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Abstract—The notion of agent more and more appears in
different contexts of computer science, often with different
meanings. The main acceptation is the AI (Artificial Intelli-
gence) and Distributed AI one, where agents are essentially
exploited as a technique to develop special-purpose systems
exhibiting some kind of intelligent behavior. In this paper, we
introduce a further perspective, shifting the focus from Al
to computer programming and programming languages. In
particular, we consider agents and related concepts as general-
purpose abstractions useful for programming software systems
in general, conceptually extending object-oriented program-
ming with features that — we argue — are effective to tackle some
main challenges of modern software development. Accordingly,
the main contribution of the work is first the definition of a
conceptual space framing the basic features that characterize
the agent-oriented approach as a programming paradigm, then
its validation in practice by using a platform called JaCa, with
real-word programming examples.
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I. INTRODUCTION

The notion of agent more and more appears in different
contexts of computer science, often with different meanings.
In the context of Artificial Intelligence (AI) or Distributed
Al, agents and multi-agent systems are typically exploited as
a technique to tackle complex problems and develop intelli-
gent software systems [16][32][27]. In this paper, we discuss
a further perspective, which aims at exploiting agents and
agent-oriented abstractions to devise a high-level computing
programming paradigm for developing software, as a natural
evolution of objects (as defined in OOP) and actors [6].
So, instead of exploiting agents as abstractions to support
Al techniques, here we frame the value of multi-agent pro-
gramming as a general-purpose paradigm for organizing and
programming software, providing features that we consider
effective to tackle main challenges of modern and future
software development, such as concurrency, decentralization
of control, distribution, autonomy, adaptivity.

Concurrency, in particular, due to the spread of multi-
core technologies, is more and more a core issue of main-
stream programming—besides the academic research con-
texts where it has been studied for the last fifty years. This
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situation is pretty well summarized by the sentence: “The
free lunch is over” as put by Sutter and Larus in [30].
Besides introducing fine-grain mechanisms or patterns to
exploit parallel hardware and improve the efficiency of pro-
grams in existing mainstream languages, it is now increas-
ingly important to introduce higher-level abstractions that
“help build concurrent programs, just as object-oriented ab-
stractions help build large component-based programs” [30].
We argue that agent-oriented programming — as framed in
this paper — provides one such level of abstraction. Besides
concurrency, we believe that the level of abstraction intro-
duced by an agent-oriented programming paradigm would
be effective to tackle the complexities introduced by modern
and future application domains, such as cloud computing,
autonomic computing, pervasive computing and so on.

Actually, the idea of Agent-Oriented Programming is not
new. The first paper about AOP is dated 1993 [28], and
since then many Agent Programming Languages (APL)
and languages for Multi-Agent Programming have been
proposed in literature [11][12][13]. The objective of AOP
as introduced in [28] was the definition of a post-OO
programming paradigm for developing complex applica-
tions, providing higher-level features compared to existing
paradigms. In spite of this objective, it is apparent that
agent-oriented programming has not had a significant impact
on mainstream research in programming languages and
software development, so far. We argue that this depends on
the fact that (in spite of few exceptions) most of the effort
and emphasis have been put on theoretical issues related to
Al themes, instead of focusing on the key principles and
practice of general-purpose computer programming. This is
the direction that we aim at exploring in our work and in
this paper.

The remainder of the paper is organized as follows.
After presenting related works (Section II), we first define
a conceptual space to describe the basic features of a
general-purpose programming paradigm based on agent-
oriented abstractions (Section III). Then, we provide a first
practical evaluation by exploiting an agent-oriented platform
called JaCa (Section IV), which actually integrates two
different existing agent technologies, Jason [9][10] and

42



FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

CArtAgO [25]. The objective is to show how to exploit
agent-oriented abstractions to conceive and develop real-
world programs, and point out outcomes and limitations of
current models and technology. Finally we close the paper
with some concluding remarks (Section V).

II. RELATED WORKS

Most of the agent-oriented programming languages and
technologies — in particular those based on high-level
computational model/architecture such as the BDI (Belief-
Desire-Intention) one [23] — have been introduced in (Dis-
tributed) Artificial Intelligence, so targeted to problems in
that context [11][12][13]. Besides this main perspective, in
the context of AOSE (Agent Oriented Software Engineering)
some agent-oriented frameworks based on mainstream pro-
gramming languages — such as Java — have been introduced,
targeted to the development of complex distributed software
systems. A main example is JADE (Java Agent DEvelop-
ment Framework) [8], a FIPA-compliant [1] platform that
makes it possible to implement multi-agent systems in Java.
JADE is based on a weak notion of agency: JADE agents
are Java-based actor-like active entities, communicating by
exchanging messages based on FIPA ACL (Agent Commu-
nication Language). So there is not an explicit account for
high-level agent concepts — goals, beliefs, plans, intentions
are examples, referring to the BDI model — that are exploited
instead in agent-oriented programming languages to raise
the level of abstraction adopted to define agent behaviour.
Also, JADE has not an explicit notion of agent environ-
ment, defining agent actions and perceptions, which are key
concepts for defining agent reactiveness. Differently from
JADE, the JaCa platform presented in this paper allows
for programming agents using a BDI-based computational
model and has explicit notion of shared programmable
environments — perceived and acted upon by agents — based
on the A&A (Agents and Artifacts) conceptual model [20],
described in next sections.

Another example of Java-based agent-oriented framework
is simpA [26], which has been conceived to investigate
the use of agent-oriented abstractions for simplifying the
development of concurrent applications. SimpA shares many
points with the perspective depicted in this paper: however
it is based in on a weak model of agency, similar to the
one adopted in JADE. Differently from JADE, it explicitly
supports a notion of environment, based on A&A.

Besides the different underlying computational models,
both JADE and simpA do not explicitly introduce a new full-
fledge agent-oriented programming language for program-
ming agents, being still based on Java. A different approach
is adopted by JACK [15], a further platform for developing
agent-based software which extends the Java language with
BDI constructs — such as goals and plans — for programming
agents, integrating the object-oriented and agent-oriented
levels. Finally, similarly to JADE, Jadex [22] is a FIPA
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Abstract representation of the A&A metaphor in the context of

compliant framework based on Java and XML, but adopting
the BDI as underlying agent architecture.

III. AGENT-ORIENTED ABSTRACTIONS FOR COMPUTER
PROGRAMMING

Quoting Lieberman [18], “The history of Object-Oriented
Programming can be interpreted as a continuing quest to
capture the notion of abstraction — to create computational
artifacts that represent the essential nature of a situation,
and to ignore irrelevant details”. In that perspective, in
this section we identify and discuss a core set of concepts
and abstractions introduced by agent-oriented programming.
While most of these concepts already appeared in literature
in different contexts, our aim here is to highlight their value
for framing a conceptual space and an abstraction layer
useful for defining general-purpose programming languages.

A. The Background Metaphor

Metaphors play a key role in computer science, as means
for constructing new concepts and terminology [31]. In
the case of objects in OOP, the metaphor is about real-
world objects. Like physical objects, objects in OOP can
have properties and states, and like social objects, they can
communicate as well as respond to communications. In
the case of actors [6], similarly, the inspiration is clearly
more anthropomorphic, and a variety of anthropomorphic
metaphors influenced its development [29][17].

The inspiration for the agent-oriented abstraction layer
that we discuss in this paper is anthropomorphic too and
refers to the A&A (Agents and Artifacts) conceptual model
[20], which takes human organizations as main reference.
Figure 1 shows an example of such metaphor, represented
by a human working environment, a bakery in particular. It
is a system where articulated concurrent and coordinated
activities take place, distributed in time and space, by
people working inside a common environment. Activities
are explicitly targeted to some objectives. The complexity
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Figure 2. Abstract representation of an agent-oriented program composed
by agents working within an environment.

of work calls for some division of labor, so each person
is responsible for the fulfillment of one or multiple tasks.
Interaction is a main dimension, due to the dependencies
among the activities. Cooperation occurs by means of both
direct verbal communication and through tools available
in the environment (e.g., a blackboard, a clock, the task
scheduler). So the environment — as the set of tools and
resources used by people to work — plays a key role in
performing tasks efficiently. Besides tools, the environment
hosts resources that represent the co-constructed results of
people work (e.g., the cake).

Following this metaphor, we see a program — or software
system — as a collection of autonomous agents working
and cooperating in a shared environment Figure 2: on the
one side, agents (like humans) are used to represent and
modularize those parts of the system that need some level
of autonomy and pro-activity—i.e., those parts in charge
to autonomously accomplish the tasks in which the overall
labor is split; on the other side, the environment is used to
represent and modularize the non-autonomous functionali-
ties that can be dynamically composed, adapted and used
(by the agents) to perform the tasks.

A main feature of this approach is that it promotes a
decentralized mindset in programming, as also considered by
Resnick in [24]. Such a mindset has two main cornerstones.

The first one is the decentralization and encapsulation
of control: there is not a unique locus of control in the
system, which is instead decentralized into agents. It is worth
remarking that here we are assuming a logical point of view
over decentralization—not strictly related to, for instance,
physical threads or processes. The agent abstraction extends
the basic encapsulation of state and behavior featured by
objects by including also encapsulation of control, which
is fundamental for defining and realising agent autonomous
behaviour.

The second cornerstone is the interaction dimension which
includes coordination and cooperation. There are two ba-
sic orthogonal ways of interacting: direct communication
among agents based on high-level asynchronous message
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passing and environment-mediated interaction (discussed in
Subsection III-D) exploiting the functionalities provided by
environment resources.

B. Structuring Active Behaviors: Tasks and Plans

Decentralization and encapsulation of control, as well
as direct communication based on message passing, are
main properties also of actors, as defined in [6]. The actor
model, however, does not provide further concepts useful to
structure the autonomous behavior, besides a simple notion
of behavior. This is an issue as soon as we consider the
development of large or simply not naive active entities.
To this end, the agent abstraction extends the actor one
introducing further high-level notions that can be effectively
exploited to organize agent autonomous behavior, namely
tasks and plans.

The notion of task is introduced to specify a unit of work
that has to be executed—the objective of agents’ activities.
So, an agent acts in order to perform a task, which can be
possibly assigned dynamically. The same agent can be able
to accomplish one or more types of task, and the #ype of the
agent can be strictly related to the set of task types that it
is able to perform.

Conceptually, an agent is hence a computing machine
that, given the description of a task to execute, it repeatedly
chooses and executes actions so as to accomplish that task.
If the task concept is used as a way to define what has to
be executed, the set of actions to be chosen and performed
represents how to execute such tasks. The first-class concept
used to represent one such set is the plan. So the agent
programmer defines the behavior of an agent by writing
down the plans that the agent can dynamically combine and
exploit to perform tasks. For the same task, there could be
multiple plans, related to different contextual conditions that
can occur at runtime.

On the one side, tasks and plans can be used to define the
contract explicitly stating what jobs the agent is able to do;
on the other side, they are used (by the agent programmer)
to structure and modularize the description of how the agent
is able to do such jobs, organizing plans in sub-plans.

This approach makes it possible to frame a smooth path
in defining different levels of abstraction in specifying plans
and, correspondingly, different levels of autonomy of agents.
At the base level, a plan can be a detailed description of the
sequence of actions to execute. In this case, task execution is
fully pre-defined, since the programmer is charged with the
entire task specification; the level of autonomy of the agent
is limited in selecting the plan among the possible ones
specified by the programmer. In a slightly more complex
case, a plan could be the description of a set of possible
actions to perform, and the agent uses some criteria at
runtime to select which one to execute. This enhances the
level of autonomy of the agent with respect to what strictly
specified by the programmer. An even stronger step towards
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Figure 3.  Conceptual representation of an agent architecture, with in
evidence the stages of the execution cycle.

autonomy is given by the case in which a plan is just a
partial description of the possible actions to execute, and
the agent dynamically infers the missing ones by exploiting
information about the ongoing tasks, and about the current
knowledge of its state and the state of the environment.

C. Integrating Active and Reactive Behaviours: The Agent
Execution Cycle

More and more the development of applications calls for
flexibly integrating active and reactive computational behav-
iors, an issue which is strongly related to the problem of
integrating thread-based and event-based architectures [14].
Active behaviors are typically mapped on OS threads, and
the asynchronous suspension/stopping/control of thread ex-
ecution in reaction to an event is an issue in high-level
languages. So, for instance, in order to make a thread of
control aware of the occurrence of some event — to be
suspended or stopped — it is typically necessary to “pollute”
its block of statements with multiple tests spread around.

In the case of agents, this aspect is tackled quite effec-
tively by the control architecture that governs their execu-
tion, which can be considered both event-driven and task-
driven. The execution is defined by a control loop composed
by a possibly non-terminating sequence of execution cycles.
Conceptually, an execution cycle is composed by three
different stages (see Figure 3):

o sense stage — in this stage the internal state of the agent
is updated with the events collected in the agent event
queue. So this is the stage in which inputs generated
by the environment during the previous execution cycle
are fetched.

e plan stage — in this stage the next action to execute
is chosen, based on the current state of the agent, the
agent plans and agent ongoing tasks; additionally, agent
state is also updated to reflect such a choice.
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o act stage — in this stage the actions selected in the plan
stage are executed.

The agent machine continuously executes these three stages,
performing one execution cycle at each logical clock tick.
Conceptually, the agent control flow is never blocked—
actually it can be in idle state if, for instance, the executed
plan states that no action has to be executed until a specific
event is fetched in the sense stage. This architecture easily
allows, for instance, for suspending a plan in execution and
execute another plan to handle an event suddenly detected
in the sense stage.

While in principle this makes an agent machine less
efficient than machines without such loops, this architec-
ture allows to have a specific point to balance efficiency
and reactivity thanks to the opportunity to define proper
atomic actions. Besides, in practice, by carefully design the
execution cycle architecture, it is possible to minimize the
overheads — for instance by avoiding to cycle and consuming
CPU time if there aren’t actions to be executed or new events
to be processed — and eventually completely avoid overheads
when needed —for instance, by defining the notion of atomic
(not interruptible) plan, whose execution would be as fast
as normal procedures or methods in traditional imperative
languages.

D. “Something is Not an Agent”: the Role of the Environ-
ment Abstraction

Often programming paradigms strive to provide a single
abstraction to model every component of a system. This
happens, for instance, in the case of actor-based approaches.
In Erlang [7] for instance, which is actor-based, every macro-
component of a concurrent system is a process, which is the
actor counterpart. This has the merit of providing uniformity
and simplicity, indeed. At the same time, the perspective
in which everything is an active, autonomous entity is not
always effective, at least from an abstraction point of view.
For instance, it is not really natural to model as active enti-
ties either a shared bounded-buffer in producers/consumers
architectures or a simple shared counter in a concurrent
programs. In traditional thread-based systems such entities
are designed as monitors, which are passive.

Switching to an agent abstraction layer, there is an ap-
parent uniformity break due to the notion of environment,
which is a first-class concept defining the context of agent
tasks, shared among multiple agents.

From a designer and programmer point of view, the
environment can be suitably framed as such non-autonomous
part of the system which be used to encapsulate and mod-
ularize those functionalities and services that are eventually
shared and exploited by the autonomous agents at runtime.
More specifically, by recalling the human metaphor, the
environment can be framed as the set of resources and tools
that are possibly shared and used by agents to execute their
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tasks. In that perspective, a bounded-buffer, a shared data-
base etc. can be naturally designed and programmed as a
shared resource populating the environment where — for
instance — producers/consumers agents work.

E. Using and Observing the Environment

To be usable by agents, an environment resource provides
a set of operations — that constitutes its usage interface —
encapsulating some piece of functionality. Such operations
are the basic actions that an agent can execute on instances
of that resource type. So the set of actions that an agent
can execute inside an environment depends on the set
of resources that are available in that environment. Since
resources can be created and disposed at runtime by agents,
the agent action repertoire can change dynamically.

The execution of an operation (action) performed by an
agent on a resource may complete with a success or a
failure—so an explicit success/failure semantics is defined.
Actions (operations) are performed by agents in the act stage
of the execution cycle seen previously. Then, the completion
of an action occurs asynchronously, and is perceived by the
agent as a basic type of event, fetched in the sense stage.
This can occur in the next execution cycle or in a future
execution cycle, since the execution of an operation can be
long-term. So, an important remark here is that the execution
cycle of an agent never blocks, even in the case of executing
actions that — to be completed — need the execution of further
actions of other agents. This means that an agent, even if
“waiting” for the completion of an action, can react to events
perceived from the environment and execute a proper action,
following what is specified in the plan.

Finally, aside to actions, observable properties and ob-
servable events represent the other side of agent-environment
interaction, that is the way in which an agent gets input
information from the environment. In particular, observable
properties represent the observable state that an environment
resource may expose, as part of its functionalities. The value
of an observable property can be changed by the execution
of operations of the same resource. A simple example is
a counter, providing an inc operation (action) and an ob-
servable state given by an observable property called count,
holding the current count value. By observing a resource,
an agent automatically receives the updated value of its
observable properties as percepts at each execution cycle,
in the sense stage. Observable events represent possible
signals generated by operation execution, used for making
observable an information not regarding the resource state,
but regarding a dynamic condition of the resource. Taking as
a metaphor a coffee machine as environment resource, the
display is an observable property, the beep emitted when
the coffee is ready is an observable event. Choosing what to
model as a property or as an event is a matter of environment
design.
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Figure 4. A toy workspace, with producer and consumer agents interacting
by means of an app_board artifact.

IV. EVALUATING THE IDEA WITH EXISTING AGENT
TECHNOLOGIES: THE JACA PLATFORM

The aim of this section is to show more in practice some
of the concepts described in the previous section. To this
end, we will use existing agent technologies, in particu-
lar a platform called JaCa, which actually integrates two
independent technologies: the Jason agent programming
language [10] — for programming agents — and the CArtAgO
framework [25], for programming the environment.

A. JaCa Overview

Following the basic idea discussed in Section III - a
JaCa program is conceived as a dynamic set of autonomous
agents working inside a shared environment, that they use,
observe, adapt according to their tasks. The environment is
composed by a dynamic set of environment resources which
in CArtAgO are called “artifacts”—the term was inspired by
Activity Theory and Distributed Cognition, where it is used
to refer to any object that has been specifically designed to
provide some functionality and which is used by humans to
achieve their objective. Agents — by means of proper actions
— can dynamically create and dispose artifacts, beside using
them.

In the following, we introduce only those basic elements
of agent and environment programming which are necessary
to show the features discussed at the conceptual level in
the previous section. To this end, we use a toy example
which is about the implementation of a producers-consumers
architecture, where a set of producer agents continuously and
concurrently produce data items which must be consumed
by consumer agents (see Figure 4). Further requirements —
which make the example more interesting for our purposes
— are that (i) the number of items to be produced is fixed,
but the time for producing each item (by the different
producers) is not known a priori; (ii) the overall process
can be interrupted by the user anytime.
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The task of producing items is divided upon multiple
producer agents, acting concurrently—the same holds for
consumer agents. To interact and coordinate the work, agents
share and use an environment resource, the app_board
artifact, which functions both as a buffer to collect items
inserted by producers and to be removed by consumers
and as a tool to control the overall process by the human
user. The resource provides on the one side operations
(actions for the agent) to insert (put), remove (get) items
and to stop the overall activities (stop); on the other
side, observable properties n_items_to_produce and
stopped, keeping track of, respectively, the number of
items still to be produced (which starts from an initial value
and is decremented by the resource each time a new item
is inserted) and the stop flag (initially false and set to true
when the stop operation is executed).

In the following, first we give some glances about agent
programming in Jason by discussing the implementation of
a producer agent (see Table I), which must exhibit a pro-
active behavior — performing cooperatively the production
of items, up to the specified number — but also a reactive
behavior: if the user stops the process, the agents must
interrupt their activities. Then we briefly consider the im-
plementation of the app_board artifact, to show in practice
some elements of environment programming.

B. Programming Agents in Jason

Being inspired by the BDI (Beliefs-Desires-Intentions)
architecture [23], the Jason language constructs that pro-
grammers can use can be separated into three main cat-
egories: beliefs, goals and plans. An agent program is
defined by an initial set of beliefs, representing the agent’s
initial knowledge about the world, a set of goals, which
corresponds to tasks as defined in Section III, and a set of
plans that the agent can dynamically compose, instantiate
and execute to achieve such goals.

In JaCa the beliefs of an agent can represent two types
of knowledge:

« the agent internal state — an example is given by the
n_items_produced (N) belief, which is used by a
producer agent to keep track of the number of items
produced so far;

o the observable state of the resources of the en-
vironment which the agent is observing - in
the example, every producer agent observes the
app_board artifact, which has two observable proper-
ties: n_items_to_produce, representing the num-
ber of items still to be produced, and stopped, a flag
which is set if/when the process needs to be stopped.

An agent program may explicitly define the agent’s initial
belief-base and the initial task or set of tasks that the
agent has to perform, as soon as it is created. In Jason
tasks are called goal and are represented by Prolog atomic
formulae prefixed by an exclamation mark. Referring to the
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00 n_items_produced(0) .
01 !produce.

03 +!produce

04 <- !setup;

05 !'produce_items.

06

07 +!setup

08 <- focus ("app_board") .

09

10 +!produce_items : not n_items_to_produce (0)
11 <- !produce_item(Item);

12 put (Item);

13 -n_items_produced(N) ;

14 +n_items_produced (N+1) ;

15 !'produce_items.

16

17 +!produce_items : n_items_to_produce (0)
18 <- !finalize.

19

20 +!produce_item(Item) <- ...

21

22 +!finalize : n_items_produced(N)

23 <- println("completed - items produced: ",N).
24

25 ~—!produce_items

26 <- !finalize.

27

28 +!stopped(true)
29 <- .drop_all_intentions;
30 !finalize.

Table 1
A PRODUCER AGENT IN JASON.

example, the producer agent has an initial task to do, which
is represented by the ! produce goal. Actually, tasks can be
assigned also at runtime, by sending to an agent an achieve-
goal messages.

Then, the main body of an agent program is given by
the set of plans, which defines the pro-active and reactive
behavior of the agent. The actions contained in a plan body
can be split in two categories:

o internal actions, that are actions affecting only the
internal state of the agent. Examples are actions to
create sub-tasks (sub-goals) to be achieved (!g), to
manage task execution — for instance, to suspend or
abort the execution of a task — to update agent inner
state — such as adding a new belief (+b), removing
beliefs (-b);

o external actions, that are actions provided by the en-
vironment, to interact with artifacts. External actions
include also communicative actions, which make it
possible to communicate with other agents by means
of message passing based on speech acts.

Referring to the example, the producer agent has a
main plan (line 03-05), which is triggered by an event
+!produce representing a new goal !produce to
achieve. Since the agent has an initial ! produce goal, then
this plan will be triggered as soon as the agent is booted.
By means of an internal action ! g, the main plan generates
two further subgoals to be achieved sequentially: !setup
and !produce_items.

The plan to handle !setup goal (line 07-08) exploits
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a predefined action called focus to start observing the
app_board artifact. Then, two plans are specified for han-
dling the goal !produce_items. One (line 10-15) is
executed if there are still items to produce—i.e., if the agent
has not the belief n_items_to_produce (0). Note that
the value of this belief depends on the current state of
the app_board resource. This plan first produces a new
item (subtask !produce_item), then inserts the item
in the buffer by means of a put action, whose effect
is to execute the put operation on the resource; if this
action succeeds, the plan goes on by updating the belief
n_items_produced incrementing the number of items
produced and generates a new subgoal !produce_items
to repeat the task. Actually, when executing an external
action — such as put — it is possible to explicitly de-
note the artifact providing that action, in order to avoid
ambiguities, by means of Jason annotations: put (Item)
[artifact_name ("app_board")];.

The other plan (line 17-18) is executed if there are no
more items to produce: in this case the ! finalize task is
executed, which prints on the console the number of items
produced by the agent.

The reactive behavior of an agent can be realized
by plans triggered by a belief addition/change/removal —
corresponding to changes in the state of the environment
— and by the failure of a plan in achieving some goal. In the
example, the producer agent has a plan (line 28-30) which
is executed when the belief st opped about the observable
property of the artifact is updated to t rue. This means that
the user wants to interrupt and stop the production. So the
plan stops and drops all the other possible plans in execution
— using an internal action .drop_all_intention —and
the ! finalize subtask is executed.

Finally, the producer agent has also a plan (line 25-26) to
react to the failure of the !produce_items task, which
is expressed by the event —!produce_items. This can
happen when the agent, believing that there are still items
to be produced, starts the plan to produce a new item and
tries to insert it in the buffer. However, the put action fails
because other agents produced in the meanwhile the missing
items.

The semantics of the execution of plans reacting to
events is defined by Jason reasoning cycle [10], which is a
more articulated version of the execution cycle described in
Section IIL. In particular, the plan stage in this case includes
multiple steps, to select — given an event — a plan to be
executed. So an agent can have multiple plans in execution
but only one action at a time is selected (in the plan stage)
and executed (in the act stage). A detailed description of the
cycle — as well as of the Jason syntax — can be found in
[10].
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00 public class AppBoard extends Artifact {

01

02 private LinkedList<Object> items;

03 private int bufSize;

04

05 void init (int bufSize, int nItemsToProd) {

06 items = new LinkedList<Object>();

07 this.bufSize = bufSize;

08 defineObsProperty ("n_item_to_produce",nItemsToProd);

09 defineObsProperty ("stopped", false);

10 }

11

12 @OPERATION void put (Object obj) {

13 await ("bufferNotFull");

14 ArtifactObsProperty stopped =
getObsProperty ("stopped") ;

15 if (!stopped.booleanValue()) {

16 items.add (obj);

17 ArtifactObsProperty p =

18 getObsProperty ("n_item_to_produce");

19 p.updatevValue (p.intValue () - 1);

20 } else {

21 failed("no_more_items_to_produce");

22 }

23 }

24

25 @GUARD boolean bufferNotFull () {

26 return items.size () < nmax;

27 }

28

29 @OPERATION void get (OpFeedbackParam<Object> result) {

30 await ("itemAvailable");

31 Object item = items.removeFirst();

32 result.set (item);

33 }

35 QGUARD boolean itemAvailable () {
36 return items.size () > 0;
37 }

39 @OPERATION void stop () {

40 updateObsProperty ("stopped", true) ;
41 }

42 3

Table II
THE IMPLEMENTATION OF THE APP_BOARD IN CARTAGO.

C. Programming the Environment in CAr tAgO

The implementation of the app_board artifact is shown
in Table II. Being CArtAgO a framework on top of the
Java platform, artifact-based environments can be imple-
mented using a Java-based API, exploiting the annotation
framework. Here we don’t go too deeply into the details of
such API, we just introduce the main concepts that have
been mentioned in Section III; for more information, the
interested reader can refer to CArtAgO papers [25] and the
documents that are part of CArtAgO distribution [2].

In CArtAgO, an artifact type can be defined by extending
a base Artifact class. Artifacts are characterized by a
usage interface containing a set of operations that agents
can execute to get some functionalities. In the example, the
artifact app_board provides three operations: put, get and
stop. The put operation inserts a new element in the buffer
— decrementing the number of items to be produced — if
the stopped flag has not been set, otherwise the operation
(action) fails. The get operation removes an item from the
buffer, returning it as a feedback of the action. The stop
operation sets the st opped observable property to true.
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Operations are implemented by methods annotated with
@OPERATION. The init method is used as constructor
of the artifact, getting the initial parameters and setting
up the initial artifact state. Inside an operation, guards
can be specified (await primitive), which suspend the
execution of the operation until the specified condition
over the artifact state (represented by a boolean method
annotated with @GUARD) holds. In the example, the put
operation can be completed only when the buffer is not full
(bufferNotFull guard) and the get one when the buffer
is not empty (bufferNotEmpty guard). The execution of
operations inside an artifact is transactional: among the other
things, this implies that at runtime multiple operations can
be invoked concurrently on an artifact but only one operation
can be in execution at a time—the other ones are suspended.
On the agent side, when executing an external action, the
agent plan is suspended until the corresponding artifact
operation has completed (i.e., the action completed). Then,
the action succeeds or fails when (if) the corresponding
operation has completed with success or failure. It is worth
noting that, in the meanwhile, the agent execution cycle can
go on, making it possible for the agent to get percepts and
select and perform other actions.

Besides operations, artifacts typically have also a set
of observable properties (n_items_to_produce and
stopped in the example), as data items that can be
perceived by agents as environment state variables. Instance
fields of the class — instead — are used to implement the
non observable state of the artifact—for instance, the list
of items items in the example. Observable properties
can be defined, typically during artifact initialization, by
means of the defineObsProperty primitive, specifying
the property name and initial value (line 08-09). Inside
operations, observable properties value can be inspected and
changed dynamically by means of two basic primitives:
getObsProperty to retrieve the current value of an
observable property (see, for instance, line 14 and 18) and
updateObsProperty to update the value (line 19).

Besides observable properties, an artifact can make it
observable also events occurring when executing operations.
This can be done by using a signal primitive, specifying
the type of the event and a list of actual parameters.
For instance, signal ("my_event", "test",0) gen-
erates an observable event my_event ("test", 0). In the
app_board example, to notify the stop we could generate
a stopped signal in the stop operation, instead of using
an observable property. Observable events are perceived by
all agents observing the artifact—which could react to them
as in the case of observable property change.

D. Using JaCa In Real-World Application Contexts

In order to stress the benefits but also the weaknesses of
the approach, we are applying this programming model and
technology in different application domains.
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One is the development of distributed applications based
on Service-Oriented Architectures and Web Services in
particular. In that context, agents and multi-agent systems
are deserving increasing attention both from the applicative
viewpoint, as an effective technique to build complex ser-
vices and applications dynamically composing and orches-
trating services [19], and from the foundational viewpoint,
as a reference meta-model for the service-based approach,
as suggested by the W3C document about Web Services
Architecture [3]. To this end, programming models and
platforms are needed that make it possible to build SOA/WS
applications as agent-oriented systems in a systematic way,
exploiting the existing agent languages and platforms to
their best, while enabling their co-existence and fruitful co-
operation. In that context, we devised a library of artifacts
on top of the JaCa platform, enabling the development of
SOA/WS applications in terms of workspaces populated by
agents and artifacts. Agents encapsulate the responsibility of
the execution and control of the business activities and tasks
that characterize the SOA-specific scenario, while artifacts
encapsulate the business resources and tools needed by
agents to operate in the application domain. In particular,
artifacts in this case are exploited to model and engineer
those parts in the agent world that encapsulate Web Services
aspects and functionalities — eventually wrapping existing
non-agent-oriented code — to be used, but also changed and
adapted by agents at runtime, by need. First results of this
work are available here [21].

We are also investigating the approach for the engineering
of advanced mobile computing applications, in particular
for pervasive and context-aware computing scenarios. To
this end, JaCa has been ported on the Android plat-
form [4], enabling the development of Android applications
using agent-oriented programming. The project is called
JaCa-Android [5]. Actually, besides porting the technology,
JaCa-Android includes a library of artifacts that allows
agents running into an Android application to seamlessly
access and exploit all the features provided by the smart-
phone and by the Android SDK. Just to have a taste
of the approach, Table III shows a snippet of an agent
playing the role of smart user assistant, with the task of
managing the notifications related to the reception of SMS
messages: as soon as an SMS is received, a notification
must be shown to the user. A SMSArtifact artifact is
used to manage SMS messages, in particular this artifact
generates an observable event sms_received each time
a new SMS is received. A ViewerArtifact artifact is
used to show SMS messages on the screen and to keep
track — by means of the state observable property — of
the current status of the viewer, that is if it is currently
visualized by the user on the smartphone screen or not.
Finally, a StatusBarArtifact artifact is used instead
to show messages on the Android status bar, providing a
showNotification operation to this end. Depending on
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00 !init.
01
02 +!init
03 <- focus("SMSArtifact");
04 focus ("SMSArtifact");
05 focus ("ViewerArtifact") .
05
07 +sms_received(Source, Message)
08 : not (state("running") & session(Source)) <-
09 showNotification ("jaca.android:drawable/notification™",
10 Source, Message, "jaca.android.sms.SmsViewer",
11 +session (Source, Id).
12
13 +sms_received (Source, Message)
14 : state("running") & session(Source)
15 <- append(Source, Message).
Table III
SOURCE CODE OF THE JASON AGENT THAT MANAGES THE SMS
NOTIFICATIONS.

what the user is actually doing and visualizing, the agent
shows the notification in different ways. The behavior of
the agent, once completed the initialization phase (lines
00-05), is governed by two reactive plans. The first one
(lines 7-11) is applicable when a new message arrives
and the ViewerArtifact is not currently visualized on
the smartphone’s screen. In this case, the agent performs
a showNotification action to notify the user of the
arrival of a new message using the status bar (Figure 5, (a)).
The second plan instead (lines 13-15) is applicable when the
ViewerArtifact is currently displayed on screen and
therefore the agent could notify the SMS arrival by simply
appending the SMS to the received message list showed by
the viewer (Figure 5, (b)): this is done by executing the
append operation provided by ViewerArtifact.

From the example, it should be clear that for a devel-
oper able to program using the JaCa programming model,
moving from one application context to another is a quite
straightforward experience. Indeed, she can continue to
engineer the business logic of the applications by suitably
defining the Jason agent’s behavior, and it only need to
acquire the ability to work with the artifacts that are specific
of the new application context.

E. Current Limitations

On the one side, JaCa allows to exploit in practice some
of the benefits of agent-orientation for computer program-
ming described in Section III; on the other side, it suffers of
some limitations that we aim at tackling in our future work.
Here we consider three main ones.

First, Jason lacks a strong notion of type, both for
defining the abstract data types used in the programs and
for typing agents themselves. This makes agent programs
error-prone — some errors are caught only at runtime — and
features like inheritance, sub-classing, polymorphism cannot
be exploited when developing agents. This is a quite strong
limitation due to the fact that such features are the key for
providing reusability of the code produced by the developers
and therefore are quite essential for: (i) the engineering of
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Id);

I
5554; Test message BAl @O 10:36 AM

‘JaCa-Android ViewerArtficat’

Dialer

Cantacts g Browsan 5554: Test message
Sent: 10:35AM
5554: Second test message

Sent: 10:36AM

Figure 5. The two different kinds of SMS notifications: (a) notification
performed using the standard Android status bar, and (b) notification
performed using the ViewerArtifact.

real-world applications and (i) for the diffusion of the AOP
as a mainstream paradigm.

Then, a more seamless integration between the
model/platform with the Object-Oriented and Functional
programming layer is needed. Currently, for using
objects/functions or for integrating any kind of software
library (e.g., a library for XML-manipulation), we need
to use some sort of wrap mechanism for making them
available when programming agents. Now we can realize
this sort of wrapping in two ways: (i) extending the set of
Jason internal actions for directly provide to the agents
the required features or (ii) encapsulating the required
object-oriented/functional-oriented code inside proper
artifacts operations.

Finally, Jason plan construct provides a quite weak
support for modularizing agent programs. Currently the
overall behavior of an agent is defined by a flat list of plans.
The absence of a hierarchical structure for plans, explicitly
relating plans with sub-plans, could make the understanding
of complex agent behavior quite problematic.

V. CONCLUSION

In this paper, we discussed agent-oriented programming as
an evolution of Object-Oriented Programming representing
the essential nature of decentralized systems where tasks
are in charge of autonomous computational entities, which
interact and cooperate within a shared environment. We
showed in practice some of the main concepts underlying
the approach by exploiting the JaCa platform, which is
based on existing agent-oriented technologies—the Jason
language to program agents and CArtAgO framework to
program the environment. However, we believe that, in order
to stress and investigate the full value of the agent-oriented
approach, a new generation of agent-oriented programming
languages is needed, tackling main aspects that have not
been considered so far in existing agent technologies —
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being not related to Al but to the principles of software
development. This is the core of our current and future work,
in which we aim at both improving JaCa and eventually
exploring the definition of new full-fledged agent-oriented
programming languages — so independent from existing
technologies — specifically designed since their conception
for agent-oriented computing.
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