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Abstract—We apply the RMT-PCA, recently developed PCA in 

order to grasp temporal trends in a stock market, on daily-

close stock prices of American Stocks in NYSE for 16 years 

from 1994 to 2009 and show the effectiveness and consistency 

of this method by analyzing the whole data of 16 years at once, 

as well as analyzing the cut data in various lengths between 2-8 

years. The extracted trends are consistent to the actual history 

of the markets. We also discuss on the problem of setting the 

effective border between the noise and signals considering the 

artificial correlation created in the process of taking log-return 
in analyzing the price time series. 

Keywords - RMT-PCA; Correlation; Eigenvalues; Principal 

Component; Stock Market; Trend. 

I.  INTRODUCTION 

Recently, there have been wide interests on the use of RMT 

(Random Matrix Theory) in many fields of sciences [1-10]. 

In particular, the use of asymptotic formula of the 

eigenvalue spectrum of cross correlation matrix between 

independent time series of random numbers [11,12], as a 

reference to the corresponding spectrum derived from a set 

of different stock price times series in order to extract 

principal components effectively in a simple way [13-16], 

has attracted much attention in the community of econo-
physics [17, 18]. The main advantage of this method as a 

principal component analysis is its simplicity. While the 

standard PCA (Principal Component Analysis) tells us to 

find the largest PC (Principal Component) and subtract this 

component from the entire data, and apply the same 

procedure recursively on the remaining data one by one, 

RMT-PCA (RMT-based principal component analysis) can 

process all the "non-random" components at once by 

subtracting the RMT formula from the eigenvalue spectrum 

of cross correlation matrix. Plerau, et al. [13] was one of the 

first attempts to apply this technique on stock price time 

series. By using the daily close stock prices of 
NYSE/S&P500, they successfully extracted eminent stocks 

out of massive data of price time series. 

However,  this method suffers from two difficulties. One 

is the restriction on the dimensionality, N, and the length of 

the data, T, such that N < T. Moreover, the entire set of N 

times T data are needed for analysis, since the basic quantity 

of analysis is the cross correlation matrix whose elements 

are the equal-time inner-products between a pair of stocks. 

Another difficulty is the restriction of the parameter size. 

Since the RMT formula is derived in the limit of N and T 

being infinity, we need a special care to keep the range of 

the parameters in which the RMT formula is valid. 

By using machine-generated random numbers, such as 

rand(), etc., we have tested the validity of the RMT formula 

in various range of N and T, and have clarified that N=300, 

or larger, is the safe range unless T is not too close to N, and 
the validity decreases for smaller N, and the borderline is 

around 50<N<100. Since the size of stocks dealt in the 

major markets exceeds 400, the applicability of RMT 

formula is justified. 

Due to the restriction of the methodology to prepare the 

length of the time series, T, larger than the dimension of the 

correlation matrix, N, all the data extending to several years 

had to be combined into a single correlation matrix in  [3-6], 

in which daily-close prices were used. Thus it was difficult 

to pin-point a short term trend or to compare trends of 

different time periods. 
  By employing intra-day (tick-wise) data containing all 

the transactions made every day, we can apply the 

methodology to the data of every year and compare the 

results of different years. We carried out the same line of 

study used in  [13,14] by setting up the algorithm of RMT-

PCA to be applied on intra-day equal-time price correlations. 

Based on this approach, we have shown that this handy 

methodology works well to extract the trend change of 4 

year interval, from 1994 to 2002 [19,9]. 

  In this paper, we apply the same algorithm to a wider 

set of stock price data including daily-close prices of 

American stocks in the database of S&P500 for 16 years 
from 1994 to 2009. We prepare the data of various lengths 

by cutting the 16 years into 2, 4 and 8 pieces and check the 

consistency and effectiveness of the proposed methodology. 

 

II. EIGENVALUE PROBLEM OF CORRELATION MATRIX 

FOR STOCK PRICES 

We shall briefly review the outline of the methodology used 

in RMT-PCA. The first step is to prepare the price time 

series into an N×(T+1) matrix named S, whose i-th row 

contains the price time series of length T+1. This matrix S is 

converted into a matrix of log-return as follows. 
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We normalize each time series in order to have the zero 

mean the unit variances as follows. 
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The correlation Ci,j between two stocks, i and j, can be 

written as the inner product of the two log-profit time series, 

)t(x i  
and )t(x j ,  
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Here, the suffix i indicates the time series on the i-th 

member of the total N stocks. 

 The correlations defined in Eq. (3) makes a symmetric 

(Ci,j = Cj,i), square matrix whose diagonal elements are all 

equal to one (Ci,i 1= ) and off-diagonal
 

elements are in 

general smaller than one (|Ci,j| 1≤ ). As is well known, a real 

symmetric matrix C can be diagonalized by a similarity 

transformation V-1CV by an orthogonal matrix V satisfying 

Vt=V-1, each column of which consists of the eigenvectors 

of C. Such that  

 

kkk vvC    (k=1,…,N)              (4) 

 

where the coefficient λk is the k-th eigen-value and kv  is 

the k-th eigenvector. This can be pursued by means of well-

known Jacobi's rotation algorithm. 

    A criterion proposed in [3-6] and examined recently 

in many real stock data is to compare the result to the 

formula derived in the random matrix theory [1]. According 

to RMT, the eigenvalue distribution spectrum of matrix C 

made of random time series is given by the following 

formula [2],  

 

 

                                                                                       (5) 

 

in the limit of                                                           where T 

is the length of the time series and N is the total number of 

independent time series (i.e. the number of stocks 

considered). This means that the eigenvalues of correlation 

matrix C between N normalized time series of length T 

distribute in the following range. 

 
                        (6) 

 

Following the formula Eq. (5), between the upper bound 

and the lower bound given by the following formula. 

 

                                               (7) 

 

The proposed criterion in our RMT_PCM is to use the 

components whose eigenvalues, or the variance, are larger 

than the upper bound          given by RMT. 

 

                                  (8) 

 

III. APPLICATION OF RMT-PCA ON STOCK PRICES 

We prepare N normalized stock returns of the same length T, 

which makes a rectangular matrix of Si,k where i=1,…,N 

represents the stock symbol and k=1,…,T represents the 
traded time of the stocks. The i-th row of this price matrix 

corresponds to the price time series of the i-th stock symbol, 

and the k-th column corresponds to the prices of N stocks at 

the time k. We summarize the algorithm that we used for 

extracting significant principal components.  

However, a detailed analysis of the eigenvector 

components tells us that the random components do not 

necessarily reside below the upper limit of RMT, λ+, but 

percolate beyond the RMT due to extra randomness added 

in the process of computing the log-return in Eq. (1). Based 

on extensive numerical analysis, this percolation always 

occurs and the maximum front of the continuum spectrum 
extends to about 20% larger than the upper limit λ+ of RMT. 

This fact suggests us that the upper limit λ+ is not 

appropriate to separate the signal from the noise due to the 

percolation of the random spectrum over λ+  but an effective 

upper bound λeff =1.2 λ+ about 20% larger than the upper 

limit λ+ of RMT. Then λ+ in the step (4) of the RMT-PCA 

algorithm in Fig. 2 is to be replaced by λeff . 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 1.  The algorithm to extract the significant principal components in 

RMT-PCA. 
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Algorithm of RMT-PCM : 
 

(1) Select N stock symbols for which the traded price exist for 
all t=1,…,T, corresponding to all the working days of that  
term. 

(2) Compute log-return r(t) for the selected N stocks. Normalize 
the time series to have mean=0, variance=0, for each stock  

symbol, i=1,…, N. 
(3) Compute the cross correlation matrix C and obtain 

eigenvalues and eigenvectors. 

(4) Select eigenvalues larger than +λ , the upper limit of the 

RMT spectrum, and  22/1
± )Q±1(=λ , 

 )λ-λ)(λ-λ(
πλ2

Q
=)λ(P -+RMT

  

and identify those eigenstates as the principal components. 
(5) Sort the eigenvector components corresponding to the 

eigenvalues identified in the step (4) above, in the 
descending order and identify the business sectors of the 
largest 20 components. If those 20 components belong to 

any particular sector, that is the leading sector in that term. 
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IV. TRENDS EXTRACTED AS THE EMINENT COMPONENTS 

OF EIGENVECTORS 

We applied the algorithm stated in Section 3 on the daily-

close prices of American stocks listed in S&P500, for 16 

years from 1994 to 2009. 

At first, the entire data of this period are used for 

analysis. Then the entire data is split to 2 parts, 1994-2001 

and 2002-2009. Those are further split to 4 parts, 1994-1997, 

1998-2001, 2003-2005, 2006-2009. Finally, they are split to 

8 parts of 2years data, 1994-1995, 1996-1997, 1998-1999, 

2000-2001, 2002-2003, 2004-2005, 2006-2007, 2008-2009. 

The results are listed in Table 1. 

 
TABLE I. RESULTS FOR 16, 8, 4 YEAR DATA (EIGENVALUES 

LARGER THAN 2λ+ ARE HIGHLIGHTED IN BOLD=ITALIC) 

 94-09 94-01 02-09 94-97 98-01 02-05 06-09 

N 373 373 464 373 419 464 468 

T 3961 2015 1946 1010 1002 1006 936 

Q 10.6 5.40 4.19 2.71 2.17 2.17 2 

λ+ 1.7 2.1 2.2 2.6 2.8 2.8 2.9 

λ1 74 41 150 37.2 53 116 200 

λ2 11 13 15 8.7 19 14 18 

λ3 8.8 8.8 12  5.8 13 13 14 

λ4 7.7 6.9 11 4.6 9.2 9.1 8.9 

λ5 5.1 4.8 6.5 3.3 6.6 6.3 5.3 

λ6 4.3 4.2  5.1 3.2 5.8 5.3 5.0 

λ7 3.3 3.5  3.8  2.8 4.7 4.8 4.4 

λ8 2.9 3.1 3.4  2.6 4.2 4.6 3.5 

λ9 2.5 2.7  3.3  2.4 3.8 4.0 3.2 

λ10 2.4 2.2 2.8  2.4 3 3.3 2.7 

λ11 2.0 2.2 2.4  2.3 2.8 2.9 2.7 

λ12 1.9 2.1  2.3  2.3 2.7 2.9 2.5 

 

According to the step (4) in the RMT-PCA algorithm in 

Fig. 1 and , those 14 eigenstates are the principal 

components, based on . We find the business sectors of the 

companies of 20 largest components in the corresponding 

eigenvectors. If those components are concentrated in any 

particular business sector, we identify that sector as the 
trend makers during that time period. It can be proved 

mathematically that the eigenvector of the largest 

eigenvalue is consist of components of the same sign, and 

the corresponding sectors are not concentrated to a 

particular sector but distributed to any sectors, because the 

largest principal component show the global feature of the 

market thus corresponds to its representative index, such as 

S&P500, in our case of dealing with American stocks. The 

eigenvectors of the other eigenvalues have components of 

both signs. It has been known that the positive components 

and the negative components belong to the two separate 
business sectors, if they are strongly concentrated to 

particular sectors. Summing up those knowledge we have, 

the 2nd principal component reflects the trend of the time 

period of the data if any concentration of the sectors are 

observed. 

   The sectors are classified according to GICS (Global 

Industry Classification Standard) coding system, that 

classifies the business sectors of stocks into 10 categories. 

We denote them by a single capital letter, A-J as follows.  

 

A: Energy, B: Materials, C: Industrials, D: Service, 
E: Consumer Products, F: Health Care, G: Financials, 

H: Information Technology, I: Telecommunication, 

and J: Utility. 
 

 If we take λeff instead of λ+, as we explained in the last 

paragraph of Section 3, then we have 10 eigenstates 

corresponding to the eigenvalues λ1=74.3,..., λ10 = 2.41, we 

have lesser number of principal components than the above-

stated 14. However, the concentration of business sectors in 

the eigenvector components occurs only for the 4-5 largest 

eigenvalues and quickly becomes blur for smaller 

eigenvalues. Based on this observation, we might increase 

λeff to the range of λeff =2λ+ , 100% larger than the 

theoretical criterion. In any case, the difference is irrelevant 

as long as we take only several principal components.We 

show 8 bars corresponding to  

 

v2(+), v2(-), v3(+), v3(-), v4(+), v4(-), v5(+), v5(-),  

 

where vk(+)/vk(-) indicates the positive-sign part/negative-

sign part of the vector of k-th principal component, by 

partitions corresponding to 10 sectors of A-J, and the 

corresponding eigenvalues and the sign of the components 

below each bar. 

We observe from the graphs in Fig. 4 that the sector H 

(InfoTech) dominates the (+) components of 2v  and the 

sector J (Utility) dominates the  (-) components of 2v . 

  The result of 8 years data, 1994-2001 and 2002-2009 

are shown in Fig. 5, the left figure of which shows the 

dominance of J (Utility) and H (InfoTech) during the term 

1994-2001, and the right figure shows the dominance of A 

(Energy) and G (Financials) during the term 2002-2009. 

This means the active sector has changed from J (Utility) 

and H (InfoTech) to A (Energy) and G (Financials) at the 

turn of the century. 

  The results of 4 year data, 1994-1997, 1998-2001, 

2002-2005, and 2006-2009 are in Fig.6, showing the 

dominance of J (Utility) and H (InfoTech) both in 1994-

1997 and 1998-2001, the dominance of A (Energy) and H 

(InfoTech) in 2002-2005, and A (Energy) and G 

(Financials) dominance in 2006-2009. The corresponding 

result of 2 year data is shown in Fig. 7. No clear structure is 

seen after 2002, except weak dominance of G (Financials) 

and A (Energy). 
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Figure 2.  Trends of 16 years from 1994 to 2009 are shown. The sector H 

(Information Technology) and J (Utility) are the most eminent sectors in 
this period. 

 

 

Figure 3.  Trends of 8 years, 1994-2001 (left) and 2002-2009 (right). In 

1994-2001, the sector J (Utility) and H (Information Technology) dominate, 

but in 2002-2009, A (Energy) and G (Financial) dominate the market. 

 

 

 

 

Figure 4.  Trends of 4 years each are shown. Both in 1994-1997 and 1998-

2001, J (Utility) and H (Information Technology) dominate, while A 

(Energy) and H (Information Technology)dominate in 2002-2005 and A 
(Energy) and G (Financial) dominate in 2006-2009. 
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Figure 5.  Trends of 4 years each are shown. Both in 1994-1997 and 1998-

2001, J (Utility) and H (IT) dominate, while A (Energy) and H (IT) 

dominate in 2002-2005 and A (Energy) and G (Financial) dominate in 

2006-2009. 

V.   CONCLUTION AND DISCUSSION 

Our results have shown that the trend of each time period 

can be successfully depicted by the concentrated business 
sectors in the positive components and the negative 

components of the eigenvector corresponding to the 2nd 

principal components. Although the condition +λ>λ  

dramatically reduces the number of principal components 

compared to the conventional method of PCA. Moreover, 

our method is considerably simple with much shorter in 

process to extract principal components, which is a great 
advantage in the case of analyzing the stock market. 

   The conventional PCA tells us to extract the largest 

principal component and subtract this element from the 

entire data, and apply the same procedure recursively on the 

remaining data one by one. This kind of method requires a 

lot of computational time and is not suitable for analyzing a 

system of the large dimension, such as a set of stocks in the 

market. Another method of PCA uses the eigenvalues of the 

correlation matrix of times series, but tells us to pick up the 

components whose eigenvalues are larger than one, or the 

accumulated sum of eigenvalues exceeds 80 percent of the 
total sum, etc. Neither one is suitable for analyzing the 

stocks in the market, since the number of principal 

components thus obtained usually exceeds 100 for N=400-

500, while the RMT- PCA has derived the number of 

principal components in the range of 5-13 in our lesson in 

Section 4 in this paper. We illustrate this point in Fig. 8. We 

also tabulate the numbers of principal components obtained 

in our analysis applied on 2 years data in Table 1. 
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Figure 6.  The RMT-PCA (left) offers much smaller number of PCs 

compared to the method of 80 percent accumulative eigenvalues (right). 

Some remarks are in order before concluding this paper. 

Firstly, we mention the limitation of finantial data. The 

daily-close price data can be dowloaded on the web site, 

such as Yahoo Finance, etc. with free of charge, thus 

convenient for us to analyze. Moreover, the data are ready 

to use to calculate the equal-time correlation. Althogh some 

stocks are not traded every day, more than 400 stock 

symbols are traded every day in NYSE and TOPIX. 

However, the length of data per year is only 252, the 

working days of the markets. Thus we must combine two or 

more years to satisfy N < L.  

On the other hand, the intra-day price data are sold 

commertially and quite costly. Moreover, the traded time for 

each stocks are not the same and we need pre-process the 

data in order to make the equal-time correlation. We have 

chosen the "block-tick" method to regard the trades within a 

certain block, such as every hour, to make them equal-time. 

Finally, we mention the applicability of RMT-PCA on 

other fields of study. This methodology is not restricted for 

studying stock prices but can be applied for much wider 

variety of noisy data, including meteorological, or 

atomospheric data, and demographical data. Since the equal-

time cross correlation matrix is the main tool of the 

methodology, we need to prepare a large number of equal-

time data taken simultaneously at every moments, whose 

length L is larger than the number of the time series N, 

namely, N < L. Moreover, N > 300 is desirable by the 

reason explained in Section I.  

Considering the time-delay for any information to 

propagates, however, the equal-time correlation is not 

sufficient, and we eventually need to consider the 

correlation with time delay. Technically speaking, however, 

the time-delayed correlation matrix C is not symmetric and 

the eigenvalues are not guaranteed to be real valued. The 

eigenvalue problem of such matrices is much more 

complicated compared to the equal-time correlation matrix, 

which is symmetric thus can be diagonalized by using the 

Jacobi's rotation algorithm. 
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