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Abstract— Seed Throwing Optimization is an easy to 
implement probabilistic metaheuristic for multimodal function 
optimization with roots in hill climbing and the evolutionary 
computation like technique Harmony Search. It is a 
randomized Gradient Ascent with multiple initial states and 
the possibility to limit exploration to only paths which have 
shown potential. In this paper, the speed of convergence of 
Seed Throwing Optimization is compared to Multi-Level 
Gradient Ascent, Harmony Search, Particle Swarm 
Optimization and Simulated Annealing. Improvements of the 
Seed Throwing Optimization are presented. Parallelizability of 
the mentioned metaheuristics is examined. Parts which are 
suitable for parallelization are extracted by identifying data 
and control flow dependencies. Two applications, port 
optimization in minimally invasive surgery and network 
parameter optimization for a distributed robotic system, are 
shown. The presented methaheuristics are tested in a 
benchmark. The highest convergence speed could be achieved 
with Harmony Search and Seed Throwing Optimization. 

Keywords-Multimodal function optimization; Parallel 
computing; Port optimization in minimally invasive surgery; 
Network optimization. 

I.  INTRODUCTION 
Probabilistic metaheuristics are capable of solving very 

generalized classes of problems in many future compu-
tational applications. A metaheuristic is able to find a near 
optimum solution of a multi modal optimization problem in 
an efficient way. If a good solution of a multi modal function 
is found, it is not known if the solution is globally good. 
Thus the main problem that a metaheuristic has to deal with 
is to avoid premature convergence to a local optimum. If 
there is more than one good solution the issues arise of how 
to locate all (or some) of these solutions. There is a trade-off 
between diversification and intensification. Diversification 
refers to the exploration of the whole search space, 
intensification to the exploitation of the accumulated 
experience. The speed of convergence depends on the right 
balance of these forces [1].  

Many approaches have been developed combining or 
enhancing existing methods, an overview and a taxonomy of 
global optimization methods can be found e.g. in Weise et al. 
[2], but there is no optimal solver for any optimization 
problem. Thus the best way is to use problem specific 
knowledge to choose an appropriate algorithm, convenient 
constraints to limit the search space or to modify strategies of 

an algorithm. Thus a further criterion of an optimization 
algorithm is its simplicity, which means that it is easy to 
understand and to implement. 

A focus in this paper is Seed Throwing Optimization 
(STO), developed in 2009 [3]. It is a randomized Gradient 
Ascent with multi initial states and the possibility to explore 
only paths which have shown to be good. STO is a 
probabilistic metaheuristic based on the paradigm of an itera-
tive local search. Thus, in each step a first solution is 
selected, a neighborhood of “similar” solutions is defined 
and the best solution of the neighborhood is determined. The 
idea of STO is to choose iteratively initial seeds over the do-
main of the objective function and to spread out more seeds 
in the neighborhood respecting the direction of the steepest 
ascent. Initial seeds are taken randomly or form a current 
best memory and are used for further exploration. The 
number of seeds “thrown out” from the initial point is con-
trolled by the value of the function. Large values leads to ex-
tensive exploration. The neighborhood that is explored is like 
a gradient ray, but larger spreads have the form of a fan. 

Parallelizability is another important criterion since 
clusters and multi-core processor architectures are common-
ly available and promise high acceleration. By splitting up 
algorithms appropriate high performance can be achieved. 
We compare parallelizability of several metaheuristics. In 
many real-life scenarios, objective functions are expensive to 
compute. In order to examine and classify STO in its 
potential parallelization degree, we have to identify parts of 
the algorithm that are suitable for parallelization. The pivot 
of successful parallelization is to avoid data and control 
dependencies between consecutive instructions that occur in 
the execution of the algorithm. For this, the parallelization of 
the algorithms will be discussed upon the pseudo code 
algorithm formulations introduced in this paper. 

The objective function is treated as a black-box, no 
deeper insight of the characteristics is needed (direct 
optimization). 

II. APPLICATIONS 
We use STO in two applications that are shortly 

described in this section. 

A. Port Optimization in Minimally Invasive Surgery 
In minimally invasive surgery surgical instruments and 

an endoscopic camera are injected through so called trocars. 
The placement of the trocars is an important factor for the 
success of an intervention. The da Vinci® Surgical System 
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[4] is a telemanipulation system which is clinically used to 
perform interventions more ergonomic and precise. The 
manipulator is controlling the surgical instruments and the 
endoscope. Beside the trocar placement the selection of an 
appropriate initial pose of the manipulator is important. It 
contains the configuration of the stationary joints and the 
position and orientation of the manipulators base. Poor 
choices of the manipulators pose or the placement of the 
trocars can lead to collisions of the arms or unreachable 
target areas [12].  

Finding optimal trocar positions and an optimal 
manipulator´s pose can be formulated as optimization 
problem consisting of active- and passive constraints and a 
goodness measure to be maximized. The passive constraint is 
corresponding to the trocar positions (ports), which remain 
stationary throughout the intervention. The pivot point of the 
surgical instruments has to be close to the chosen port 
positions. The active constraints refer to the trajectory of the 
end-effectors of the surgical instruments. Each target has to 
be reached. A configuration is rejected, if the passive 
constraints are not fulfilled (objective function is set to zero). 
If a target is unreachable or collisions occur the current 
configuration is rejected too. The objective function is a 
conjunction of several components. Separation of each arm 
to other arms, preoperatively segmented zones of risk and the 
bones are used as the main component of the objective 
function. Tilting of the table and ergonomic reasons like 
manipulation angle between the working instruments also 
influence this function. An evaluation of the objective 
function is very time consuming because minimal distances 
in a virtual scene containing over 200 000 triangles have to 
be computed for each point of the trajectory. 

The result of the optimization is transferred to the 
operation theatre by using methods of augmented reality. 
The port positions are projected directly on the patient´s 
abdomen. The optimized pose of the manipulator is shown 
by a virtual scene containing a model of the manipulator and 
arrows to indicate the optimized pose. 

B. Network parameter optimization for a distributed 
robotic system 
State-of-the-art autonomous intuitive assistance and in-

formation systems for service robots compensate for the tre-
mendous loss of information for remote users. Often 
augmented and/or virtual reality is used to provide immer-
sion to the remote environment. A guaranteed minimum 
performance of the communication between the robotic 
system and the remote user is needed in order to still 
guarantee a suitable degree of immersion. Using non-
dedicated standard means of communication, e.g. the 
Internet, makes constraints as audio and video synchronicity 
(<200ms) or latency for tactile tasks (<180ms) hard to fulfill 
[9]. A vast amount of multimedial and multimodal data has 
to be transmitted to provide a high degree of immersion. 
Thus, an optimization of the data flows in the robotic system 
as well as between the robotic system and the remote user is 
required to provide maximum immersion. 

Based on the fact that there’s no access to management 
functions of any transmitting node in the network for this 

scenario, two common approaches have been examined: (i) 
optimized individual data flows on the sending endpoints 
and (ii) traffic shapers on the sending endpoints. 

In the first case, for every individual data stream  
measures as packet size and  latency as well as global band-
width and net load have to be optimized for a given network 
topology of a distributed robotic system and different kinds 
and severities of perturbations. In the second case, 
parameters for the traffic shapers like Hierarchical Token 
Bucket (priority, bandwidth, etc.) or Completely Fair 
Queuing have to be found. This is achieved by a near-reality 
test that runs the traffic of slightly modified original software 
components through the network simulator NS3 [11] that 
provides the internal network topology of the robotic system 
and the Internet as well as the perturbations. 

The recorded sequence numbers and time stamps of the 
packages gained from the simulator run is then evaluated by 
an objective function script. The objective function is 
weighting the rate of arriving control commands (e.g. for 
robots) more than the rest of data streams (e.g. audio or 
video). The data stream throughput/quality and the inverse of 
the latency of packages also contributes to the objective 
function. If packages are lost the value of the objective 
function is decreased. These are the most important 
parameters which determine the configuration of the streams 
and/or the traffic shapers.  

III. COMPARED METAHEURISTICS  
In this section the five metaheuristics are shortly described. 

C. Multi-level Gradient Ascent 
Gradient Descent/Ascent figuratively speaking follows 

the graph from state to state, always locally increasing the 
value as much as possible by the updating rule 

                            xk+1 = xk +  h ∇f(xk).                          (1) 

The function could be treated as a black-box and finite 
differences could be used to approximate the steepest ascent. 
If the parameter x of the objective function has two 
dimensions, the function can locally be approximated by a 
plane. In this plane the steepest ascent can be computed.  

Therefore, two points b and c in the local neighborhood 
of an initial point a=(a1, a2, a3)T are chosen. Point a is the 
current best solution of the k-th iteration (xk  in eq. (1) ). The 
three points determine the plane. With a parameter α in the 
real interval [0, 2π] a circle on the plane is defined by the 
function  

                r(α) = (b − a) sin α + (c − a) cos α.             (2) 

To determine the steepest ascent, the first and the second 
deviation of the third component of r(α) is regarded. By 
setting 

                        ∂α r3(α) = 0 and ∂2
α r3(α) < 0                (3) 
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(1) Define f(x), x = (x1, x2, …, xN)T 
(2) accepting rate raccept 
(3) pitch adjusting rate rp 
(4) pitch variation range prange 
(5) Generate best memory with Bsize random solutions 
(6) while (maximum numbers of iterations not reached) 
(7)    for all N components xi 
(8)       if (rand() < raccept) choose value from best memory for xi 
(9)          if (rand() < rp) xi = xi + r prange with rand. val. r in [-1,1] 
(10)       else 
(11)          choose a random value for xi 
(12)       end if 
(13)    end for 
(14)    evaluate function f(x) 
(15)    remember solution x in best memory, if better 
(16) end while 

 

(1) Define f(x), x = (x1, x2, …, xN)T 
(2) step width hrought  
(3) infinitesimal step width hinf 
(4) for all levels 
(5)    hrough = max( hrough/2, hinf) 
(6)    select random solution x 
(7)    pstart = GA(x, hrough) 
(8)    q = GA(pstart, , hinf) 
(9)    remember q, if better 
(10) end for 
(11)  
(12) function GA(starting point xk, step width h) 
(13) do 
(14)    xk+1=xk + h∇f(xk) 
(15)    evaluate function f(xk+1) 
(16) while (f(xk+1)> f(xk) or max. number of iterations reached)  
(17) return xk+1 

 

Figure 1.  Pseudo code of Multi-level Gradient Ascent (MLG) 

the direction α of the steepest ascent in the plane can be com-
puted. The solution for α is published in [3] (Eq. 4-7). With 
this method it is possible to approximate the gradient by only 
evaluating one further function value in each step. The points 
b and c out of step k can be used to define the plane for xk+1.  

Gradient ascent only reaches an arbitrary optimum, not 
necessarily the global one. In Multi-Level Gradient Ascent 
several gradient ascents are performed with various initial 
states. Decimating the function in a way that only function 
values of a rough grid are chosen leads to a low pass filtering 
and many local optima are filtered out. In each level a 
gradient ascent is performed on the undersampled function 
and the result is used for a gradient ascent with a subtle grid. 
The mesh size of the rough grid is iteratively decreased. Fig. 
1 shows the pseudo code of Multi-level Gradient Ascent. 

D. Harmony Search 

Figure 2.  Pseudo code of Harmony Search (HS) 
 

Geem et al. [5] developed an optimization algorithm 
which is inspired by the improvisation process of a musician. 
Fig. 2 shows the pseudo code. rand() always denotes a 
function that returns equally distributed random numbers in 
the [0,1]-interval. 

 
 

Figure 3.  Pseudo code of Seed Throwing Optimization (STO) 

E. Seed Throwing Optimization 
Seed Throwing Optimization (Fig. 3) has its roots in 

Gradient Ascent and Harmony Search. 
For initializing the algorithm, the objective function f(x), 

x = (x1, x2, …, xN)T and its domain is defined. The parameter 
Bsize determines how many current best solutions are 
remembered in a (Bsize, N)-matrix B. The size of the matrix 
should be chosen relatively small, thus a high intensification 
is ensured. The matrix is initialized with random values or, if 
known, with initial guesses for the solutions. The objective 
function is evaluated at these points. Associated to this 
matrix there is a Bsize-vector containing the function values of 
the solutions. At every function evaluation during the 
runtime, the maximum and minimum values of the objective 
function are remembered within the variables gmin and gmax. 
The parameter rloc controls the local search radius for initial 
seeds. We suggest taking the maximum interval of the 
domain divided by four. Choosing a big value leads to 
diversification, small values to intensification. 

The main loop starts by selecting an initial seed x0. If a 
random number is below a threshold, an initial seed is 
chosen randomly; otherwise it is taken out of the matrix B 
which stores the best solutions. Like in Harmony Search this 
procedure could be done for each component of the solution 
to enable mutations of a known good solution. After 
evaluating f(x0) an intensification factor nx is computed. It 
determines how many seeds will be used to explore the 
neighborhood of x0. The higher the value f(x0) the more 
seeds are used. Thus good solutions are explored more than 
valleys. We suggest to use 

                
( )









−
−

=
MinMax

Min
MaxSeedsx gg

gfnn 0x
 .                 (5) 

with the parameter nMaxSeeds=5, which determines the 
maximal number of seeds “thrown out”. The parameter nx 
depends on the current maximum gmax and the current 
minimum gmin because the range of values of the objective 
function is not known. The parameter nx is an intensification 
factor that controls the number of repetitions of the inner 

(1) Define f(x), x = (x1, x2, …, xN)T 
(2) depth of local search rloc 
(3) maximum number of seeds thrown out nMaxSeeds 
(4) Initialize best memory B with Bsize random solutions 
(5) while (maximum numbers of iterations not reached) 
(6)    if (rand() < 0.5) choose initial seed x0 randomly 
(7)    else choose seed x0 from the best memory 
(8)    endif 
(9)    evaluate function f(x0) 
(10)    compute direction α of steepest ascent in x0 
(11)    compute number of seeds nx (Eq. 5) 
(12)    for each seed 
(13)       compute position of seed xi (Eq. 6) 
(14)       evaluate function f(xi)  
(15)    end for 
(16)    remember solution in best memory if better 
(17) end while 
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(1) Define f(x), x = (x1, x2, …, xN)T. 
(2) initial temperature T0 
(3) choose initial solution p and evaluate f(p) 
(4) step width h for neighborhood 
(5) while (t < maximum numbers of iterations) 
(6)    choose point q in neighborhood of p 
(7)    evaluate function f(q)  
(8)    calc. current temperature temp, e.g. T0ct,0<c<1 or T0log(t+2) 
(9)    while (max. num. of iters not reached AND q not accepted)  
(10)       if (exp( f(q) – f(p)) / temp <= rand() or f(p) < f(q))  
(11)          p=q (accept new solution q)  
(12)       end if 
(13)    end while 
(14)    remember solution q if better than current best solution 
(15) end while 

(1) Define f(x), x = (x1, x2, …, xN)T 
(2) Generate particles pi with random solutions and velocity vi=0 
(3) Initialize best solution for each particle pbest, i:= pi  
(4) Initialize best solution of all particles gbest  
(5) while (maximum numbers of iterations not reached) 
(6)    for all particles i 
(7)      compute vector to best solution of particle pdir, i = pbest, i -pi  
(8)      compute vector to global best solution gdir, i = gbest -pi 
(9)      determine random values r1, r2 in [0,1]  
(10)      update velocity vi = vi + c1 r1 pdir, i+ c2 r2 gdir, i 
(11)      update solution pi=pi+vi 
(12)      evaluate function f(pi) 
(13)      remember best solution of particle pbest, i  
(14)      remember global best solution gbest 
(15)    end for 
(16) end while 

 

loop (lines 12-15) of the algorithm. Two components of x0 
are chosen randomly (e.g. x1 and x2). The direction of the 
steepest ascent for these chosen dimensions is computed (Eq. 
4-7 in [3]). Let it be α0, then r(α0) (Eq. 2) is the direction of 
the steepest ascent. Let dα be the normalized vector in this 
direction, and let dϕ be a normalized vector in a random 
direction ϕ. Than the position of seed i, which is “thrown 
out” from the initial seed, is determined by a convex 
combination of these vectors using two random numbers r1 
in [0.5,1] and r2 in [0,1].  

            xi = x0 +  r2 rloc ( r1 dα  + (1 – r1) dϕ ).            (6) 

The function value of each seed f(xi) is evaluated. If this 
solution is better than the worst solution in B, the new 
solution xi replaces the old one and the new seed with its 
neighborhood has the potential to be further explored in a 
following iteration. If the maximum number of iterations is 
reached, the best solution of B is taken as the global best 
solution. 

The performance can be slightly improved, if each time a 
new solution is entering the best memory a mutation of 
solutions is done. We suggest two ways of mutation: 

Select the nearest solution xb of the best memory to the 
new solution xi in terms of Euclidean distance and evaluate 
the objective function at the convex combination of both 
solutions: Accept the resulting solution  

                            
)f()(f

 )f(+)(f

ib

iibb

xx
xxxxx

+
=m                     (7) 

if f(xm) is better than the worst one in the best memory. 
 The other way of mutation is to evaluate the convex 

combination of all solutions of the best memory. Let 
b1,…,bBsize be the solutions (rows) of matrix B. Then 
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∑
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replaces the worst solution, if its function value is better.  
A possibility to further improve STO is to measure the 

similarity of a new solution to the most similar solution in 
the best memory in terms of Euclidean distance. If the 
distance is below a threshold, then the new solution should 
replace the most similar solution to ensure diversity of the 
best solutions. 

In high-dimensional optimization problems the last 
dimensions which improved the global solution can be 
remembered and can then be preferred for further 
exploration, instead of randomly choosing two dimensions. 

 
 
 
 

F. Particle Swarm Optimization 
A description of Particle Swarm Optimization can be 

found in [6]. Fig. 4 shows the pseudo code.  

Figure 4.  Pseudo code of Particle Swarm Optimization (PSO) 

G. Simulated Annealing 
Simulated Annealing is introduced in [7]. The pseudo-code 
is shown in Fig. 5. 

Figure 5.  Pseudo code of Simulated Annealing (SA) 

IV. PARALLEL COMPUTATION TECHNIQUES 
Although hardware models can be used to a great benefit 

for the practical application of parallelization, for our 
purpose, discussing the parallelization on a level of pseudo 
code algorithm formulations is sufficient. This way, the 
pivotal problem of identifying parts of the algorithms which 
can be computed parallel has to be solved and this favors 
brevity a lot. 

As we assume no means to estimate the time required for 
an evaluation of the objective function, it has to halt for any 
parameter in the range examined in the optimization. The 
computing time spent executing the code for the optimiza-
tion algorithms themselves is negligible in comparison to the 
computing time spent for the evaluation of the objective 
function. 

Some work has been done in this area mostly for the 
popular Simulated Annealing and Particle Swarm 
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Optimization (PSO) algorithms. A taxonomy of 
parallelization techniques and their usage for Simulated 
Annealing as well as the effect on convergence caused by 
asynchronously parallelizing Simulated Annealing are 
discussed and presented in [8]. A simple approach to profit 
from wide-spread low-cost computing clusters using a 
Message Passing Interface (MPI) is shown in [8]. 

As the objective function is much more expensive to 
compute than the optimization algorithms themselves, only 
the ability to parallelize the objective function invocations is 
examined. The main goal is to fill the task pool sufficiently 
such that (i) the maximum of data-dependent tasks is 
available at the time and (ii) the data-independent tasks end 
about the same time, the data-dependency ends. 

There are synchronous and asynchronous techniques for 
parallelization. Synchronous parallelization maintains the 
order of execution of a serial algorithm. Thus, 
synchronization points are required to ensure that all needed 
data is available. So workers (process internal or external 
threads) might wait for other workers to finish. It maintains 
the convergence behavior of the non-parallelized algorithms 
in terms of objective function calls. In contrast to 
synchronous parallelization, asynchronous parallelization 
does not force synchronization points that are blocking 
workers. It is favoring speed over using the most recent data 
from other workers and determinism to overcome Amdahls 
Law.  

First, just the possibility for synchronous parallelization 
is described. 

H. Synchronous Parallelization 
Most time consuming parts of Multi-level Gradient Asc-

ent are the function evaluations in the GD function (lines 12-
17). There, two objective function evaluations (line 14 and 
15) are needed in each iteration. These computations cannot 
be run in parallel since line 15 needs the result of line 14 and 
in the next iteration the last two solutions have to be known. 
Nevertheless, multiple levels running the GD function can be 
executed in parallel (line 4-10). The number of function 
evaluations in each level differs significantly, thus early 
finishing workers idle before completion of a level. 

In every iteration of Harmony Search, a single new solu-
tion is generated (inner loop, lines 7-13) which is to be ex-
plored. Since this newly gained function value is compared 
to the values of the best memory each succeeding iteration 
depends upon the iteration before and therefore the iterations 
cannot be parallelized synchronously. Just the Bsize solutions 
for initializing the best memory can be executed in parallel 
(line 5).  

For Simulated Annealing just the first function evaluation 
(line 3) and the first evaluation of a new solution q (line 7) 
can be parallelized. Each further iteration (lines 5-13) 
depends on an initial state that is stored in the last iteration 
(line 11). 

In Particle Swarm Optimization just the initialization of 
the particles (line 2) can be executed in parallel. If the 
number of particles is a multiple of the number of workers, 
the idle time of the workers is minimal. The particle loop 
(lines 6-15) cannot be executed in parallel by strict 

synchronous parallelization, because each particle can alter 
the current global best solution (line 12): to any of the lines 
considering the global maximum).  

Seed Throwing Optimization has two major time-consu-
ming code parts: (i) the ascent determining part in line 10  
(computation of the steepest ascent) and (ii) the evaluation of 
the “thrown out” seeds before remembering best solutions 
and moving on to the next iteration (lines 12-15). In the 
ascent determining part three function evaluations can be run 
in parallel, and the function evaluations in the seed 
evaluation part can be run in parallel. It is ideal when the 
number of evaluated seeds is a multiple of the number of 
workers. Proceeding after each of these two parts requires all 
parallel function evaluations of the iteration to finish. Thus, 
calculating the function evaluation in parallel takes as long 
as the function evaluation with the longest computing time. 

I. Asynchronous Parallelization 
For increased speed-up, the parallel metaheuristics can be 

made asynchronous, by weakening the data dependencies by 
definition to avoid any synchronization delays. The workers 
then exchange needed data, which can be out-dated at the 
time they are used. The modified asynchronous algorithm 
could not only benefit from less synchronization delays but 
can even benefit from using its old data, as stated for 
Simulated Annealing in [7]. If this is the case, it indicates 
that there is no balance of intensification and diversification 
and the currently explored area is just a local maximum, not 
the global one. Nevertheless first experimental results have 
shown that using slightly obsolete data has little to no effect 
on the convergence of the algorithms. 

In Simulated Annealing a point in the neighborhood is 
selected (line 6) and is then possibly accepted within a 
random walk (lines 9-13). One approach to parallelize the 
algorithm asynchronously is to run these steps in parallel by 
different workers. Since these steps are not deterministic new 
points are examined. In contrast, Multi-Level Gradient 
Ascent is deterministic and therefore does not examine new 
points. But Multi-Level Ascent can be parallelized 
asynchronously by starting work on a new level, each time a 
worker has finished a level. 

PSO can easily be converted to an asynchronous version. 
Each time a particle has reached a new global optimum or its 
local optimum, the information is stored in shared memory. 
Thus, the particles can evaluate the function in parallel and 
information about the global maximum is, if so, just slightly 
obsolete. The same approach can be used for asynchronous 
Harmony Search. The best memory is stored in the shared 
memory, every time a better solution is found. 

STO is very well suited for asynchronous parallelization 
due to the fact that potentially half the iterations use a 
random seeding point (line 6-8). These iterations are 
independent among themselves. The only dependency exists 
to the other half of the iterations using best memory-
dependent seeding points. Thus, while providing an update 
attempt for the best memory for about every second iteration 
of the data-dependent case, the convergence of asynchronous 
STO is very much the same as serial STO. Each time a 
worker idles a random seeding point case can be performed. 
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V. EVALUATION 
 

Figure 6.  Test functions: First row: Rosenbrock (left), Dixon 
(right); Second row: Easom, Griewangk; Third row: Port, Schwefel. 
Maxima are colored in red. 

An overview over the test functions, Rosenbrock´s 
Banana function, Dixon´s Camelback, Easom´s function, 
Griewangk´s and Schwefel´s function, can be found in [10]. 
We also tested the port optimization problem in minimally 
invasive surgery for the right-hand instrument. Fig. 6 shows 
the test functions and Table I the formulas and domains of 
the functions. 

TABLE I.  TEST FUNCTIONS, NAME, DOMAIN 
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Fig. 6 shows the test functions and Table I the formulas 
and domains of the functions. Each algorithm was run on 
each objective function 500 times. We are always looking 
for maxima of the objective functions. All tested objective 
functions have two dimensional solutions. Each algorithm is 
tested with several parameters.  

As “bad anchor” random sampling (RND) of the 
functions while remembering the best function value was 
added as “optimization algorithm”. 

We tested the number of function evaluations to reach the 
95% mark of the global maximum. In Fig. 7 the mean 
number of function invocations of all repetitions is shown. 

Fig. 8 shows the best function value that is reached after 
500 function evaluations. In this figure the median of the 
function values of all of experiments is shown as a 
percentage of the global maximum. The figure also shows 
the 0.975 and 0.025 quantiles. Thus, in 95% of all cases the 
function value is inside the shown interval. We choose the 
median and quantiles instead of mean and two standard 
deviations, because the data is not normally distributed. 

In both figures (Fig. 7, 8) the results of the best 
parameters for each algorithm is shown. 

In all experiments (except Random Sampling on Easom 
and Simulated Annealing on Schwefel) the 95% mark was 
reached (much) faster than 500 function evaluations. Thus, 
the results illustrated in Fig. 7 are important for applications 
in which a fast approximate solution is sufficient, and the 
results in Fig. 8 are more important if an accurate solution is 
needed. 

  
Figure 7.  Mean convergence speed of Seed Throwing 

Optimization (STO), Harmony Search (HS), Particle Swarm Optimization 
(PSO) . Simulated Annealing (SA), Random Sampling (RND) and Multi-
Level Gradient Ascent (MLG). Ordinate: Number of function evaluations 
to reach 95% mark of global maximum. Benchmark repeated 500 times. 

STO was tested with best memory size three and five. 
There was no significant difference. In all test functions ex-
cept for Rosenbrock´s function the results were better with 
nMaxSeeds = 5 than with nMaxSeeds = 10 or nMaxSeeds = 15. In the 
case of Rosenbrock´s function the results were achieved by 
choosing nMaxSeeds = 15. 

We tested STO without gradient information and were 
only choosing random directions for “thrown out” seeds. In 
Rosenbrock´s and in Griewangk´s function the results were 
better. The “sharp edges” in these functions make it hard to 

  STO              HS           PSO             SA              RND           MLG 
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Figure 8.  Function value reached after 500 function 

examinations as percentage of global maximum. Six test functions. 
Ordinate: median, 0.975 and 0.025 quantiles. The algorithms are sorted by 
their performance on the test functions. 

approximate the steepest ascent. Each approximation of the 
gradient leads to two further evaluations. Thus, there is a 
trade-off between a focused search direction and the costs of 
computing the search direction. As expected, all other test 
functions showed better results using the gradient. 

In another test, the inverse of the second derivation was 
used to control the step width of “thrown out” seeds like in 
the Gauss-Newton algorithm [3], but the result was less 
speed of convergence for most test functions, because two 
further function evaluations are needed for estimating the 
second deviation. With a synchronous parallel version all 
function evaluations for the derivations can be computed in 
parallel; thus in this case this option is appropriate to achieve 
a higher speed of convergence. 

PSO was tested with 20, 30, 40, 50, 75 and 100 particles. 
For reaching 95% of the optimum, best results were achieved 
with 30 to 50 particles, except for Schwefel´s function (100 
particles). After 500 function evaluations best results were 
achieved with 75 to 100 particles. This result is not 
surprising because the particles are initialized by random 
sampling and reaching the 95% mark was achieved by 57 to 
95 function evaluations for all test functions except Easom 
and Schwefel. 

Harmony search was tested with the best memory size of 
5, 10 and 15. In most test functions Bsize=5 showed best 
results. 

In Simulated Annealing the exponential temper plan T0ct 
with c=0.8, initial temperature T0=1 and maximum number 
of iterations of 1000 showed best results for most test 
functions. 

Multi-Level Gradient Ascent was tested with several step 
widths and several maximum numbers of iterations for the 

vanilla Gradient Ascent. The results strongly depend on a 
right choice of the step width. 

VI. CONCLUSION 
After 500 function evaluations (Fig. 8) best results for 

Dixon´s, Easom´s and Schwefel´s function are achieved by 
Seed Throwing Optimization, the best result for Griewangk´s 
function is achieved by Harmony Search and the best results 
for Rosenbrock´s function by Simulated Annealing. Particle 
Swarm Optimization, Harmony Search and STO perform 
similarly for the port optimization application. 

The test functions could be categorized into functions 
which are highly correlated and into functions where there is 
a low data-dependency in a local neighborhood. In functions 
with high correlation the gradient indicates the direction of 
the global maximum well. This is the case for Rosenbrock´s 
function, Dixon´s function and for the Port-function, whereas 
Easom´s, Griewangk´s and Schwefel´s function are more 
uncorrelated. We can conclude that Seed Throwing 
Optimization und Harmony Search performs best for both 
kinds of functions and are the best choices for the tested set 
of objective functions. 

Another conclusion is that Particle Swarm Optimization, 
Multi-Level Gradient Ascent and Simulated Annealing 
perform better for the uncorrelated test functions than for the 
correlated ones. 

In Simulated Annealing it was most difficult to find 
parameters which work well for all test functions. 

Seed Throwing Optimization is suitable for synchronous 
parallelization but excels in asynchronous parallelization. 
Harmony Search and Particle Swarm Optimization are also 
well suitable for parallelization. Simulated Annealing and 
Gradient Ascent do not seem to be suitable for maximum 
performance in parallelization, since they contain strong 
dependencies in each iteration of the main loop. 

The results (Fig. 7, Fig. 8) show that especially Seed 
Throwing Optimization and Harmony Search perform very 
well for a wide variety of functions. The solutions are highly 
reliable (0.025 quantile).  

Moore´s law cannot be continued indefinitely. Hence 
parallel computing becomes more and more important. Many 
future computational applications in different domains 
comprise optimization problems. The asynchronously 
parallelized version of Seed Throwing Optimization is 
capable of solving optimization problems without insight of 
the objective function, it is easy to configure and very 
computationally efficient. Thus, future computational 
applications in many domains can benefit from using Seed 
Throwing Optimization. 
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