
Balancing Communication and Execution Technique for Parallelized Sparse
Matrix-Vector Multiplication

Seiji Fujino and Takeshi Nanri
Research Institute for Infoemation Technology

Kyushu University
Fukuoka, Japan

Email: {fujino, nanri}@cc.kyushu-u.ac.jp

Ken’itiro Kusaba
Mitsubishi Electric Co. Ldt.

Chiyoda-ku, Marunouti
Tokyo, Japan

Abstract—This paper proposes a runtime optimization tech-
nique for load balancing parallelized SpMxV (sparse matrix-
vector multiplication) with consideration of cost for both
communication and execution time. In state-of-the-art iterative
methods that call SpMxV repeatedly during iterations, this
optimization utilizes the estimated time of communication and
the measured time of execution for adjustment of balance of
load among processes. Through numerical experiments of an
iterative solver for linear systems, it will make it clear that the
proposed optimization technique outperforms compared with
the conventional technique.

Keywords-Sparse Matrix-Vector Multiplication; Load-
Balancing; Bi IDR(s) method.

I. INTRODUCTION

In many scientific computations, SpMxV (sparse matrix
vector multiplication) [5] [8] plays a crucial role. For exam-
ple, for the purpose of solution of linear systems of equations
which stem from FEM (Finite Element Method) analysis,
SpMxV is often repeatedly executed and shares major part
of the entire executing time. As a strategy for accelerating
this operation, parallelization of SpMxV has been studied
in many researches. The most popular way for parallelizing
SpMxV is to attach calculation to processes by row of the
target matrix. Since most of the entries in sparse matrices are
zero, they are compressed so that only nonzero entries need
to be stored and calculated. The execution time of each row
depends heavily on the pattern of nonzero entries of matrix.
This causes difficulty in balancing loads among processes
in parallelized SpMxV.

This paper proposes a technique for load-balancing MPI-
based SpMxV operation. There are a lot of researches for
parallelizing SpMxV on distributed memory systems. Graph-
partitioning based decomposition algorithms [1] are major
approach among them. Due to the complexity of these
algorithms, they are generally applied statically. On the
other hand, to achieve better load-balance in MPI-based
SpMxV, Lee et al. proposed a runtime technique called
NRET (Normalized Row-Execution-Time-based iteration-to-
process mapping) to adjust the mapping of rows to processes
repeatedly [4]. In NRET, averages of measured time for

calculation on each process are used to estimate the time
of computing each row. Then, the mapping is adjusted
according to this estimation so that it achieves better load-
balance. However, since the technique does not consider the
time for communication, the total loads among processes
still remains to be unbalanced.

To solve this issue of unbalancing, we proposes Balancing
Communication and Execution Technique (abbreviated as
Balancing-CET). In a program that invokes SpMxV repeat-
edly, the technique adjusts mappings of rows to processes
at each invocations in the beginning several iterations. The
adjustments are done according to the estimation of the
time for computation and communication on each process.
The execution time is estimated from the measurement in
the previous iteration, while the communication time is
estimated by a linear performance model with the amount of
data to be sent and received by each process. By repeating
adjustment, this technique becomes close to the optimal
distribution. This paper verifies effectiveness of Balancing-
CET through numerical experiments of an iterative solver
for linear systems.

This paper is organized as follows. In section 2 we make
an overview of runtime load-balancing technology. In sec-
tion 3, we describe costs for communication and execution
in SpMxV. In section 4, through numerical experiments,
we verify effectiveness of the proposed Balancing-CET. In
section 5, we will draw some conclusions.

II. OVERVIEW OF RUNTIME LOAD-BALANCING
TECHNOLOGY

The proposed Balancing-CET assumes a kind of program
in which SpMxV is invoked many times with the same
sparse matrix. In addition, it assumes that the program uses
the result vector of a SpMxV as the vector to be multiplied
to the matrix at the next SpMxV. These assumptions can
apply to many scientific programs. Figure 1 presents the
parallelized version of SpMxV program. Since this program
is parallelized in a row-based manner, the result vector of
SpMxV is distributed among processes.

28Copyright (c) IARIA, 2012. ISBN: 978-1-61208-217-2

FUTURE COMPUTING 2012 : The Fourth International Conference on Future Computational Technologies and Applications

Therefore, to use the result vector as the vector to be
multiplied to the matrix in the next SpMxV, communication
among processes must be done. The simplest but inefficient
way of such communication is to invoke MPI_Allgather.
Instead, this paper assumes that the program uses more
efficient way proposed by Lee et al. [4]. It reduces the
amount of data to be transferred by letting each process send
a minimum block that contains necessary data for each target
process to calculate its part of SpMxV. Figure 2 sketches the
flow of the communications.

After each execution of SpMxV, Balancing-CET checks if
the load-balance is fine enough by comparing the execution
time of each process. If the ratio of the difference between
the maximum time and the minimum time among all pro-
cesses is larger than a specified threshold, the algorithm
invokes adjustment of distribution.

In the adjustment, Balancing-CET first calculates the
average time of the total cost of previous SpMxV among
all processes. Then it uses this time tCT as the target time
for mapping rows to processes. Mappings are done row
by row. As mapping one row to a process, estimated cost
of communication and execution is added to the predicted
execution time of the process. If the predicted execution time
exceeds tCT, Balancing-CET changes the target process to
the next one.

III. COSTS FOR COMMUNICATION AND EXECUTION IN
SPMXV

To reduce the overhead of adjustment, estimation of costs
for communication and execution on each row are done in a
simple way. Execution cost of each row is estimated by using
the same method as NRET. In this method, the computation
cost of ith row is estimated by the average time of calculating
rows at the process which calculated ith row in the previous
SpMxV.

Communication cost, on the other hand, is estimated
by using a linear performance model of communication,
α ×m + β. In the model, α, β and m stands for the time
for transferring one unit data, the latency of communication
and the amount of data to be transferred, respectively. α
and β are calculated at the beginning of a program by
using the results of measuring time for some pingpong
communication between processes. On the other hand, m
is calculated for each row at the time the row is applied to a
process. In applying a row to a process, the amount of data
that should be sent and received is determined for each of

for i = start(myrank) to start(myrank + 1) - 1
temp = 0.0
for j = rowptr(i) to rowptr(i+1) - 1

temp = temp + val(j) * x(colind(j))
end for

Figure 1. An Example of Parallelized SpMxV program.

P0

P1

P2

P3

*A x = y x
next iteration

P0
o
o
o
o

o

o

o

non-zero entries
entries to be transfereed to P0

o entries accessed by P0

Figure 2. A Sketch of Communications for Transferring Minimum Block
of Data Necessary for the Next SpMxV.

other processes by using location of nonzero entries of the
matrix. Figure 3 depicts how to derive the receiver processes
of an entry. From these information, the additional costs for
sending and receiving with this new mapping are calculated.

P0

P1

P2

P3

Next mapping

non-zero enries

i-th row

i-th column
Current mapping

Figure 3. A Diagram of Determining the Target Process of Communica-
tions for an Entry.

IV. NUMERICAL EXPERIMENTS

To examine the effect of Balancing-CET, some numerical
experiments have been done. The threshold for determining
load-balance in Balancing-CET is set to 5%. In addition,
the number that this technology is invoked is limited by
20 times. The experimental platform is a cluster of 16 PCs
connected by InfiniBand. Each PC consists of 4 cores of
Intel Xeon 3.0GHz and 8GB of RAM and runs with RedHat
Enterprise Linux 3. The program is written by Fortran90
and MPI. The compiler and the MPI library are products of
Fujitsu Corp. Each process of MPI programs is attached to
one CPU core.

A. Effect of Balancing-CET on SpMxV

The performance of a program that repeats 1000 times
of SpMxV is measured to examine the effects of NRET
and Balancing-CET. After each SpMxV, communications
are performed to use the result vector of it in the next
SpMxV. As for test matrices, three matrices selected from
Florida Sparse Matrix Collection [2] are used. Table I lists

29Copyright (c) IARIA, 2012. ISBN: 978-1-61208-217-2

FUTURE COMPUTING 2012 : The Fourth International Conference on Future Computational Technologies and Applications

specifications of test matrices with images that show their
patterns of nonzero entries. As the images show, each matrix
has different characteristics. In matrix matrix 9, nonzero
entries are mainly located on a diagonal band with some
exceptions on the right-most column. On the other hand,
they are distributed throughout in matrix ecl32, and they are
confined to a diagonal band in matrix xenon1.

Table I
INPUT MATRICES.

name dimension total nonzero ave. nonzero
entries entries

matrix9 103,430 2,121,550 20.51
ecl32 51,993 380,415 7.32
xenon1 48,600 1,181,120 24.30

Table II
SPECIFICATION OF TEST MATRICES.

pattern of nonzero name dimension total nonzero ave. nonzero
entries entries entries

matrix 9 103,430 2,121,550 20.51

ecl32 51,993 380,415 7.32

xenon1 48,600 1,181,120 24.30

Tables III - V show communication time and total ex-
ecution time for matrices of matrix 9, ecl32 and xenon1.
In these Tables, “No Opt.”, “NRET” and “Balancing-CET”
mean the results without any load-balancing, with NRET
and with Balancing-CET, respectively. “Procs” is the number
of processes. “Comm” is the time for communication and
“Total” is the total execution time. Hereafter time in Tables
is measured in seconds.

Table III
COMMUNICATION TIME AND TOTAL EXECUTION TIME FOR MATRIX

MATRIX 9.

Procs No Opt. NRET Balancing-CET
Comm Total Comm Total Comm Total

1 0.725 11.037 0.002 9.741 0.001 9.708
2 1.483 9.377 0.758 8.947 0.756 8.928
4 2.265 7.294 0.746 5.370 0.611 5.297
8 2.701 5.294 0.945 2.982 0.678 2.669

16 2.960 4.337 1.171 1.761 0.412 1.190
32 3.187 3.962 0.764 1.033 0.388 0.796

As shown in these Tables, NRET and Balancing-CET
reduced the execution time significantly. With matrices ma-
trix 9 and ecl32, the effect of Balancing-CET is better than

Table IV
COMMUNICATION TIME AND TOTAL EXECUTION TIME FOR MATRIX

ECL32.

Procs No Opt. NRET Balancing-CET
Comm Total Comm Total Comm Total

1 0.320 2.423 0.001 1.912 0.001 1.934
2 0.726 2.001 0.300 1.380 0.262 1.351
4 1.036 1.843 0.474 1.111 0.467 1.110
8 1.181 1.554 0.812 1.109 0.800 1.067

16 1.135 1.334 1.074 1.231 0.956 1.143
32 1.185 1.332 1.143 1.235 0.960 1.101

Table V
COMMUNICATION TIME AND TOTAL EXECUTION TIME FOR MATRIX

XENON1.

Procs No Opt. NRET Balancing-CET
Comm Total Comm Total Comm Total

1 0.347 7.436 0.002 7.013 0.002 7.016
2 0.719 5.237 0.177 4.573 0.156 4.555
4 0.969 3.573 0.262 2.620 0.260 2.628
8 1.089 2.220 0.298 0.970 0.301 1.024

16 1.091 1.532 0.197 0.412 0.179 0.441
32 1.126 1.345 0.139 0.274 0.156 0.355

NRET in most of the cases. On these matrices, it can be
concluded that the considerations of communication costs
in load-balancing worked well. With matrix xenon1, on the
other hand, NRET showed better effects than Balancing-
CET. Since nonzero entries of matrix xenon1 are confined
in a diagonal band, imbalance of load for communication
and execution is not significant. Therefore, both techniques
could achieve sufficiently fine load-balance. In this case,
the overhead for estimating costs of communications caused
longer execution time than NRET.

To examine the detailed behavior of NRET and Balancing-
CET, the number of rows attached to each process is
studied. Figure 4 plots the case of matrix matrix 9 with
16 processes. “Opt.” is the number of rows attached to each
process with Balancing-CET. Since this matrix has nonzero
entries on the right-most column, the process P15 needs
to invoke larger number of send operations than others.
Therefore, Balancing-CET attached fewer number of rows
to P15. In addition to that, it also reduced the number of
rows on P3, P4, P7, P8 and P11 because they performed
inter-node communications that are slower than intra-node
communications.

B. Effect on an Iterative Solver for Linear Systems

To see the effects of Balancing-CET on more realistic
situations, parallelized Bi IDR(s) method [3] [6] [7] for
solving linear systems has been examined. This solver is
an enhanced version of IDR(s) method to achieve better
stability with lower computation cost. In this program, not
only SpMxV but some other vector operations, such as
summation and dot-product, are performed repeatedly. Those
operations are also parallelized into processes. In paral-
lelized dot-product, MPI Allreduce is invoked to calculate

30Copyright (c) IARIA, 2012. ISBN: 978-1-61208-217-2

FUTURE COMPUTING 2012 : The Fourth International Conference on Future Computational Technologies and Applications

Figure 4. Fluctuation of Number of Rows Attached on each Process for
matrix matrix 9.

the total sum among all processes.
Tables VI-VII tabulate total time in seconds, ratio and

average of Bi IDR(s) method with parameter s= 4 and 8
for matrix matrix 9. This program stops if the ratio of the
2-norm of the residual and of the initial residual is less than
10−12. “Iter.” and “Total” mean the number of iterations and
the total time to satisfy this convergence test, respectively.
“Ratio” as shown in Balancing-CET column means the time
ratio of Balancing-CET to that of NRET. “TRR” means True
Relative Residual for the approximate solution xk+1 as ||b−
Axk+1||2/||b−Ax0||2.

As shown in Table VI, a mark “∗∗” indicates that mea-
surement of time did not succeed. In the case with s=4
and number of processes is 8 of NRET in Table VI, TRR
is very poor as “(-9.43)”. However TRR of results of
Balancing-CET is always sound. Moreover, in Table VII,
the performance with Balancing-CET is more efficient than
that with NRET as number of processes becomes larger. The
performance degradation of Balancing-CET in the smaller
number of processes is caused by the overhead for estimating
communication cost. TRR of results of Balancing-CET is
fairly good compared with that of results of NRET. Accord-
ingly we may expect higher performance of Balancing-CET
when we will solve large-scale problems.

Table VI
TOTAL TIME, RATIO AND AVERAGE OF BI IDR(s) METHOD WITH s = 4

FOR MATRIX 9.

procs No Opt. NRET Balancing-CET
Iter. Total Iter. Total TRR Iter. Total Ratio TRR

serial 5248 73.975 - - - - - - -
1 5248 146.126 5248 132.453 -11.80 5248 118.487 0.895 -11.80
2 5134 88.591 5192 80.878 -11.88 5593 79.072 0.978 -11.57
4 5421 72.605 5654 44.107 -11.55 5367 42.907 0.973 -11.88
8 5467 82.283 5334 ** -11.84 5417 23.175 - -11.95

16 5887 91.571 5366 15.006 -11.37 5370 12.255 0.817 -11.71
32 5493 111.989 5305 12.723 (-9.43) 5308 11.240 0.883 -11.94

ave. 5442 - 5350 - -11.31 5384 - - -11.81

Table VII
TOTAL TIME, RATIO AND AVERAGE OF BI IDR(s) METHOD WITH s = 8

FOR MATRIX 9.

procs No Opt. NRET Balancing-CET
Iter. Total Iter. Total TRR Iter. Total Ratio TRR

serial 4166 73.975 - - - - - - -
1 4166 125.880 4166 116.508 -10.31 4166 144.246 1.238 -10.31
2 4261 90.098 4350 80.769 -10.14 4192 83.897 1.039 -11.49
4 4134 62.663 4441 41.725 -10.36 4142 41.507 0.995 -10.50
8 4087 65.310 4285 23.563 -10.63 4249 22.364 0.949 -10.88

16 4098 65.551 4280 16.970 -10.85 4272 15.844 0.934 -10.49
32 4195 85.406 4256 15.389 -11.38 4145 12.299 0.799 -11.25

ave. 4157 - 4296 - -10.61 4194 - - -10.82

V. CONCLUSIONS

This paper proposed Balancing-CET for load-balancing in
SpMxV. It estimates costs of communication and execution
time for achieving better load-balance. Through numerical
experiments are simple, numerical results demonstrated ef-
fects of Balancing-CET.

REFERENCES

[1] UV. Catalyurek and C. Aykanat: Hypergraph-partitioning-
based decomposition for parallel sparse-matrix vector mul-
tiplication, IEEE Transactions on Parallel and Distributed
systems, vol. 10, no. 7, pp. 673-693, 1999.

[2] Sparse Matrix Collection: http://www.cise.ufl.edu/research
/sparse/matrices/index.html

[3] S. Fujino, P. Sonneveld, Y. Onoue and M.B. van Gijzen:
A Proposal of IDR(s)-SOR Method, Transaction of JSIAM,
vol. 20, no. 4, pp. 289-308, 2010.

[4] S. Lee and R. Eigenmann: Adaptive runtime tuning of parallel
sparse matrix-vector multiplication on distributed memory
systems, Proceedings of the 22nd annual International Con-
ference on Supercomputing 2008, pp. 195-204, June, 2008.

[5] Y. Saad: Iterative Methods for Sparse Linear Systems，2nd
ed., SIAM, Philadelphia, 2003.

[6] P. Sonneveld, M.B. van Gijzen: IDR(s): a family of simple
and fast algorithms for solving large nonsymmetric linear
systems, SIAM J. Sci. Comput., vol. 31, pp. 1035-1062, 2008.

[7] P. Sonneveld, M.B. van Gijzen: An elegant IDR(s) variant
that efficiently exploits bi-orthogonality properties, Depart.
of Applied Math. Anal., TR08-21(2008), Delft University of
Technology.

[8] H.A. van der Vorst: Iterative Krylov Preconditionings for
Large Linear Systems, Cambridge Univ. Press, Cambridge,
2003.

31Copyright (c) IARIA, 2012. ISBN: 978-1-61208-217-2

FUTURE COMPUTING 2012 : The Fourth International Conference on Future Computational Technologies and Applications

