
A Multi-Answer Character Recognition Method and Its Implementation on a High-
Performance Computing Cluster

Qing Wu, Morgan Bishop, Robinson Pino,
Richard Linderman

Information Directorate
US Air Force Research Laboratory

Rome, New York, USA
{Qing.Wu, Morgan.Bishop, Robinson.Pino,

Richard.Linderman}@rl.af.mil

Qinru Qiu

Department of Electrical Engineering & Computer Science
Syracuse University

Syracuse, New York, USA
qinru.qiu@gmail.com

Abstract — In this paper, we present our work in the
implementation and performance optimization of a novel
multi-answer character recognition method on a high-
performance computing cluster. The main algorithm used in
this method is called the Brain-State-in-a-Box (BSB), which is
an auto-associative neural network model. We applied
optimization techniques on different parts of the BSB
algorithm to improve the overall computing and
communication performance of the system. Furthermore, the
proposed method adopts a new way to train, recall, and
organize the BSB models for different characters, in order to
provide a sorted (based on recall convergence speed) list of
candidates for a given character image.

Keywords – character recognition, brain-state-in-a-box,
neural network, performance optimization

I. INTRODUCTION
In the past four decades, a significant amount of research

work [7][8] has been performed on optical character
recognition (OCR) for printed characters. OCR for printed
text represents an important application of pattern
recognition and image processing. As of today, there are
many software OCR tools available, such as the open-source
Tesseract-OCR [9].

Although OCR for printed text is regarded as a largely
solved problem, its reliability and robustness are not
guaranteed when the input text image is either noisy or
severely occluded. The main limitation of the existing OCR
tools is that they are trying to provide a single answer for
each individual character. When a character image is
severely occluded, most OCR algorithms will make a “best
guess” and give one deterministic answer, which does not
provide a “second-thought” candidate. On the other hand,
the human cognition process looks at not only the individual
character image, but also its context such the word and the
sentence. When a character is hard to recognize, a human
will first make multiple guesses and cross-reference them
with context, then decide which guess fits the word best,
which word fits the sentence best, etc.

The goal of our research at AFRL is to develop a high-
performance text recognition software tool that is highly
reliable and robust for noisy or occluded text images. The

multi-answer character recognition method introduced in
this paper is an essential component of the project. Other
major components of the project include a word-level
language model and a sentence-level language model [12],
which are not in the scope of this paper. The overall
software architecture makes these neuromorphic algorithms
work together to produce improved text recognition results.

The text recognition software is implemented on a high-
performance computing (HPC) cluster that consists of
almost 70,000 processor cores and provides a massive peak
computing power of 500 trillion floating-point operations
per second. To take full advantage of the available HPC
resources, the algorithm must be highly scalable so that the
overall performance increases linearly with the number of
processor cores used. Furthermore, HPC resources are most
effective when performing regular and continuous floating-
point operations. Through optimization efforts, we found
the Brain-State-in-a-Box (BSB) neural network model
[1][2][3] to fit the HPC efficiently.

In order to provide multiple answers to a given character
image, we designed a new “racing” mechanism when
performing pattern recognition using the BSB models.
Basically, through a training process we build different BSB
models for different characters. Any input character image
will be sent to all the BSB models for recall (pattern
recognition). When all recalls are completed, a set of
candidates is selected based on the convergence speed. This
process forms the proposed multi-answer character
recognition method.

The remainder of the paper is organized as follows. In
Section II we provide background information on the
system architecture, the BSB model, and processor
architecture. Section III describes the details of optimizing
the BSB algorithm on the IBM Cell-BE processor. Section
IV discusses the implementation of the “racing” mechanism
to generate multiple recognition candidates, as well as the
simulation results.

II. BACKGROUND

A. Massively Parallel Computing System
Modeling and simulation of human cognizance functions

involve large-scale mathematical models, which demand a

7

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) The Government of USA, 2011. Used by permission to IARIA. ISBN: 978-1-61208-154-0

high performance computing platform. We desire a
computing architecture that meets the computational
capacity and communication bandwidth of a large-scale
associative neural memory model. In particular, we are
interested in processing pages of text at real-time rates of up
to 50 pages per second.

Figure 1. High performance cognitive computing system.

Figure 1 shows the targeted architecture of a high

performance cognitive computing system. This system
consists of multiple Processing Elements (PEs)
interconnected with a multi-layer heterogeneous
interconnect network. All PEs have access to a local
memory called the Local Store (LS) and Shared Memory
(SM) connected to the interconnect network.

B. Brain-State-in-a-Box Model
The BSB model is a simple, auto-associative, nonlinear,

energy-minimizing neural network [1][2][3]. A common
application of the BSB model is to recognize a pattern from
a given occluded version. It can also be used as a pattern
recognizer that employs a smooth nearness measure and
generates smooth decision boundaries3.

There are two main operations in a BSB model, Training
and Recall. In this paper, we will focus on the BSB recall
operation. The mathematical model of a BSB recall
operation can be represented in the following form:

))0(*)(*)(**()1(xxxAx γλα ++=+ ttSt (1)

where:
 x is an N dimensional real vector
 A is an N-by-N connection matrix
 A*x (t) is a matrix-vector multiplication operation
 α is a scalar constant feedback factor
 λ is an inhibition decay constant
 γ is a nonzero constant if there is a need to

maintain the input stimulation

S () is the “squash” function defined as follows:

⎪
⎩

⎪
⎨

⎧

−≤
<<−

≥

−
=

1
11

1

1

1
)(

y
y

y

if
if
if

yyS
 (2)

Note that in the proposed algorithm, we choose λ to be
1.0 and γ to be 0.0. But they can be easily changed to other

values during the implementation. Given an input pattern
x(0), the recall process computes Equation (1) iteratively to
reach convergence. A recall converges when all entries of
x(t+1) are either “1.0” or “-1.0”. In our implementation, it
usually takes more than ten iterations for recall to converge.

C. Cell Broadband Engine Architecture
The IBM Cell Broadband Engine (Cell-BE) architecture

[4][5][6] is a multi-core architecture (shown in Figure 2)
designed for high performance computing. The architecture
features nine microprocessors on single chip. A Power
architecture compliant core called the Power Processing
Element (PPE) and eight other attached processing cores
called Synergetic Processing Elements (SPEs) are
interconnected by a high bandwidth Element Interconnect
Bus (EIB). This heterogeneous architecture with high
performance computing cores is designed for distributed
multicore computing.

III. PERFORMANCE OPTIMIZATION OF THE BSB
ALGORITHM ON THE CELL-BE PROCESSOR

In this section we will describe the implementation and
performance optimization of the recall operation on a single
Cell-BE processor. One of the major challenges in
implementing the recall operation in software is the high
computational demand. For one 128-dimensional BSB
model recall we need a matrix-to-vector multiplication that
involves 16384 floating-point multiplications and 16256
floating-point additions. In addition, we also need 128
floating-point multiplications for the feedback factor and
256 comparisons. Our final large-scale associative neural
model would involve a large number of BSB models (up to
500,000). We need a parallel distributed computational
model which can perform a massive number of BSB recall
operations in parallel.

The Cell-BE processor with high performance computing
cores is an ideal platform for distributed computing. We can
run one BSB recall on each SPE. Next, we will describe the
implementation details of a 128-dimensional BSB recall
operation on one SPE.

A. Matrix-Vector Multiplication
Multiplication of a 128x128 matrix with a 128x1 vector

can be represented as follows. We are showing these rather

Figure 2. Cell-BE processor block diagram.

8

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) The Government of USA, 2011. Used by permission to IARIA. ISBN: 978-1-61208-154-0

simple operations in detail, in order to elaborate the
floating-point operations involved in the computation.

ax0 = a0,0*x0 + a0,1*x1 + a0,2*x2 +…. + a0,127*x127
ax1 = a1,0*x0 + a1,1*x1 + a1,2*x2 +…. + a1,127*x127
ax2 = a2,0*x0 + a2,1*x1 + a2,2*x2 +…. + a2,127*x127
..
..
ax127 = a127,0*x0 + a127,1*x1 + a127,2*x2 +…. + a127,127*x127
The scalar implementation of the above equations can be

written in C as:

We can improve the computational performance by
using the Single Instruction Multiple Data (SIMD) model of
the SPE. Most of the instructions in SPEs operate on 16
bytes of data and also the data fetching from local store is
16-byte aligned. To implement the scalar computation using
SIMD instructions, the compiler has to keep track of the
relative offsets between the scalar operands to get the
correct results. This implementation ends up having
additional rotation instructions added, which is an overhead.
To get better performance and the correct result, it is wise to
handle the data as vectors of 16 bytes (or four single-
precision floating-point numbers) each.

The matrix multiplication using SIMD instructions can be
implemented as below.

spu_madd and spu_extract are intrinsics which make the

underlying Instruction Set Architecture (ISA) and SPE
hardware accessible from the C programming language.
spu_madd is the C representation for the multiply and add
instruction. spu_extract returns the vector member value
specified by the offset. Compared to the scalar
implementation, SIMD code reduces 16384 multiplication
operations to 4096 vector multiplications. The above
implementation still performs scalar addition to get the final
result. We can further improve the performance by

rearranging the matrix so that we can apply SIMD
instructions on all the matrix-vector multiplication
operations.

We divide the entire matrix into smaller 4x4 matrices.
Elements of each of these 4x4 matrices are shuffled
according to a specific pattern as shown in Figure 3.

The shuffled matrix is multiplied with the X vector as

shown in Figure 4. Note that each row of the shuffled matrix
is a vector of four single-precision floating-point numbers.
And (x0, x1, x2, x3) is the other vector in the SIMD
operation.

To obtain the final result we need to rotate the some of
the elements to align them back to their original offset and
add all the rows, as shown in Figure 5.

By shuffling the input matrix we have effectively

replaced the 3*128 scalar additions from the previous
implementation with 3*32 rotations and also we reduced the
overhead added by the compiler to perform scalar addition.

For every four rows of the 128x128 matrix, we will have
32 4x4 matrices. The above shuffle-multiply-rotate-
accumulate operation is repeated for each one of them, and

ax0,0 ax1,1 ax2,2 ax3,3ax0,0 ax1,1 ax2,2 ax3,3

ax1,0 ax2,1 ax3,2 ax0,3ax1,0 ax2,1 ax3,2 ax0,3

ax2,0 ax3,1 ax0,2 ax1,3ax2,0 ax3,1 ax0,2 ax1,3

ax2,3ax1,2ax0,1ax3,0 ax2,3ax1,2ax0,1ax3,0

1

2

3

ax0,0 ax1,1 ax2,2 ax3,3ax0,0 ax1,1 ax2,2 ax3,3

ax0,3 ax1,0 ax2,1 ax3,2ax0,3 ax1,0 ax2,1 ax3,2

ax0,2 ax1,3 ax2,0 ax3,1ax0,2 ax1,3 ax2,0 ax3,1

ax3,0ax2,3ax1,2ax0,1 ax3,0ax2,3ax1,2ax0,1

+

+

+

Figure 5. Product alignment and accumulation.

a0,0 a1,1 a2,2 a3,3

a1,0 a2,1 a3,2 a0,3

a2,0 a3,1 a0,2 a1,3

a2,3a1,2a0,1a3,0

x0 x1 x2 x3

x0 x1 x2 x3

x0 x1 x2 x3

x3x2x1x0

*

ax0,0 ax1,1 ax2,2 ax3,3

ax1,0 ax2,1 ax3,2 ax0,3

ax2,0 ax3,1 ax0,2 ax1,3

ax2,3ax1,2ax0,1ax3,0

=

a0,0 a1,1 a2,2 a3,3

a1,0 a2,1 a3,2 a0,3

a2,0 a3,1 a0,2 a1,3

a2,3a1,2a0,1a3,0

a0,0 a1,1 a2,2 a3,3

a1,0 a2,1 a3,2 a0,3

a2,0 a3,1 a0,2 a1,3

a2,3a1,2a0,1a3,0

x0 x1 x2 x3

x0 x1 x2 x3

x0 x1 x2 x3

x3x2x1x0

x0 x1 x2 x3

x0 x1 x2 x3

x0 x1 x2 x3

x3x2x1x0

*

ax0,0 ax1,1 ax2,2 ax3,3

ax1,0 ax2,1 ax3,2 ax0,3

ax2,0 ax3,1 ax0,2 ax1,3

ax2,3ax1,2ax0,1ax3,0

ax0,0 ax1,1 ax2,2 ax3,3

ax1,0 ax2,1 ax3,2 ax0,3

ax2,0 ax3,1 ax0,2 ax1,3

ax2,3ax1,2ax0,1ax3,0

=

Figure 4. Shuffled matrix multiplication.

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,3a3,2a3,1a3,0

a0,0 a1,1 a2,2 a3,3

a1,0 a2,1 a3,2 a0,3

a2,0 a3,1 a0,2 a1,3

a2,3a1,2a0,1a3,0

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,3a3,2a3,1a3,0

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,3a3,2a3,1a3,0

a0,0 a1,1 a2,2 a3,3

a1,0 a2,1 a3,2 a0,3

a2,0 a3,1 a0,2 a1,3

a2,3a1,2a0,1a3,0

a0,0 a1,1 a2,2 a3,3

a1,0 a2,1 a3,2 a0,3

a2,0 a3,1 a0,2 a1,3

a2,3a1,2a0,1a3,0

Figure 3. Matrix shuffling from original
order to SIMD order.

float ax[128], x[128], a[128*128];
int row,col;

for(row=0;row<128;row++){
 ax[row]=0;
 for(col=0;col<128;col++) {
 ax[row]+=x[col]*a[row*128+col]; }}

float ax[128] __attribute__((aligned (128)));
float x[128] __attribute__((aligned (128)));
float a[128*128] __attribute__((aligned (128)));
int row,col;
vector float *x_v, *a_v;
vector float temp;
x_v = (vector float *)x;
a_v = (vector float *)a;

for(row=0;row<128;row++){
 temp = (vector float){0.0,0.0,0.0,0.0};
 for(col=0;col<128/4;col++) {
 temp=spu_madd(x_v[col],a_v[row*32+col],temp);
 }
 ax[row] =
(spu_extract(temp,0)+spu_extract(temp,1)+
 spu_extract(temp,2)+spu_extract(temp,3));
}

9

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) The Government of USA, 2011. Used by permission to IARIA. ISBN: 978-1-61208-154-0

at the end we will be able to obtain the four elements of the
resulting 128x1 vector. For 128 rows, we need to repeat the
above procedure 32 times and obtain the complete result. In
our current program implemented on the PS3, we assume
that the 128x128 matrix has already been shuffled before
being stored into the main memory.

B. Other operations in BSB recall
From Equation (1) we know that A*x(t) has to be

multiplied with feedback constant α and the result added
with x(t). This multiplication and addition can be performed
by using the spu_madd intrinsic, which multiplies two
vectors and adds the result to the third vector. This step
requires 32 spu_madd intrinsics.

The final operation in recall is the squash function. As
given in Equation (2) this operation needs two comparisons
to check whether the result of the previous computation is
>1 or <-1. To perform this kind of compare and assign
operation on vector data, the SPE provides special
instructions.

spu_cmpgt is an intrinsic which performs element-wise
comparisons on two given vectors. If an element in the first
vector is greater than corresponding element in the second
vector then all the entries of the corresponding element in
the result vector are set to ‘1’, else ‘0’. This result can be
used as a multiplexer select: ‘1’ assigns input_1 to the
output and ‘0’ assigns input_0 to the output. An intrinsic
called spu_sel is used to perform the selection. spu_sel takes
two input vectors and a select pattern. For each entry in the
128-by-1 vector, the corresponding entries from either input
vector-0 or input vector-1 are selected.

C. Balancing computation and communication
One of the important factors affecting the performance

of the SPE is the data transfer time. Due to limited local
store size it is not possible to get all the data required for the
computation at once. Therefore the SPE has to initiate direct
memory access (DMA) transfers whenever it requires
additional data from the main memory, which takes a
significant amount of time. However we can leverage the
communication-computation concurrency provided by the
Cell-BE’s asynchronous DMA model by performing
computation while data for future computations is being
fetched. This is called the double buffering method. Figure 6
shows the computational flow with and without double
buffering. In the regular communication model, the weight
matrix required for the recall is fetched and ten recall
iterations are performed. Then the DMA request for the
weight matrix of the next recall is initiated. This induces
gaps in the computational flow that reduce the effective
throughput. In the double buffering implementation, when
the computation of the current recall starts, a DMA request
for the weight matrix of the next recall is initiated in
parallel. The memory controller of the SPE can work in
background to fetch the data from the memory. By the time
ten iterations of the current recall are completed, the data for

the next recall will be available, and then the SPE can
continue with its computational flow.

IV. MULTI-ANSWER IMPLEMENTATION AND
EXPERIMENTAL RESULTS

In this section, we first describe the “racing” mechanism
that we use to implement the multi-answer character
recognition process. Then, we present and discuss the
experimental results when we apply this method on
character images with different amounts of added noise.

A. Multi-answer character recognition using BSB models
Without loss of generality, assume that the set of

characters we want to recognize from images consists of 52
characters, which are the upper and lower case characters of
the English alphabet.

ܵ ൌ ሼᇱܽᇱ, Ԣܾᇱ, … , Ԣݖᇱ, Ԣܣᇱ,ᇱ ,ᇱܤ … , ԢܼԢሽ

We also assume that for each character in S, there are M
typical variations in terms of different fonts, styles, and
sizes. For example, the set of images of character ‘a’ with
different variations can be represented as:

ܵ௔ ൌ ሼܽଵ, ܽଶ, … , ܽெሽ.

In terms of pattern recognition, there are a total of 52*M
patterns to remember during training and to recognize
during recall. If we follow the traditional application
approaches of the BSB models, the solution is to train one
BSB model to remember all the 52*M patterns. During
recall, given an input image, this model will eventually
converge to one of the remembered patterns (attractors) that
represent the recognition result. The shortcomings of this
approach is that firstly it requires a BSB model with large
dimensionality (N the dimension of vector X in Equation 1)
to remember all the patterns. This increases the complexity
ן) ܰଶ) of the computation and also reduces the scalability
when implemented on parallel computing architectures.
Secondly, this approach only provides one answer to the
input image. The BSB recall process does not return the
second or third closest attractor for the image. For
recognizing corrupted texts, providing only one answer is
not adequate for the low-level pattern recognition model to
work with high-level language models.

DMA DMA (current BSB matrix)(current BSB matrix) M_VM_V MAMA SQSQStartStart DoneDone

DMA DMA (next BSB matrix)(next BSB matrix)

M_VM_V MAMA SQSQ

StartStart DoneDone

10 Repetitions10 Repetitions

10 Repetitions10 Repetitions
Figure 6. Algorithmic flow without (top) and with (bottom) the

double buffering method.

10

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) The Government of USA, 2011. Used by permission to IARIA. ISBN: 978-1-61208-154-0

Therefore, in our implementation, the primary goal is to
design a process that provides multiple candidates for an
input image. And the secondary goal is to have reasonably-
sized BSB models to have good scalability and keep
computation complexity under control.
 The solution we designed is to use one BSB model for
each character in S. Therefore there will be a set of 52 256-
dimensional BSB models, that is:

ܵ஻ௌ஻ ൌ ሼܤܵܤ௔, ,௕ܤܵܤ … , , ௭ܤܵܤ ,஺ܤܵܤ ,஻ܤܵܤ … , .௓ ሽܤܵܤ

Each BSB model is trained for all variations of a
character. For example, BSBa is trained to remember all the
variable patterns in Sa, BSBb will remember patterns in Sb,
so on so forth. If we define the procedure “Recall(A, B)” as
the recall process using model A with input image B, which
returns the number of iterations it takes to converge, the
recall and candidate selection process can be described as
follows.

In this algorithm, {K, Th_1, Th_2} are adjustable

parameters based on overall reliability and robustness needs.
Generally speaking, in our multi-answer

implementation, we utilize the BSB model’s convergence
speed to represent the “closeness” of an input image to the
remembered characters (with variations). Then we pick up
to K “closest” candidates (that satisfy conditions 3a and 3b)
to work with high-level language models to determine the
final output. In a HPC platform consisting of many (up to
1,700) IBM Cell-BE processors, our implementation was
able to execute the recall operations in parallel. Because
each BSB model is small enough to fit on a single Cell-BE
processor, the overall performance scales linearly with the
number of Cell-BE processors used.

B. Simulation results
In our current implementation, the BSB models are

trained for 93 characters, with up to six different fonts, five
different sizes and two different styles, i.e., up to 60
variations per character. The complete set covers all the
characters that can be found on a computer keyboard.

To better demonstrate the general trends of our
approach, we will present the results when we use 256-
dimensional BSB models trained for the first 52 characters
in the set, with two fonts, two sizes and one style (four
variations for each character). The input character image is

a 15-by-15, 225-pixel grayscale or black-and-white bitmap.
Therefore the dimensionality of the BSB models must be at
least 225. We chose 256 because it is the next powers-of-
two number. In addition, for the given number of the
character variations it needs to remember, a 256-
dimensional BSB model should have enough attractors.

Table 1 shows the top-three candidates generated by our
program when non-occluded character images are given to
the models. In the table, the “C” columns show the first,
second and third fastest converging BSB models, and the
“N” columns show the number of recall iterations before
convergence. A “*” mark means that the BSB model has
not converged by the limit (Th_1 = 75) to be selected as a
candidate. The cells highlighted in the diagonal-line pattern
represent the “correct” candidates. We can see that for non-
occluded images, the “correct” BSB models always
converge first. We also see a 2x to 3x margin in terms of the
“N” value between the first and second candidates.

Table 2 and Table 3 show the top-three candidates when
the input images are occluded by 1-pixel-strike-through and
3-pixel-strike-through black bars, respectively. Please note
the characters shown in the “Input” columns only indicate
the damaged characters, but are not the actual images. For a
1(3)-pixel-strike-through, we added one (three) horizontal
black bar(s) in the middle of the input image, from the left
edge to right edge. From Table 2 we can see that for
moderate occlusion, the “correct” BSB models still
converge the fastest, although slower as compared to Table
1. However for significant occlusion as in Table 3, we can
see that two of them did not converge first, while five of
them (highlighted in red) are not among the top-three
candidates.

Overall, we have shown that the “closeness” of the input
pattern to the remembered ones can be measured by the
speed of convergence of the BSB recall process, which we
can use to select multiple candidates for an input character
image. To deal with the situation when the “correct” BSB is
not in the candidate list, we can lower the iteration threshold
(Th_1) to, for example, 30. This change will result in “no
candidate” for some occluded input, which also means that
the high-level language model will receive a candidate list
with all characters in it.

Working as a component of the text recognition software
developed by AFRL/RI, the absolute accuracy of the
proposed character recognition method is not as important
as it may be in other character recognition software tools.
Our text recognition software has unique language models
and algorithms [10][11][12] to work with the BSB outputs.
The overall integrated approach achieves better text
recognition accuracy, particularly when the character
images are damaged.

V. CONCLUSION
We have presented work in the implementation and

performance optimization of a novel multi-answer character
recognition method on a high-performance computing

Input: character image X.
1. For each trained BSB model BSBi in SBSB
 Conv[i] = Recall(BSBi, X);

2. Sort Conv[i] from low to high to form

sorted list Conv_s[j];

3. Pick the first K in Conv_s[j] as

recognition candidates, if it satisfies
both conditions listed below:

a. Conv_s[j] <= Th_1;
// Convergence speed threshold
b. Conv_s[j] – Conv_s[j-1] <= Th_2;
// Separation threshold

11

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) The Government of USA, 2011. Used by permission to IARIA. ISBN: 978-1-61208-154-0

cluster. We applied optimization techniques on different
parts of the BSB algorithm to improve the overall
computing and communication performance of the system.
Furthermore, the proposed method adopts a new way in
training, recalling, and organizing the BSB models for
different characters, in order to provide a list of candidates
for a given character image. By offering multiple answers,
this character recognition algorithm was able to be
integrated with high-level language models to achieve more
reliable and robust text recognition capabilities.

ACKNOWLEDGMENT OF SUPPORT AND DISCLAIMER
Received and approved for public release by AFRL on

04/14/2011, case number 88ABW-2011-2178.
The contractor’s work is supported by the Air Force

Research Laboratory, under contract FA8750-09-2-0155.
Any Opinions, findings, and conclusions or

recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of AFRL or
its contractors.

REFERENCES
[1] J. A. Anderson, J. W. Silverstein, S. A. Ritz, and R. S. Jones,

“Distinctive features, categorical perception, probability learning:
Some applications of a neural model,” Neurocomputing; Foundations
of Research, J. A. Anderson and E. Rosenfeld, Editors, The MIT
Press, 1989, ch. 22, pp. 283–325, reprint from Psychological Review
1977, vol. 84, pp. 413–451.

[2] M. H. Hassoun, Editor, “Associative Neural Memories: Theory and
Implementation,” Oxford University Press, 1993.

[3] A. Schultz, “Collective recall via the Brain-State-in-a-Box network,”
IEEE Transactions on Neural Networks, vol. 4, no. 4, pp. 580–587,
July 1993.

[4] T. Chen, R. Raghavan, J. Dale, and E. Iwata, “Cell Broadband Engine
Architecture and its first implementation,” IBM, 2011,
http://www.ibm.com/developerworks/power/library/pa-cellperf/.

[5] “IBM Cell Broadband Engine Architecture,” https://www-
01.ibm.com/chips/techlib/techlib.nsf/techdocs/1AEEE1270EA277638
7257060006E61BA/$file/CBEA_v1.02_11Oct2007_pub.pdf, 2011.

[6] “IBM Cell Broadband Engine resource center,” http://www-
128.ibm.com/developerworks/power/cell/, 2011.

[7] J. Mantas, “An Overview of Character Recognition Methodologies,”
Pattern Recognition, 19(6); 425-430, 1986.

[8] G. Nagy, “Optical Character Recognition – Theory and Practice,”
Handbook of Statistics, Vol. 2, 621-649, 1982.

[9] “Tesseract-OCR”, http://code.google.com/p/tesseract-ocr/, 2011.
[10] Q. Qiu, Q. Wu, D. Burns, M. Moore, M. Bishop, R. Pino, and R.

Linderman, “Confabulation Based Sentence Completion for Machine
Reading,” Proceedings of the IEEE Symposium Series on
Computational Intelligence, Paris, France, April 2011.

[11] Q. Qiu, Q. Wu, M. Bishop, M. Barnell, R. Pino, and R. Linderman,
“An Intelligent Text Recognition System on the AFRL
Heterogeneous Condor Computing Cluster,” to appear, Proceedings
of the DoD High Performance Computing Modernization Program
Users Group Conference, Portland, Oregon, June 2011.

[12] Q. Qiu, Q. Wu, and R. Linderman, “Unified Perception-Prediction
Model for Context Aware Text Recognition on a Heterogeneous
Many-Core Platform,” to appear, Proceedings of the International
Joint Conference on Neural Networks, San Jose, California, July
2011.

Table 1. Top-three candidates generated when given clean character images.

Input

Top-3 Candidates
Input

Top-3 Candidates
1st 2nd 3rd 1st 2nd 3rd

C N C N C N C N C N C N
a a 12 I 31 O 31 A A 12 I 36 z 38
b b 11 L 28 t 31 B B 11 z 30 F 30
c c 12 o 25 e 28 C C 11 I 27 E 34
d d 12 I 31 g 32 D D 12 E 28 f 32
e e 12 B 35 C 35 E E 11 F 27 z 29
f f 11 t 27 E 28 F F 11 E 22 L 26
g g 12 I 28 q 30 G G 11 I 30 D 33
h h 11 L 26 f 29 H H 12 L 27 f 28
i i 11 l 25 I 27 I I 11 l 22 z 30
j j 11 v 31 l 33 J J 12 I 26 g 31
k k 11 L 26 E 29 K K 11 L 28 N 28
l l 11 I 24 z 30 L L 11 b 29 z 30
m m 11 f 28 n 28 M M 11 Y 32 F 35
n n 12 L 30 b 34 N N 12 U 26 E 27
o o 12 c 27 e 29 O O 11 I 28 G 30
p p 12 L 28 z 32 P P 11 L 26 z 32
q q 11 g 23 I 29 Q Q 11 I 28 z 32
r r 12 l 27 I 33 R R 11 B 30 f 32
s s 12 I 31 a 32 S S 11 I 28 C 33
t t 11 L 25 b 30 T T 11 l 23 I 23
u u 12 n 25 D 33 U U 12 b 24 z 34
v v 11 I 33 n 36 V V 11 I 35 n 39
w w 12 j 35 n 35 W W 12 f 32 E 32
x x 11 k 32 n 33 X X 12 Z 30 v 34
y y 11 E 31 F 32 Y Y 11 I 29 R 33
z z 11 I 29 H 31 Z Z 11 I 29 n 35

12

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) The Government of USA, 2011. Used by permission to IARIA. ISBN: 978-1-61208-154-0

Table 2. Top-three candidates generated when given 1-pixel-strike-through character images.

Input

Top-3 Candidates
Input

Top-3 Candidates
1st 2nd 3rd 1st 2nd 3rd

C N C N C N C N C N C N
a a 23 R 32 I 33 A A 23 e 34 z 37
b b 23 L 28 j 32 B B 22 F 30 L 30
c c 24 e 24 o 27 C C 24 I 30 J 37
d d 23 g 33 J 34 D D 23 E 28 f 33
e e 22 B 35 C 35 E E 22 F 27 N 29
f f 23 t 28 E 30 F F 22 E 25 L 28
g g 23 q 30 I 31 G G 23 O 32 H 33
h h 23 L 28 H 29 H H 22 f 28 L 29
i i 23 l 26 I 29 I I 23 l 24 z 30
j j 23 a 33 e 33 J J 23 I 28 R 31
k k 23 L 29 H 32 K K 23 L 29 N 29
l l 23 I 26 z 31 L L 23 E 27 z 30

m m 23 f 30 n 31 M M 23 F 35 U 35
n n 23 L 30 e 33 N N 23 F 28 U 29
o e 24 o 24 c 27 O O 24 I 31 s 35
p p 23 L 31 B 33 P P 23 L 28 r 34
q q 24 g 25 I 31 Q Q 23 I 31 R 33
r r 23 l 29 J 33 R R 22 f 31 B 33
s s 22 B 33 a 34 S S 24 I 30 C 34
t t 23 L 28 b 33 T T 23 l 25 I 25
u u 23 n 28 G 35 U U 23 b 26 L 34
v v 24 k 37 B 37 V V 23 B 40 I 42
w w 26 j 36 N 38 W W 28 L 35 f 36
x x 23 k 35 n 35 X X 23 Z 34 v 35
y y 23 H 34 n 36 Y Y 23 I 34 R 34
z z 23 I 29 L 34 Z Z 24 I 29 R 36

Table 3. Top-three candidates generated when given 3-pixel-strike-through character images.

Input

Top-3 Candidates
Input

Top-3 Candidates
1st 2nd 3rd 1st 2nd 3rd

C N C N C N C N C N C N
a a 26 e 36 B 41 A A 26 e 36 y 38
b b 35 t 35 L 39 B B 28 P 28 L 32
c c 29 o 36 G 46 C G 34 e 36 C 37
d d 31 J 36 K 39 D D 27 E 32 O 32
e c 37 G 38 m 45 E E 29 F 30 L 32
f f 27 t 33 e 37 F F 30 f 31 E 31
g q 36 I 42 J 44 G G 27 I 43 a 44
h h 28 H 30 f 33 H H 29 h 33 i 35
i l 31 J 36 e 38 I I 27 i 29 l 29
j j 30 J 35 K 38 J J 27 I 35 R 37
k k 26 L 35 i 37 K K 26 f 36 i 36
l l 27 i 29 I 33 L L 27 E 33 a 37

m m 26 f 39 n 41 M M 26 A 44 R 44
n n 31 o 36 L 39 N N 26 i 38 E 38
o o 34 c 35 E 42 O s 32 G 34 O 34
p p 26 D 33 e 37 P f 31 L 33 a 34
q q 29 e 42 p 42 Q Q 26 e 42 h 43
r r 29 l 37 e 43 R R 25 f 33 i 35
s s 29 R 37 m 40 S b 39 J 39 I 40
t t 27 e 36 I 36 T T 27 I 31 l 32
u u 28 w 36 G 39 U U 27 L 38 f 40
v v 29 y 41 P 42 V V 26 y 37 P 40
w N 36 w 37 q 43 W W 29 w 40 G 45
x x 27 w 43 E 45 X X 28 Z 39 v 40
y y 26 P 38 K 40 Y Y 27 e 38 M 41
z z 29 A 35 H 36 Z Z 27 I 34 e 38

13

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) The Government of USA, 2011. Used by permission to IARIA. ISBN: 978-1-61208-154-0

