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Abstract — In this paper, we present our work in the 
implementation and performance optimization of a novel 
multi-answer character recognition method on a high-
performance computing cluster. The main algorithm used in 
this method is called the Brain-State-in-a-Box (BSB), which is 
an auto-associative neural network model. We applied 
optimization techniques on different parts of the BSB 
algorithm to improve the overall computing and 
communication performance of the system. Furthermore, the 
proposed method adopts a new way to train, recall, and 
organize the BSB models for different characters, in order to 
provide a sorted (based on recall convergence speed) list of 
candidates for a given character image. 

Keywords – character recognition, brain-state-in-a-box, 
neural network, performance optimization 

I.  INTRODUCTION 
In the past four decades, a significant amount of research 

work [7][8] has been performed on optical character 
recognition (OCR) for printed characters. OCR for printed 
text represents an important application of pattern 
recognition and image processing.  As of today, there are 
many software OCR tools available, such as the open-source 
Tesseract-OCR [9]. 

Although OCR for printed text is regarded as a largely 
solved problem, its reliability and robustness are not 
guaranteed when the input text image is either noisy or 
severely occluded. The main limitation of the existing OCR 
tools is that they are trying to provide a single answer for 
each individual character. When a character image is 
severely occluded, most OCR algorithms will make a “best 
guess” and give one deterministic answer, which does not 
provide a “second-thought” candidate. On the other hand, 
the human cognition process looks at not only the individual 
character image, but also its context such the word and the 
sentence. When a character is hard to recognize, a human 
will first make multiple guesses and cross-reference them  
with context, then decide which guess fits the word best, 
which word fits the sentence best, etc.  

The goal of our research at AFRL is to develop a high-
performance text recognition software tool that is highly  
reliable and robust for noisy or occluded text images. The  
 
 

multi-answer character recognition method introduced in 
this paper is an essential component of the project. Other 
major components of the project include a word-level 
language model and a sentence-level language model [12], 
which are not in the scope of this paper. The overall 
software architecture makes these neuromorphic algorithms 
work together to produce improved text recognition results.  

The text recognition software is implemented on a high-
performance computing (HPC) cluster that consists of 
almost 70,000 processor cores and provides a massive peak 
computing power of 500 trillion floating-point operations 
per second.  To take full advantage of the available HPC 
resources, the algorithm must be highly scalable so that the 
overall performance increases linearly with the number of 
processor cores used. Furthermore, HPC resources are most 
effective when performing regular and continuous floating-
point operations. Through optimization efforts, we found 
the Brain-State-in-a-Box (BSB) neural network model 
[1][2][3] to fit the HPC efficiently. 

In order to provide multiple answers to a given character 
image, we designed a new “racing” mechanism when 
performing pattern recognition using the BSB models. 
Basically, through a training process we build different BSB 
models for different characters. Any input character image 
will be sent to all the BSB models for recall (pattern 
recognition). When all recalls are completed, a set of 
candidates is selected based on the convergence speed. This 
process forms the proposed multi-answer character 
recognition method. 

The remainder of the paper is organized as follows. In 
Section II we provide background information on the 
system architecture, the BSB model, and processor 
architecture. Section III describes the details of optimizing 
the BSB algorithm on the IBM Cell-BE processor. Section 
IV discusses the implementation of the “racing” mechanism 
to generate multiple recognition candidates, as well as the 
simulation results.  

II. BACKGROUND 

A. Massively Parallel Computing System 
Modeling and simulation of human cognizance functions 

involve large-scale mathematical models, which demand a 
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high performance computing platform. We desire a 
computing architecture that meets the computational 
capacity and communication bandwidth of a large-scale 
associative neural memory model. In particular, we are 
interested in processing pages of text at real-time rates of up 
to 50 pages per second. 

 

 

 

 
 

 
Figure 1. High performance cognitive computing system. 

 
Figure 1 shows the targeted architecture of a high 

performance cognitive computing system. This system 
consists of multiple Processing Elements (PEs) 
interconnected with a multi-layer heterogeneous 
interconnect network. All PEs have access to a local 
memory called the Local Store (LS) and Shared Memory 
(SM) connected to the interconnect network. 

B. Brain-State-in-a-Box Model 
The BSB model is a simple, auto-associative, nonlinear, 

energy-minimizing neural network [1][2][3]. A common 
application of the BSB model is to recognize a pattern from 
a given occluded version. It can also be used as a pattern 
recognizer that employs a smooth nearness measure and 
generates smooth decision boundaries3.  

There are two main operations in a BSB model, Training 
and Recall. In this paper, we will focus on the BSB recall 
operation. The mathematical model of a BSB recall 
operation can be represented in the following form: 

 ))0(*)(*)(**()1( xxxAx γλα ++=+ ttSt      (1) 

where: 
 x is an N dimensional real vector 
 A is an N-by-N connection matrix  
 A*x (t) is a matrix-vector multiplication operation 
 α is a scalar constant feedback factor 
 λ is an inhibition decay constant  
 γ is a nonzero constant if there is a need to 

maintain the input stimulation 

S () is the “squash” function defined as follows: 
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Note that in the proposed algorithm, we choose λ to be 
1.0 and γ to be 0.0. But they can be easily changed to other 

values during the implementation. Given an input pattern 
x(0), the recall process computes Equation (1) iteratively to 
reach convergence. A recall converges when all entries of 
x(t+1) are either “1.0” or “-1.0”. In our implementation, it 
usually takes more than ten iterations for recall to converge. 

C. Cell Broadband Engine Architecture 
The IBM Cell Broadband Engine (Cell-BE) architecture 

[4][5][6] is a multi-core architecture (shown in Figure 2) 
designed for high performance computing. The architecture 
features nine microprocessors on single chip. A Power 
architecture compliant core called the Power Processing 
Element (PPE) and eight other attached processing cores 
called Synergetic Processing Elements (SPEs) are 
interconnected by a high bandwidth Element Interconnect 
Bus (EIB). This heterogeneous architecture with high 
performance computing cores is designed for distributed 
multicore computing. 

 
 
 
 
 
 
 
 
 
 
 
 

III. PERFORMANCE OPTIMIZATION OF THE BSB 
ALGORITHM ON THE CELL-BE PROCESSOR 

In this section we will describe the implementation and 
performance optimization of the recall operation on a single 
Cell-BE processor. One of the major challenges in 
implementing the recall operation in software is the high 
computational demand.  For one 128-dimensional BSB 
model recall we need a matrix-to-vector multiplication that 
involves 16384 floating-point multiplications and 16256 
floating-point additions. In addition, we also need 128 
floating-point multiplications for the feedback factor and 
256 comparisons. Our final large-scale associative neural 
model would involve a large number of BSB models (up to 
500,000). We need a parallel distributed computational 
model which can perform a massive number of BSB recall 
operations in parallel.  

The Cell-BE processor with high performance computing 
cores is an ideal platform for distributed computing. We can 
run one BSB recall on each SPE. Next, we will describe the 
implementation details of a 128-dimensional BSB recall 
operation on one SPE.  

A. Matrix-Vector Multiplication 
Multiplication of a 128x128 matrix with a 128x1 vector 

can be represented as follows. We are showing these rather 

Figure 2. Cell-BE processor block diagram.
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simple operations in detail, in order to elaborate the 
floating-point operations involved in the computation. 

ax0 = a0,0*x0  + a0,1*x1 + a0,2*x2 +…. + a0,127*x127 
ax1 = a1,0*x0  + a1,1*x1 + a1,2*x2 +…. + a1,127*x127 
ax2 = a2,0*x0  + a2,1*x1 + a2,2*x2 +…. + a2,127*x127 
.. 
.. 
ax127 = a127,0*x0  + a127,1*x1 + a127,2*x2 +…. + a127,127*x127 
The scalar implementation of the above equations can be 

written in C as: 
 

 

 

 

 

 

We can improve the computational performance by 
using the Single Instruction Multiple Data (SIMD) model of 
the SPE.  Most of the instructions in SPEs operate on 16 
bytes of data and also the data fetching from local store is 
16-byte aligned. To implement the scalar computation using 
SIMD instructions, the compiler has to keep track of the 
relative offsets between the scalar operands to get the 
correct results. This implementation ends up having 
additional rotation instructions added, which is an overhead. 
To get better performance and the correct result, it is wise to 
handle the data as vectors of 16 bytes (or four single-
precision floating-point numbers) each.  

The matrix multiplication using SIMD instructions can be 
implemented as below. 

 
 
 
 
 
 

 

 
 
 

 

 
 
spu_madd and spu_extract are intrinsics which make the 

underlying Instruction Set Architecture (ISA) and SPE 
hardware accessible from the C programming language. 
spu_madd is the C representation for the multiply and add 
instruction. spu_extract returns the vector member value 
specified by the offset. Compared to the scalar 
implementation, SIMD code reduces 16384 multiplication 
operations to 4096 vector multiplications. The above 
implementation still performs scalar addition to get the final 
result. We can further improve the performance by 

rearranging the matrix so that we can apply SIMD 
instructions on all the matrix-vector multiplication 
operations.  

We divide the entire matrix into smaller 4x4 matrices. 
Elements of each of these 4x4 matrices are shuffled 
according to a specific pattern as shown in Figure 3. 

 
The shuffled matrix is multiplied with the X vector as 

shown in Figure 4. Note that each row of the shuffled matrix 
is a vector of four single-precision floating-point numbers. 
And (x0, x1, x2, x3) is the other vector in the SIMD 
operation. 

 
 

To obtain the final result we need to rotate the some of 
the elements to align them back to their original offset and 
add all the rows, as shown in Figure 5. 

 
By shuffling the input matrix we have effectively 

replaced the 3*128 scalar additions from the previous 
implementation with 3*32 rotations and also we reduced the 
overhead added by the compiler to perform scalar addition. 

For every four rows of the 128x128 matrix, we will have 
32 4x4 matrices. The above shuffle-multiply-rotate-
accumulate operation is repeated for each one of them, and 

ax0,0 ax1,1 ax2,2 ax3,3ax0,0 ax1,1 ax2,2 ax3,3

ax1,0 ax2,1 ax3,2 ax0,3ax1,0 ax2,1 ax3,2 ax0,3

ax2,0 ax3,1 ax0,2 ax1,3ax2,0 ax3,1 ax0,2 ax1,3

ax2,3ax1,2ax0,1ax3,0 ax2,3ax1,2ax0,1ax3,0

1

2

3

ax0,0 ax1,1 ax2,2 ax3,3ax0,0 ax1,1 ax2,2 ax3,3

ax0,3 ax1,0 ax2,1 ax3,2ax0,3 ax1,0 ax2,1 ax3,2

ax0,2 ax1,3 ax2,0 ax3,1ax0,2 ax1,3 ax2,0 ax3,1

ax3,0ax2,3ax1,2ax0,1 ax3,0ax2,3ax1,2ax0,1

+

+

+

Figure 5. Product alignment and accumulation. 

a0,0 a1,1 a2,2 a3,3

a1,0 a2,1 a3,2 a0,3

a2,0 a3,1 a0,2 a1,3

a2,3a1,2a0,1a3,0

x0 x1 x2 x3

x0 x1 x2 x3

x0 x1 x2 x3

x3x2x1x0

*

ax0,0 ax1,1 ax2,2 ax3,3

ax1,0 ax2,1 ax3,2 ax0,3

ax2,0 ax3,1 ax0,2 ax1,3

ax2,3ax1,2ax0,1ax3,0

=

a0,0 a1,1 a2,2 a3,3

a1,0 a2,1 a3,2 a0,3

a2,0 a3,1 a0,2 a1,3

a2,3a1,2a0,1a3,0

a0,0 a1,1 a2,2 a3,3

a1,0 a2,1 a3,2 a0,3

a2,0 a3,1 a0,2 a1,3

a2,3a1,2a0,1a3,0

x0 x1 x2 x3

x0 x1 x2 x3

x0 x1 x2 x3

x3x2x1x0

x0 x1 x2 x3

x0 x1 x2 x3

x0 x1 x2 x3

x3x2x1x0

*

ax0,0 ax1,1 ax2,2 ax3,3

ax1,0 ax2,1 ax3,2 ax0,3

ax2,0 ax3,1 ax0,2 ax1,3

ax2,3ax1,2ax0,1ax3,0

ax0,0 ax1,1 ax2,2 ax3,3

ax1,0 ax2,1 ax3,2 ax0,3

ax2,0 ax3,1 ax0,2 ax1,3

ax2,3ax1,2ax0,1ax3,0

=

Figure 4. Shuffled matrix multiplication. 

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,3a3,2a3,1a3,0

a0,0 a1,1 a2,2 a3,3

a1,0 a2,1 a3,2 a0,3

a2,0 a3,1 a0,2 a1,3

a2,3a1,2a0,1a3,0

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,3a3,2a3,1a3,0

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,3a3,2a3,1a3,0

a0,0 a1,1 a2,2 a3,3

a1,0 a2,1 a3,2 a0,3

a2,0 a3,1 a0,2 a1,3

a2,3a1,2a0,1a3,0

a0,0 a1,1 a2,2 a3,3

a1,0 a2,1 a3,2 a0,3

a2,0 a3,1 a0,2 a1,3

a2,3a1,2a0,1a3,0

Figure 3. Matrix shuffling from original 
order to SIMD order. 

float ax[128], x[128], a[128*128]; 
int row,col; 
 
for(row=0;row<128;row++){ 
   ax[row]=0; 
   for(col=0;col<128;col++) { 
 ax[row]+=x[col]*a[row*128+col];  }} 

float ax[128] __attribute__((aligned (128))); 
float x[128] __attribute__((aligned (128))); 
float a[128*128] __attribute__((aligned (128))); 
int row,col; 
vector float  *x_v, *a_v; 
vector float temp; 
x_v = (vector float *)x; 
a_v = (vector float *)a; 
 
for(row=0;row<128;row++){ 
  temp = (vector float){0.0,0.0,0.0,0.0}; 
  for(col=0;col<128/4;col++) { 
    temp=spu_madd(x_v[col],a_v[row*32+col],temp);
  } 
  ax[row] = 
(spu_extract(temp,0)+spu_extract(temp,1)+ 
 spu_extract(temp,2)+spu_extract(temp,3)); 
} 
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at the end we will be able to obtain the four elements of the 
resulting 128x1 vector. For 128 rows, we need to repeat the 
above procedure 32 times and obtain the complete result. In 
our current program implemented on the PS3, we assume 
that the 128x128 matrix has already been shuffled before 
being stored into the main memory.  

B. Other operations in BSB recall 
From Equation (1) we know that A*x(t) has to be 

multiplied with feedback constant α and the result added 
with x(t). This multiplication and addition can be performed 
by using the spu_madd intrinsic, which multiplies two 
vectors and adds the result to the third vector. This step 
requires 32 spu_madd intrinsics.  

The final operation in recall is the squash function. As 
given in Equation (2) this operation needs two comparisons 
to check whether the result of the previous computation is 
>1 or <-1. To perform this kind of compare and assign 
operation on vector data, the SPE provides special 
instructions.  

spu_cmpgt is an intrinsic which performs element-wise 
comparisons on two given vectors.  If an element in the first 
vector is greater than corresponding element in the second 
vector then all the entries of the corresponding element in 
the result vector are set to ‘1’, else ‘0’. This result can be 
used as a multiplexer select: ‘1’ assigns input_1 to the 
output and ‘0’ assigns input_0 to the output. An intrinsic 
called spu_sel is used to perform the selection. spu_sel takes 
two input vectors and a select pattern. For each entry in the 
128-by-1 vector, the corresponding entries from either input 
vector-0 or input vector-1 are selected.  

C. Balancing computation and communication 
One of the important factors affecting the performance 

of the SPE is the data transfer time. Due to limited local 
store size it is not possible to get all the data required for the 
computation at once. Therefore the SPE has to initiate direct 
memory access (DMA) transfers whenever it requires 
additional data from the main memory, which takes a 
significant amount of time. However we can leverage the 
communication-computation concurrency provided by the 
Cell-BE’s asynchronous DMA model by performing 
computation while data for future computations is being 
fetched. This is called the double buffering method. Figure 6 
shows the computational flow with and without double 
buffering. In the regular communication model, the weight 
matrix required for the recall is fetched and ten recall 
iterations are performed. Then the DMA request for the 
weight matrix of the next recall is initiated. This induces 
gaps in the computational flow that reduce the effective 
throughput. In the double buffering implementation, when 
the computation of the current recall starts, a DMA request 
for the weight matrix of the next recall is initiated in 
parallel. The memory controller of the SPE can work in 
background to fetch the data from the memory.  By the time 
ten iterations of the current recall are completed, the data for 

the next recall will be available, and then the SPE can 
continue with its computational flow.  

 

IV. MULTI-ANSWER IMPLEMENTATION AND 
EXPERIMENTAL RESULTS 

In this section, we first describe the “racing” mechanism 
that we use to implement the multi-answer character 
recognition process. Then, we present and discuss the 
experimental results when we apply this method on 
character images with different amounts of added noise. 

A. Multi-answer character recognition using BSB models 
Without loss of generality, assume that the set of 

characters we want to recognize from images consists of 52 
characters, which are the upper and lower case characters of 
the English alphabet. 

ܵ ൌ ሼᇱܽᇱ, Ԣܾᇱ, … , Ԣݖᇱ, Ԣܣᇱ,ᇱ ,ᇱܤ … , ԢܼԢሽ 

We also assume that for each character in S, there are M 
typical variations in terms of different fonts, styles, and 
sizes. For example, the set of images of character ‘a’ with 
different variations can be represented as: 

ܵ௔ ൌ ሼܽଵ, ܽଶ, … , ܽெሽ. 

In terms of pattern recognition, there are a total of 52*M 
patterns to remember during training and to recognize 
during recall. If we follow the traditional application 
approaches of the BSB models, the solution is to train one 
BSB model to remember all the 52*M patterns. During 
recall, given an input image, this model will eventually 
converge to one of the remembered patterns (attractors) that 
represent the recognition result. The shortcomings of this 
approach is that firstly it requires a BSB model with large 
dimensionality (N the dimension of vector X in Equation 1) 
to remember all the patterns. This increases the complexity 
ן) ܰଶ) of the computation and also reduces the scalability 
when implemented on parallel computing architectures. 
Secondly, this approach only provides one answer to the 
input image. The BSB recall process does not return the 
second or third closest attractor for the image. For 
recognizing corrupted texts, providing only one answer is 
not adequate for the low-level pattern recognition model to 
work with high-level language models.  

DMA DMA (current BSB matrix)(current BSB matrix) M_VM_V MAMA SQSQStartStart DoneDone

DMA DMA (next BSB matrix)(next BSB matrix)

M_VM_V MAMA SQSQ

StartStart DoneDone

10 Repetitions10 Repetitions

10 Repetitions10 Repetitions
Figure 6. Algorithmic flow without (top) and with (bottom) the 

double buffering method. 
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Therefore, in our implementation, the primary goal is to 
design a process that provides multiple candidates for an 
input image. And the secondary goal is to have reasonably-
sized BSB models to have good scalability and keep 
computation complexity under control. 
 The solution we designed is to use one BSB model for 
each character in S. Therefore there will be a set of 52 256-
dimensional BSB models, that is: 

ܵ஻ௌ஻ ൌ ሼܤܵܤ௔, ,௕ܤܵܤ … , , ௭ܤܵܤ ,஺ܤܵܤ ,஻ܤܵܤ … ,  .௓ ሽܤܵܤ

Each BSB model is trained for all variations of a 
character. For example, BSBa is trained to remember all the 
variable patterns in Sa, BSBb will remember patterns in Sb, 
so on so forth. If we define the procedure “Recall(A, B)” as 
the recall process using model A with input image B, which 
returns the number of iterations it takes to converge, the 
recall and candidate selection process can be described as 
follows.  

 
In this algorithm, {K, Th_1, Th_2} are adjustable 

parameters based on overall reliability and robustness needs. 
Generally speaking, in our multi-answer 

implementation, we utilize the BSB model’s convergence 
speed to represent the “closeness” of an input image to the 
remembered characters (with variations). Then we pick up 
to K “closest” candidates (that satisfy conditions 3a and 3b) 
to work with high-level language models to determine the 
final output. In a HPC platform consisting of many (up to 
1,700) IBM Cell-BE processors, our implementation was 
able to execute the recall operations in parallel. Because 
each BSB model is small enough to fit on a single Cell-BE 
processor, the overall performance scales linearly with the 
number of Cell-BE processors used. 

B. Simulation results 
In our current implementation, the BSB models are 

trained for 93 characters, with up to six different fonts, five 
different sizes and two different styles, i.e., up to 60 
variations per character. The complete set covers all the 
characters that can be found on a computer keyboard.  

To better demonstrate the general trends of our 
approach, we will present the results when we use 256-
dimensional BSB models trained for the first 52 characters 
in the set, with two fonts, two sizes and one style (four 
variations for each character).  The input character image is 

a 15-by-15, 225-pixel grayscale or black-and-white bitmap. 
Therefore the dimensionality of the BSB models must be at 
least 225. We chose 256 because it is the next powers-of-
two number. In addition, for the given number of the 
character variations it needs to remember, a 256-
dimensional BSB model should have enough attractors. 

Table 1 shows the top-three candidates generated by our 
program when non-occluded character images are given to 
the models. In the table, the “C” columns show the first, 
second and third fastest converging BSB models, and the 
“N” columns show the number of recall iterations before 
convergence.  A “*” mark means that the BSB model has 
not converged by the limit (Th_1 = 75) to be selected as a 
candidate. The cells highlighted in the diagonal-line pattern 
represent the “correct” candidates. We can see that for non-
occluded images, the “correct” BSB models always 
converge first. We also see a 2x to 3x margin in terms of the 
“N” value between the first and second candidates. 

Table 2 and Table 3 show the top-three candidates when 
the input images are occluded by 1-pixel-strike-through and 
3-pixel-strike-through black bars, respectively. Please note 
the characters shown in the “Input” columns only indicate 
the damaged characters, but are not the actual images. For a 
1(3)-pixel-strike-through, we added one (three) horizontal 
black bar(s) in the middle of the input image, from the left 
edge to right edge. From Table 2 we can see that for 
moderate occlusion, the “correct” BSB models still 
converge the fastest, although slower as compared to Table 
1. However for significant occlusion as in Table 3, we can 
see that two of them did not converge first, while five of 
them (highlighted in red) are not among the top-three 
candidates.  

Overall, we have shown that the “closeness” of the input 
pattern to the remembered ones can be measured by the 
speed of convergence of the BSB recall process, which we 
can use to select multiple candidates for an input character 
image. To deal with the situation when the “correct” BSB is 
not in the candidate list, we can lower the iteration threshold 
(Th_1) to, for example, 30. This change will result in “no 
candidate” for some occluded input, which also means that 
the high-level language model will receive a candidate list 
with all characters in it. 

Working as a component of the text recognition software 
developed by AFRL/RI, the absolute accuracy of the 
proposed character recognition method is not as important 
as it may be in other character recognition software tools. 
Our text recognition software has unique language models 
and algorithms [10][11][12] to work with the BSB outputs. 
The overall integrated approach achieves better text 
recognition accuracy, particularly when the character 
images are damaged. 

V. CONCLUSION 
We have presented work in the implementation and 

performance optimization of a novel multi-answer character 
recognition method on a high-performance computing 

Input: character image X. 
1. For each trained BSB model BSBi in SBSB 
          Conv[i] = Recall(BSBi, X); 
 
2. Sort Conv[i] from low to high to form 

sorted list Conv_s[j]; 
 
3. Pick the first K in Conv_s[j] as 

recognition candidates, if it satisfies 
both conditions listed below: 

 
a. Conv_s[j] <= Th_1; 
// Convergence speed threshold 
b. Conv_s[j] – Conv_s[j-1] <= Th_2; 
// Separation threshold 
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cluster. We applied optimization techniques on different 
parts of the BSB algorithm to improve the overall 
computing and communication performance of the system.  
Furthermore, the proposed method adopts a new way in 
training, recalling, and organizing the BSB models for 
different characters, in order to provide a list of candidates 
for a given character image. By offering multiple answers, 
this character recognition algorithm was able to be 
integrated with high-level language models to achieve more 
reliable and robust text recognition capabilities. 
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Table 1. Top-three candidates generated when given clean character images. 

 
Input 

Top-3 Candidates  
Input 

Top-3 Candidates 
1st 2nd 3rd 1st 2nd 3rd 

C N C N C N C N C N C N 
a a 12 I 31 O 31 A A 12 I 36 z 38 
b b 11 L 28 t 31 B B 11 z 30 F 30 
c c 12 o 25 e 28 C C 11 I 27 E 34 
d d 12 I 31 g 32 D D 12 E 28 f 32 
e e 12 B 35 C 35 E E 11 F 27 z 29 
f f 11 t 27 E 28 F F 11 E 22 L 26 
g g 12 I 28 q 30 G G 11 I 30 D 33 
h h 11 L 26 f 29 H H 12 L 27 f 28 
i i 11 l 25 I 27 I I 11 l 22 z 30 
j j 11 v 31 l 33 J J 12 I 26 g 31 
k k 11 L 26 E 29 K K 11 L 28 N 28 
l l 11 I 24 z 30 L L 11 b 29 z 30 
m m 11 f 28 n 28 M M 11 Y 32 F 35 
n n 12 L 30 b 34 N N 12 U 26 E 27 
o o 12 c 27 e 29 O O 11 I 28 G 30 
p p 12 L 28 z 32 P P 11 L 26 z 32 
q q 11 g 23 I 29 Q Q 11 I 28 z 32 
r r 12 l 27 I 33 R R 11 B 30 f 32 
s s 12 I 31 a 32 S S 11 I 28 C 33 
t t 11 L 25 b 30 T T 11 l 23 I 23 
u u 12 n 25 D 33 U U 12 b 24 z 34 
v v 11 I 33 n 36 V V 11 I 35 n 39 
w w 12 j 35 n 35 W W 12 f 32 E 32 
x x 11 k 32 n 33 X X 12 Z 30 v 34 
y y 11 E 31 F 32 Y Y 11 I 29 R 33 
z z 11 I 29 H 31 Z Z 11 I 29 n 35 
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Table 2. Top-three candidates generated when given 1-pixel-strike-through character images. 

 
Input 

Top-3 Candidates  
Input 

Top-3 Candidates 
1st 2nd 3rd 1st 2nd 3rd 

C N C N C N C N C N C N 
a a 23 R 32 I 33 A A 23 e 34 z 37 
b b 23 L 28 j 32 B B 22 F 30 L 30 
c c 24 e 24 o 27 C C 24 I 30 J 37 
d d 23 g 33 J 34 D D 23 E 28 f 33 
e e 22 B 35 C 35 E E 22 F 27 N 29 
f f 23 t 28 E 30 F F 22 E 25 L 28 
g g 23 q 30 I 31 G G 23 O 32 H 33 
h h 23 L 28 H 29 H H 22 f 28 L 29 
i i 23 l 26 I 29 I I 23 l 24 z 30 
j j 23 a 33 e 33 J J 23 I 28 R 31 
k k 23 L 29 H 32 K K 23 L 29 N 29 
l l 23 I 26 z 31 L L 23 E 27 z 30 

m m 23 f 30 n 31 M M 23 F 35 U 35 
n n 23 L 30 e 33 N N 23 F 28 U 29 
o e 24 o 24 c 27 O O 24 I 31 s 35 
p p 23 L 31 B 33 P P 23 L 28 r 34 
q q 24 g 25 I 31 Q Q 23 I 31 R 33 
r r 23 l 29 J 33 R R 22 f 31 B 33 
s s 22 B 33 a 34 S S 24 I 30 C 34 
t t 23 L 28 b 33 T T 23 l 25 I 25 
u u 23 n 28 G 35 U U 23 b 26 L 34 
v v 24 k 37 B 37 V V 23 B 40 I 42 
w w 26 j 36 N 38 W W 28 L 35 f 36 
x x 23 k 35 n 35 X X 23 Z 34 v 35 
y y 23 H 34 n 36 Y Y 23 I 34 R 34 
z z 23 I 29 L 34 Z Z 24 I 29 R 36 

 
Table 3. Top-three candidates generated when given 3-pixel-strike-through character images. 

 
Input 

Top-3 Candidates  
Input 

Top-3 Candidates 
1st 2nd 3rd 1st 2nd 3rd 

C N C N C N C N C N C N 
a a 26 e 36 B 41 A A 26 e 36 y 38 
b b 35 t 35 L 39 B B 28 P 28 L 32 
c c 29 o 36 G 46 C G 34 e 36 C 37 
d d 31 J 36 K 39 D D 27 E 32 O 32 
e c 37 G 38 m 45 E E 29 F 30 L 32 
f f 27 t 33 e 37 F F 30 f 31 E 31 
g q 36 I 42 J 44 G G 27 I 43 a 44 
h h 28 H 30 f 33 H H 29 h 33 i 35 
i l 31 J 36 e 38 I I 27 i 29 l 29 
j j 30 J 35 K 38 J J 27 I 35 R 37 
k k 26 L 35 i 37 K K 26 f 36 i 36 
l l 27 i 29 I 33 L L 27 E 33 a 37 

m m 26 f 39 n 41 M M 26 A 44 R 44 
n n 31 o 36 L 39 N N 26 i 38 E 38 
o o 34 c 35 E 42 O s 32 G 34 O 34 
p p 26 D 33 e 37 P f 31 L 33 a 34 
q q 29 e 42 p 42 Q Q 26 e 42 h 43 
r r 29 l 37 e 43 R R 25 f 33 i 35 
s s 29 R 37 m 40 S b 39 J 39 I 40 
t t 27 e 36 I 36 T T 27 I 31 l 32 
u u 28 w 36 G 39 U U 27 L 38 f 40 
v v 29 y 41 P 42 V V 26 y 37 P 40 
w N 36 w 37 q 43 W W 29 w 40 G 45 
x x 27 w 43 E 45 X X 28 Z 39 v 40 
y y 26 P 38 K 40 Y Y 27 e 38 M 41 
z z 29 A 35 H 36 Z Z 27 I 34 e 38 
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