoz.google.com/svn/winsyscall.

-Tasking

-Timers

- Memory Alloc/Dealloc

- Network

- I/O

- Security keys

- Security engine

CPU

Memory ModulesNIC Card
Wireless Card

-Power on/off control

- Boot

- Logging

- Errors, exceptions

- Start/stop

Hardware API

Mass Storage

Hardware Unit

(BMC Device)

Display

USB

KBD/Mouse

6Copyright (c) IARIA, 2013. ISBN: 978-1-61208-272-1

FUTURE COMPUTING 2013 : The Fifth International Conference on Future Computational Technologies and Applications

