
Evaluation of Seed Throwing Optimization Meta Heuristic in Terms of
Performance and Parallelizability

Oliver Weede Stefan Zimmermann Björn Hein Heinz Wörn
Institute for Process Control and Robotics (IPR)

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

e-mail: {oliver.weede, stefan.zimmermann2, bjoern.hein, woern}@kit.edu

Abstract— Seed Throwing Optimization is an easy to
implement probabilistic metaheuristic for multimodal function
optimization with roots in hill climbing and the evolutionary
computation like technique Harmony Search. It is a
randomized Gradient Ascent with multiple initial states and
the possibility to limit exploration to only paths which have
shown potential. In this paper, the speed of convergence of
Seed Throwing Optimization is compared to Multi-Level
Gradient Ascent, Harmony Search, Particle Swarm
Optimization and Simulated Annealing. Improvements of the
Seed Throwing Optimization are presented. Parallelizability of
the mentioned metaheuristics is examined. Parts which are
suitable for parallelization are extracted by identifying data
and control flow dependencies. Two applications, port
optimization in minimally invasive surgery and network
parameter optimization for a distributed robotic system, are
shown. The presented methaheuristics are tested in a
benchmark. The highest convergence speed could be achieved
with Harmony Search and Seed Throwing Optimization.

Keywords-Multimodal function optimization; Parallel
computing; Port optimization in minimally invasive surgery;
Network optimization.

I. INTRODUCTION
Probabilistic metaheuristics are capable of solving very

generalized classes of problems in many future compu-
tational applications. A metaheuristic is able to find a near
optimum solution of a multi modal optimization problem in
an efficient way. If a good solution of a multi modal function
is found, it is not known if the solution is globally good.
Thus the main problem that a metaheuristic has to deal with
is to avoid premature convergence to a local optimum. If
there is more than one good solution the issues arise of how
to locate all (or some) of these solutions. There is a trade-off
between diversification and intensification. Diversification
refers to the exploration of the whole search space,
intensification to the exploitation of the accumulated
experience. The speed of convergence depends on the right
balance of these forces [1].

Many approaches have been developed combining or
enhancing existing methods, an overview and a taxonomy of
global optimization methods can be found e.g. in Weise et al.
[2], but there is no optimal solver for any optimization
problem. Thus the best way is to use problem specific
knowledge to choose an appropriate algorithm, convenient
constraints to limit the search space or to modify strategies of

an algorithm. Thus a further criterion of an optimization
algorithm is its simplicity, which means that it is easy to
understand and to implement.

A focus in this paper is Seed Throwing Optimization
(STO), developed in 2009 [3]. It is a randomized Gradient
Ascent with multi initial states and the possibility to explore
only paths which have shown to be good. STO is a
probabilistic metaheuristic based on the paradigm of an itera-
tive local search. Thus, in each step a first solution is
selected, a neighborhood of “similar” solutions is defined
and the best solution of the neighborhood is determined. The
idea of STO is to choose iteratively initial seeds over the do-
main of the objective function and to spread out more seeds
in the neighborhood respecting the direction of the steepest
ascent. Initial seeds are taken randomly or form a current
best memory and are used for further exploration. The
number of seeds “thrown out” from the initial point is con-
trolled by the value of the function. Large values leads to ex-
tensive exploration. The neighborhood that is explored is like
a gradient ray, but larger spreads have the form of a fan.

Parallelizability is another important criterion since
clusters and multi-core processor architectures are common-
ly available and promise high acceleration. By splitting up
algorithms appropriate high performance can be achieved.
We compare parallelizability of several metaheuristics. In
many real-life scenarios, objective functions are expensive to
compute. In order to examine and classify STO in its
potential parallelization degree, we have to identify parts of
the algorithm that are suitable for parallelization. The pivot
of successful parallelization is to avoid data and control
dependencies between consecutive instructions that occur in
the execution of the algorithm. For this, the parallelization of
the algorithms will be discussed upon the pseudo code
algorithm formulations introduced in this paper.

The objective function is treated as a black-box, no
deeper insight of the characteristics is needed (direct
optimization).

II. APPLICATIONS
We use STO in two applications that are shortly

described in this section.

A. Port Optimization in Minimally Invasive Surgery
In minimally invasive surgery surgical instruments and

an endoscopic camera are injected through so called trocars.
The placement of the trocars is an important factor for the
success of an intervention. The da Vinci® Surgical System

92

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

[4] is a telemanipulation system which is clinically used to
perform interventions more ergonomic and precise. The
manipulator is controlling the surgical instruments and the
endoscope. Beside the trocar placement the selection of an
appropriate initial pose of the manipulator is important. It
contains the configuration of the stationary joints and the
position and orientation of the manipulators base. Poor
choices of the manipulators pose or the placement of the
trocars can lead to collisions of the arms or unreachable
target areas [12].

Finding optimal trocar positions and an optimal
manipulator´s pose can be formulated as optimization
problem consisting of active- and passive constraints and a
goodness measure to be maximized. The passive constraint is
corresponding to the trocar positions (ports), which remain
stationary throughout the intervention. The pivot point of the
surgical instruments has to be close to the chosen port
positions. The active constraints refer to the trajectory of the
end-effectors of the surgical instruments. Each target has to
be reached. A configuration is rejected, if the passive
constraints are not fulfilled (objective function is set to zero).
If a target is unreachable or collisions occur the current
configuration is rejected too. The objective function is a
conjunction of several components. Separation of each arm
to other arms, preoperatively segmented zones of risk and the
bones are used as the main component of the objective
function. Tilting of the table and ergonomic reasons like
manipulation angle between the working instruments also
influence this function. An evaluation of the objective
function is very time consuming because minimal distances
in a virtual scene containing over 200 000 triangles have to
be computed for each point of the trajectory.

The result of the optimization is transferred to the
operation theatre by using methods of augmented reality.
The port positions are projected directly on the patient´s
abdomen. The optimized pose of the manipulator is shown
by a virtual scene containing a model of the manipulator and
arrows to indicate the optimized pose.

B. Network parameter optimization for a distributed
robotic system
State-of-the-art autonomous intuitive assistance and in-

formation systems for service robots compensate for the tre-
mendous loss of information for remote users. Often
augmented and/or virtual reality is used to provide immer-
sion to the remote environment. A guaranteed minimum
performance of the communication between the robotic
system and the remote user is needed in order to still
guarantee a suitable degree of immersion. Using non-
dedicated standard means of communication, e.g. the
Internet, makes constraints as audio and video synchronicity
(<200ms) or latency for tactile tasks (<180ms) hard to fulfill
[9]. A vast amount of multimedial and multimodal data has
to be transmitted to provide a high degree of immersion.
Thus, an optimization of the data flows in the robotic system
as well as between the robotic system and the remote user is
required to provide maximum immersion.

Based on the fact that there’s no access to management
functions of any transmitting node in the network for this

scenario, two common approaches have been examined: (i)
optimized individual data flows on the sending endpoints
and (ii) traffic shapers on the sending endpoints.

In the first case, for every individual data stream
measures as packet size and latency as well as global band-
width and net load have to be optimized for a given network
topology of a distributed robotic system and different kinds
and severities of perturbations. In the second case,
parameters for the traffic shapers like Hierarchical Token
Bucket (priority, bandwidth, etc.) or Completely Fair
Queuing have to be found. This is achieved by a near-reality
test that runs the traffic of slightly modified original software
components through the network simulator NS3 [11] that
provides the internal network topology of the robotic system
and the Internet as well as the perturbations.

The recorded sequence numbers and time stamps of the
packages gained from the simulator run is then evaluated by
an objective function script. The objective function is
weighting the rate of arriving control commands (e.g. for
robots) more than the rest of data streams (e.g. audio or
video). The data stream throughput/quality and the inverse of
the latency of packages also contributes to the objective
function. If packages are lost the value of the objective
function is decreased. These are the most important
parameters which determine the configuration of the streams
and/or the traffic shapers.

III. COMPARED METAHEURISTICS
In this section the five metaheuristics are shortly described.

C. Multi-level Gradient Ascent
Gradient Descent/Ascent figuratively speaking follows

the graph from state to state, always locally increasing the
value as much as possible by the updating rule

 xk+1 = xk + h ∇f(xk). (1)

The function could be treated as a black-box and finite
differences could be used to approximate the steepest ascent.
If the parameter x of the objective function has two
dimensions, the function can locally be approximated by a
plane. In this plane the steepest ascent can be computed.

Therefore, two points b and c in the local neighborhood
of an initial point a=(a1, a2, a3)T are chosen. Point a is the
current best solution of the k-th iteration (xk in eq. (1)). The
three points determine the plane. With a parameter α in the
real interval [0, 2π] a circle on the plane is defined by the
function

 r(α) = (b − a) sin α + (c − a) cos α. (2)

To determine the steepest ascent, the first and the second
deviation of the third component of r(α) is regarded. By
setting

 ∂α r3(α) = 0 and ∂2
α r3(α) < 0 (3)

93

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

(1) Define f(x), x = (x1, x2, …, xN)T
(2) accepting rate raccept
(3) pitch adjusting rate rp
(4) pitch variation range prange
(5) Generate best memory with Bsize random solutions
(6) while (maximum numbers of iterations not reached)
(7) for all N components xi
(8) if (rand() < raccept) choose value from best memory for xi
(9) if (rand() < rp) xi = xi + r prange with rand. val. r in [-1,1]
(10) else
(11) choose a random value for xi
(12) end if
(13) end for
(14) evaluate function f(x)
(15) remember solution x in best memory, if better
(16) end while

(1) Define f(x), x = (x1, x2, …, xN)T
(2) step width hrought
(3) infinitesimal step width hinf
(4) for all levels
(5) hrough = max(hrough/2, hinf)
(6) select random solution x
(7) pstart = GA(x, hrough)
(8) q = GA(pstart, , hinf)
(9) remember q, if better
(10) end for
(11)
(12) function GA(starting point xk, step width h)
(13) do
(14) xk+1=xk + h∇f(xk)
(15) evaluate function f(xk+1)
(16) while (f(xk+1)> f(xk) or max. number of iterations reached)
(17) return xk+1

Figure 1. Pseudo code of Multi-level Gradient Ascent (MLG)

the direction α of the steepest ascent in the plane can be com-
puted. The solution for α is published in [3] (Eq. 4-7). With
this method it is possible to approximate the gradient by only
evaluating one further function value in each step. The points
b and c out of step k can be used to define the plane for xk+1.

Gradient ascent only reaches an arbitrary optimum, not
necessarily the global one. In Multi-Level Gradient Ascent
several gradient ascents are performed with various initial
states. Decimating the function in a way that only function
values of a rough grid are chosen leads to a low pass filtering
and many local optima are filtered out. In each level a
gradient ascent is performed on the undersampled function
and the result is used for a gradient ascent with a subtle grid.
The mesh size of the rough grid is iteratively decreased. Fig.
1 shows the pseudo code of Multi-level Gradient Ascent.

D. Harmony Search

Figure 2. Pseudo code of Harmony Search (HS)

Geem et al. [5] developed an optimization algorithm
which is inspired by the improvisation process of a musician.
Fig. 2 shows the pseudo code. rand() always denotes a
function that returns equally distributed random numbers in
the [0,1]-interval.

Figure 3. Pseudo code of Seed Throwing Optimization (STO)

E. Seed Throwing Optimization
Seed Throwing Optimization (Fig. 3) has its roots in

Gradient Ascent and Harmony Search.
For initializing the algorithm, the objective function f(x),

x = (x1, x2, …, xN)T and its domain is defined. The parameter
Bsize determines how many current best solutions are
remembered in a (Bsize, N)-matrix B. The size of the matrix
should be chosen relatively small, thus a high intensification
is ensured. The matrix is initialized with random values or, if
known, with initial guesses for the solutions. The objective
function is evaluated at these points. Associated to this
matrix there is a Bsize-vector containing the function values of
the solutions. At every function evaluation during the
runtime, the maximum and minimum values of the objective
function are remembered within the variables gmin and gmax.
The parameter rloc controls the local search radius for initial
seeds. We suggest taking the maximum interval of the
domain divided by four. Choosing a big value leads to
diversification, small values to intensification.

The main loop starts by selecting an initial seed x0. If a
random number is below a threshold, an initial seed is
chosen randomly; otherwise it is taken out of the matrix B
which stores the best solutions. Like in Harmony Search this
procedure could be done for each component of the solution
to enable mutations of a known good solution. After
evaluating f(x0) an intensification factor nx is computed. It
determines how many seeds will be used to explore the
neighborhood of x0. The higher the value f(x0) the more
seeds are used. Thus good solutions are explored more than
valleys. We suggest to use

()









−
−

=
MinMax

Min
MaxSeedsx gg

gfnn 0x
 . (5)

with the parameter nMaxSeeds=5, which determines the
maximal number of seeds “thrown out”. The parameter nx
depends on the current maximum gmax and the current
minimum gmin because the range of values of the objective
function is not known. The parameter nx is an intensification
factor that controls the number of repetitions of the inner

(1) Define f(x), x = (x1, x2, …, xN)T
(2) depth of local search rloc
(3) maximum number of seeds thrown out nMaxSeeds
(4) Initialize best memory B with Bsize random solutions
(5) while (maximum numbers of iterations not reached)
(6) if (rand() < 0.5) choose initial seed x0 randomly
(7) else choose seed x0 from the best memory
(8) endif
(9) evaluate function f(x0)
(10) compute direction α of steepest ascent in x0
(11) compute number of seeds nx (Eq. 5)
(12) for each seed
(13) compute position of seed xi (Eq. 6)
(14) evaluate function f(xi)
(15) end for
(16) remember solution in best memory if better
(17) end while

94

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

(1) Define f(x), x = (x1, x2, …, xN)T.
(2) initial temperature T0
(3) choose initial solution p and evaluate f(p)
(4) step width h for neighborhood
(5) while (t < maximum numbers of iterations)
(6) choose point q in neighborhood of p
(7) evaluate function f(q)
(8) calc. current temperature temp, e.g. T0ct,0<c<1 or T0log(t+2)
(9) while (max. num. of iters not reached AND q not accepted)
(10) if (exp(f(q) – f(p)) / temp <= rand() or f(p) < f(q))
(11) p=q (accept new solution q)
(12) end if
(13) end while
(14) remember solution q if better than current best solution
(15) end while

(1) Define f(x), x = (x1, x2, …, xN)T
(2) Generate particles pi with random solutions and velocity vi=0
(3) Initialize best solution for each particle pbest, i:= pi
(4) Initialize best solution of all particles gbest
(5) while (maximum numbers of iterations not reached)
(6) for all particles i
(7) compute vector to best solution of particle pdir, i = pbest, i -pi
(8) compute vector to global best solution gdir, i = gbest -pi
(9) determine random values r1, r2 in [0,1]
(10) update velocity vi = vi + c1 r1 pdir, i+ c2 r2 gdir, i
(11) update solution pi=pi+vi
(12) evaluate function f(pi)
(13) remember best solution of particle pbest, i
(14) remember global best solution gbest
(15) end for
(16) end while

loop (lines 12-15) of the algorithm. Two components of x0
are chosen randomly (e.g. x1 and x2). The direction of the
steepest ascent for these chosen dimensions is computed (Eq.
4-7 in [3]). Let it be α0, then r(α0) (Eq. 2) is the direction of
the steepest ascent. Let dα be the normalized vector in this
direction, and let dϕ be a normalized vector in a random
direction ϕ. Than the position of seed i, which is “thrown
out” from the initial seed, is determined by a convex
combination of these vectors using two random numbers r1
in [0.5,1] and r2 in [0,1].

 xi = x0 + r2 rloc (r1 dα + (1 – r1) dϕ). (6)

The function value of each seed f(xi) is evaluated. If this
solution is better than the worst solution in B, the new
solution xi replaces the old one and the new seed with its
neighborhood has the potential to be further explored in a
following iteration. If the maximum number of iterations is
reached, the best solution of B is taken as the global best
solution.

The performance can be slightly improved, if each time a
new solution is entering the best memory a mutation of
solutions is done. We suggest two ways of mutation:

Select the nearest solution xb of the best memory to the
new solution xi in terms of Euclidean distance and evaluate
the objective function at the convex combination of both
solutions: Accept the resulting solution

)f()(f

)f(+)(f

ib

iibb

xx
xxxxx

+
=m (7)

if f(xm) is better than the worst one in the best memory.
 The other way of mutation is to evaluate the convex

combination of all solutions of the best memory. Let
b1,…,bBsize be the solutions (rows) of matrix B. Then

∑

∑

=

==
size

size

B

i

B

i
m

1
i

1
ii

)(f

)(f

x

xx
x (8)

replaces the worst solution, if its function value is better.
A possibility to further improve STO is to measure the

similarity of a new solution to the most similar solution in
the best memory in terms of Euclidean distance. If the
distance is below a threshold, then the new solution should
replace the most similar solution to ensure diversity of the
best solutions.

In high-dimensional optimization problems the last
dimensions which improved the global solution can be
remembered and can then be preferred for further
exploration, instead of randomly choosing two dimensions.

F. Particle Swarm Optimization
A description of Particle Swarm Optimization can be

found in [6]. Fig. 4 shows the pseudo code.

Figure 4. Pseudo code of Particle Swarm Optimization (PSO)

G. Simulated Annealing
Simulated Annealing is introduced in [7]. The pseudo-code
is shown in Fig. 5.

Figure 5. Pseudo code of Simulated Annealing (SA)

IV. PARALLEL COMPUTATION TECHNIQUES
Although hardware models can be used to a great benefit

for the practical application of parallelization, for our
purpose, discussing the parallelization on a level of pseudo
code algorithm formulations is sufficient. This way, the
pivotal problem of identifying parts of the algorithms which
can be computed parallel has to be solved and this favors
brevity a lot.

As we assume no means to estimate the time required for
an evaluation of the objective function, it has to halt for any
parameter in the range examined in the optimization. The
computing time spent executing the code for the optimiza-
tion algorithms themselves is negligible in comparison to the
computing time spent for the evaluation of the objective
function.

Some work has been done in this area mostly for the
popular Simulated Annealing and Particle Swarm

95

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

Optimization (PSO) algorithms. A taxonomy of
parallelization techniques and their usage for Simulated
Annealing as well as the effect on convergence caused by
asynchronously parallelizing Simulated Annealing are
discussed and presented in [8]. A simple approach to profit
from wide-spread low-cost computing clusters using a
Message Passing Interface (MPI) is shown in [8].

As the objective function is much more expensive to
compute than the optimization algorithms themselves, only
the ability to parallelize the objective function invocations is
examined. The main goal is to fill the task pool sufficiently
such that (i) the maximum of data-dependent tasks is
available at the time and (ii) the data-independent tasks end
about the same time, the data-dependency ends.

There are synchronous and asynchronous techniques for
parallelization. Synchronous parallelization maintains the
order of execution of a serial algorithm. Thus,
synchronization points are required to ensure that all needed
data is available. So workers (process internal or external
threads) might wait for other workers to finish. It maintains
the convergence behavior of the non-parallelized algorithms
in terms of objective function calls. In contrast to
synchronous parallelization, asynchronous parallelization
does not force synchronization points that are blocking
workers. It is favoring speed over using the most recent data
from other workers and determinism to overcome Amdahls
Law.

First, just the possibility for synchronous parallelization
is described.

H. Synchronous Parallelization
Most time consuming parts of Multi-level Gradient Asc-

ent are the function evaluations in the GD function (lines 12-
17). There, two objective function evaluations (line 14 and
15) are needed in each iteration. These computations cannot
be run in parallel since line 15 needs the result of line 14 and
in the next iteration the last two solutions have to be known.
Nevertheless, multiple levels running the GD function can be
executed in parallel (line 4-10). The number of function
evaluations in each level differs significantly, thus early
finishing workers idle before completion of a level.

In every iteration of Harmony Search, a single new solu-
tion is generated (inner loop, lines 7-13) which is to be ex-
plored. Since this newly gained function value is compared
to the values of the best memory each succeeding iteration
depends upon the iteration before and therefore the iterations
cannot be parallelized synchronously. Just the Bsize solutions
for initializing the best memory can be executed in parallel
(line 5).

For Simulated Annealing just the first function evaluation
(line 3) and the first evaluation of a new solution q (line 7)
can be parallelized. Each further iteration (lines 5-13)
depends on an initial state that is stored in the last iteration
(line 11).

In Particle Swarm Optimization just the initialization of
the particles (line 2) can be executed in parallel. If the
number of particles is a multiple of the number of workers,
the idle time of the workers is minimal. The particle loop
(lines 6-15) cannot be executed in parallel by strict

synchronous parallelization, because each particle can alter
the current global best solution (line 12): to any of the lines
considering the global maximum).

Seed Throwing Optimization has two major time-consu-
ming code parts: (i) the ascent determining part in line 10
(computation of the steepest ascent) and (ii) the evaluation of
the “thrown out” seeds before remembering best solutions
and moving on to the next iteration (lines 12-15). In the
ascent determining part three function evaluations can be run
in parallel, and the function evaluations in the seed
evaluation part can be run in parallel. It is ideal when the
number of evaluated seeds is a multiple of the number of
workers. Proceeding after each of these two parts requires all
parallel function evaluations of the iteration to finish. Thus,
calculating the function evaluation in parallel takes as long
as the function evaluation with the longest computing time.

I. Asynchronous Parallelization
For increased speed-up, the parallel metaheuristics can be

made asynchronous, by weakening the data dependencies by
definition to avoid any synchronization delays. The workers
then exchange needed data, which can be out-dated at the
time they are used. The modified asynchronous algorithm
could not only benefit from less synchronization delays but
can even benefit from using its old data, as stated for
Simulated Annealing in [7]. If this is the case, it indicates
that there is no balance of intensification and diversification
and the currently explored area is just a local maximum, not
the global one. Nevertheless first experimental results have
shown that using slightly obsolete data has little to no effect
on the convergence of the algorithms.

In Simulated Annealing a point in the neighborhood is
selected (line 6) and is then possibly accepted within a
random walk (lines 9-13). One approach to parallelize the
algorithm asynchronously is to run these steps in parallel by
different workers. Since these steps are not deterministic new
points are examined. In contrast, Multi-Level Gradient
Ascent is deterministic and therefore does not examine new
points. But Multi-Level Ascent can be parallelized
asynchronously by starting work on a new level, each time a
worker has finished a level.

PSO can easily be converted to an asynchronous version.
Each time a particle has reached a new global optimum or its
local optimum, the information is stored in shared memory.
Thus, the particles can evaluate the function in parallel and
information about the global maximum is, if so, just slightly
obsolete. The same approach can be used for asynchronous
Harmony Search. The best memory is stored in the shared
memory, every time a better solution is found.

STO is very well suited for asynchronous parallelization
due to the fact that potentially half the iterations use a
random seeding point (line 6-8). These iterations are
independent among themselves. The only dependency exists
to the other half of the iterations using best memory-
dependent seeding points. Thus, while providing an update
attempt for the best memory for about every second iteration
of the data-dependent case, the convergence of asynchronous
STO is very much the same as serial STO. Each time a
worker idles a random seeding point case can be performed.

96

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

V. EVALUATION

Figure 6. Test functions: First row: Rosenbrock (left), Dixon
(right); Second row: Easom, Griewangk; Third row: Port, Schwefel.
Maxima are colored in red.

An overview over the test functions, Rosenbrock´s
Banana function, Dixon´s Camelback, Easom´s function,
Griewangk´s and Schwefel´s function, can be found in [10].
We also tested the port optimization problem in minimally
invasive surgery for the right-hand instrument. Fig. 6 shows
the test functions and Table I the formulas and domains of
the functions.

TABLE I. TEST FUNCTIONS, NAME, DOMAIN

() () 1010011log
22

12
2

1 +




 −+−+− xxx Rosenbrock

 [-3, 3]2

() 2
2

2
221

2
1

4
12

1 14
3

1.24 xxxxxxx −−−









+−−

Dixon
 [-1.5, 1.5]2

() ()()2
2

2
121 exp)cos()cos(ππ −+−− xxxx Easom

 [-10, 10]2

3
2

1cos)cos(
4000 21

2
2

2
1 +








+

+
− xx

xx

Griewangk
 [-50, 50]2

() ()2211 sinsin xxxx + Schwefel
 [-500,500]2

Fig. 6 shows the test functions and Table I the formulas
and domains of the functions. Each algorithm was run on
each objective function 500 times. We are always looking
for maxima of the objective functions. All tested objective
functions have two dimensional solutions. Each algorithm is
tested with several parameters.

As “bad anchor” random sampling (RND) of the
functions while remembering the best function value was
added as “optimization algorithm”.

We tested the number of function evaluations to reach the
95% mark of the global maximum. In Fig. 7 the mean
number of function invocations of all repetitions is shown.

Fig. 8 shows the best function value that is reached after
500 function evaluations. In this figure the median of the
function values of all of experiments is shown as a
percentage of the global maximum. The figure also shows
the 0.975 and 0.025 quantiles. Thus, in 95% of all cases the
function value is inside the shown interval. We choose the
median and quantiles instead of mean and two standard
deviations, because the data is not normally distributed.

In both figures (Fig. 7, 8) the results of the best
parameters for each algorithm is shown.

In all experiments (except Random Sampling on Easom
and Simulated Annealing on Schwefel) the 95% mark was
reached (much) faster than 500 function evaluations. Thus,
the results illustrated in Fig. 7 are important for applications
in which a fast approximate solution is sufficient, and the
results in Fig. 8 are more important if an accurate solution is
needed.

Figure 7. Mean convergence speed of Seed Throwing

Optimization (STO), Harmony Search (HS), Particle Swarm Optimization
(PSO) . Simulated Annealing (SA), Random Sampling (RND) and Multi-
Level Gradient Ascent (MLG). Ordinate: Number of function evaluations
to reach 95% mark of global maximum. Benchmark repeated 500 times.

STO was tested with best memory size three and five.
There was no significant difference. In all test functions ex-
cept for Rosenbrock´s function the results were better with
nMaxSeeds = 5 than with nMaxSeeds = 10 or nMaxSeeds = 15. In the
case of Rosenbrock´s function the results were achieved by
choosing nMaxSeeds = 15.

We tested STO without gradient information and were
only choosing random directions for “thrown out” seeds. In
Rosenbrock´s and in Griewangk´s function the results were
better. The “sharp edges” in these functions make it hard to

 STO HS PSO SA RND MLG

97

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

Figure 8. Function value reached after 500 function

examinations as percentage of global maximum. Six test functions.
Ordinate: median, 0.975 and 0.025 quantiles. The algorithms are sorted by
their performance on the test functions.

approximate the steepest ascent. Each approximation of the
gradient leads to two further evaluations. Thus, there is a
trade-off between a focused search direction and the costs of
computing the search direction. As expected, all other test
functions showed better results using the gradient.

In another test, the inverse of the second derivation was
used to control the step width of “thrown out” seeds like in
the Gauss-Newton algorithm [3], but the result was less
speed of convergence for most test functions, because two
further function evaluations are needed for estimating the
second deviation. With a synchronous parallel version all
function evaluations for the derivations can be computed in
parallel; thus in this case this option is appropriate to achieve
a higher speed of convergence.

PSO was tested with 20, 30, 40, 50, 75 and 100 particles.
For reaching 95% of the optimum, best results were achieved
with 30 to 50 particles, except for Schwefel´s function (100
particles). After 500 function evaluations best results were
achieved with 75 to 100 particles. This result is not
surprising because the particles are initialized by random
sampling and reaching the 95% mark was achieved by 57 to
95 function evaluations for all test functions except Easom
and Schwefel.

Harmony search was tested with the best memory size of
5, 10 and 15. In most test functions Bsize=5 showed best
results.

In Simulated Annealing the exponential temper plan T0ct
with c=0.8, initial temperature T0=1 and maximum number
of iterations of 1000 showed best results for most test
functions.

Multi-Level Gradient Ascent was tested with several step
widths and several maximum numbers of iterations for the

vanilla Gradient Ascent. The results strongly depend on a
right choice of the step width.

VI. CONCLUSION
After 500 function evaluations (Fig. 8) best results for

Dixon´s, Easom´s and Schwefel´s function are achieved by
Seed Throwing Optimization, the best result for Griewangk´s
function is achieved by Harmony Search and the best results
for Rosenbrock´s function by Simulated Annealing. Particle
Swarm Optimization, Harmony Search and STO perform
similarly for the port optimization application.

The test functions could be categorized into functions
which are highly correlated and into functions where there is
a low data-dependency in a local neighborhood. In functions
with high correlation the gradient indicates the direction of
the global maximum well. This is the case for Rosenbrock´s
function, Dixon´s function and for the Port-function, whereas
Easom´s, Griewangk´s and Schwefel´s function are more
uncorrelated. We can conclude that Seed Throwing
Optimization und Harmony Search performs best for both
kinds of functions and are the best choices for the tested set
of objective functions.

Another conclusion is that Particle Swarm Optimization,
Multi-Level Gradient Ascent and Simulated Annealing
perform better for the uncorrelated test functions than for the
correlated ones.

In Simulated Annealing it was most difficult to find
parameters which work well for all test functions.

Seed Throwing Optimization is suitable for synchronous
parallelization but excels in asynchronous parallelization.
Harmony Search and Particle Swarm Optimization are also
well suitable for parallelization. Simulated Annealing and
Gradient Ascent do not seem to be suitable for maximum
performance in parallelization, since they contain strong
dependencies in each iteration of the main loop.

The results (Fig. 7, Fig. 8) show that especially Seed
Throwing Optimization and Harmony Search perform very
well for a wide variety of functions. The solutions are highly
reliable (0.025 quantile).

Moore´s law cannot be continued indefinitely. Hence
parallel computing becomes more and more important. Many
future computational applications in different domains
comprise optimization problems. The asynchronously
parallelized version of Seed Throwing Optimization is
capable of solving optimization problems without insight of
the objective function, it is easy to configure and very
computationally efficient. Thus, future computational
applications in many domains can benefit from using Seed
Throwing Optimization.

ACKNOWLEDGMENT

The present study was conducted within the setting of the
“Research training group 1126: Intelligent Surgery -
Development of new computer-based methods for the future
workspace in surgery” funded by the German Research
Foundation.

 Rosenbrock Dixon

 Easom Griewangk

 Schwefel Port

98

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

REFERENCES
[1] C. Blum and A. Roli, “Metaheuristics in Combinatorial Optimization:

Overview”, ACM Comput. Surv. 35, 268-308 (2003).
[2] T. Weise, “Global Optimization Algorithms – Theory and

Application”, http://www.it-weise.de/projects/book.pdf [5-5- 2011].
[3] O. Weede, A. Kettler and H. Wörn, “Seed Throwing Optimization: A

Probabilistic Technique for Multimodal Function Optimization,”
2009 Computation World, pp. 515-519, 2009.

[4] Internet: http://www.intuitivesurgical.com/ [5-5-2011]
[5] Z.W. Geem, J.H. Kim and G.V. Loganathan, “A new heuristic

optimization algorithm: Harmony search,” Simulation 76, 60-68,
2001.

[6] J. Kennedy and R. Eberhart, “Particle Swarm Optimization”, Proc.
IEEE Int. Conf. on Neural Networks, 1995.

[7] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, “Optimization by
Simulated Annealing”, Science, New Series, Vol. 220, No. 4598, pp.
671-680, 1983.

[7] D. R. Greening, “Parallel Simulated Annealing Techniques”, Physica
D: Nonlinear Phenomena, Elsevier, pp.293-306, 1990

[8] J.F. Schutte, J.A. Reinbolt, B.J. Fregly, R.T. Haftka and A.D. George,
“Parallel global optimization with the particle swarm algorithm”, Int.
J for Numerical Methods in Engineering, pp.61:2296-2315, 2004

[9] C. Jay and R. Hubbold, “Delayed Visual and Haptic Feedback in a
Reciprocal Tapping Task”, Proc. of the First Joint Eurohaptics Conf.
and Symposium on Haptic Interfaces for Virtual Environment and
Teleoperator Systems, IEEE, pp. 655 – 656, 2005

[10] H. Pohlheim, “GEATbx: Example Functions 2 Parametric
Optimization”, Internet: http://www.geatbx.com/docu/fcnindex-
01.html#P160_7291 [5-5-2011]

[11] G. Riley, “Network Simulation with ns-3”, Spring Simulation
Conference, April 12, 2010

[12] H. Wörn and O. Weede, “Optimizing the setup configuration for
manual and robotic assisted minimally invasive surgery,” in World
Congress on Medical Physics and Biomedical Engineering 2009,
Munich, Germany, 2009, pp. 55—58, 2009

99

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

http://www.it-weise.de/projects/book.pdf�
http://www.intuitivesurgical.com/�
http://www.geatbx.com/docu/fcnindex-01.html#P160_7291�
http://www.geatbx.com/docu/fcnindex-01.html#P160_7291�

