
A Machine Learning-based Impact Analysis Tool
and its Improvement Using Co-occurrence

Relationships

Teppei Kawabata
Shibaura Institute of Technology

Tokyo, Japan
ma22045@shibaura-it.ac.jp

Ryota Tsukamoto

Information Technology R&D Center,
Mitsubishi Electric Corporation

Kanagawa, Japan
Tsukamoto.Ryota@dy.
mitsubishielectric.co.jp

Tsuyoshi Nakajima
Shibaura Institute of Technology

Tokyo, Japan
tsnaka@shibaura-it.ac.jp

Kazuko Takahashi

Information Technology R&D
Center, Mitsubishi Electric

Corporation Kanagawa, Japan
Takahashi.Kazuko@dx.
mitsubishielectric.co.jp

 Shuichi Tokumoto
Information Technology R&D Center,

Mitsubishi Electric Corporation
Kanagawa, Japan

Tokumoto.Shuichi@dr.
mitsubishielectric.co.jp

Abstract— In the development of diverted software, impact
analysis, which determines the extent of software impact on
change requests, is an important task because it greatly affects
the quality and efficiency of the development. We proposed a
method that machine-learns the modification histories of the
projects using word-embedding techniques and multi-label
classifiers to accurately generate a ranking list of modification
candidates of the software components in order of their sigmoid
values. To improve accuracy of the method, this paper proposes
to use the multi-label classifier algorism to take co-occurrence
between labels into account because of the assumption of the
dependencies between the components. Experiments were
conducted on actual project data to compare the accuracy of the
four algorisms: Convolutional neural networks, BR method, LP
method, and RAkEL method. The result shows that RAkEL
method, which takes co-occurrence relationships into account
and does not over-learn, has the best accuracy among them.

Keywords—impact analysis; change requests;

machine learning; co-occurrence relationships;

I. INTRODUCTION
Software impact analysis is the task of determining the

extent to which a change request affects when implemented
[1]. Its failure may result in incomplete implementation of
change requests or degrades on existing functionalities.
Therefore, when many small projects that put small changes
on a large source code base concurrently and continuously run,
the accuracy and efficiency of impact analysis is crucially
important for their development productivity and quality [2].

When conducting an impact analysis to identify the
components to be fixed in a source code base for a change
request (modification targets), the following two tasks are
required: selecting modification candidates and determining
modification targets from them. Since the latter task can only
be performed by the developers by reviewing the modification
candidates, it is important how well the former task can be
performed with complete coverage and without waste in order
to increase the accuracy and efficiency of the impact analysis.

Requirements traceability is commonly used to seek
for modification candidates. It is a discernible association
between a requirement and its relating requirements,
generally difficult to establish and maintain traceability
continuously with a high degree of accuracy. Moreover, it
is required to correctly identify the existing requirements
affected by the change request before applying the
traceability.

Iwasaki et al. [4] proposed and implemented a method
for estimating a list of components of a source program
as modification candidates directly from a change request
by machine-learning the history of changes for the change
requests. The implemented tool has two components, one
is word embedding part which translates a change request
text into a vector form, and the other is machine-learning
part which estimates modification candidates from the
change request vector. In paper [4], the machine-learning
part was implemented using a convolutional neural
network (CNN) and evaluated using real project data. The
results showed that the method works effectively when
there exist many projects each of which implements a
small set of change requests for the same source code base.

The tool provides the ranking list of components most
likely to be modified (modification candidates) in
descendant order of sigmoid value, however it does not
provide how to determine the range of modification
candidates from which the reviewer determines the
modification targets. To determine the range of
modification candidates, we set the threshold from the
actual data so that it can narrow the range to around 30%.
As a result, the rate of missing modification targets for the
candidate range was around 23% in case of the above
implementation.

In this paper, to improve the accuracy of the tool, we
propose to change machine-learning part of the tool from
CNN to the other multi- label classification algorithms
that take into account label correlations: LP (Label
Powerset) and RAkEL (RAndom k-labELsets) [12]. In
addition, for comparison of performance, CNN, and
BR (Binary Relevance) are used in the experiment. As a
result, he RAkEL shows the best results among them.

1Copyright (c) IARIA, 2023. ISBN: 978-1-68558-096-4

FASSI 2023 : The Ninth International Conference on Fundamentals and Advances in Software Systems Integration

mailto:ma22045@shibaura-it.ac.jp
mailto:Tsukamoto.Ryota@dy.mitsubishielectri
mailto:Tsukamoto.Ryota@dy.mitsubishielectri
mailto:tsnaka@shibaura-it.ac.jp
mailto:Takahashi.Kazuko@dx.mitsubishielectr
mailto:Takahashi.Kazuko@dx.mitsubishielectr
mailto:Tokumoto.Shuichi@dr.mitsubishielectr
mailto:Tokumoto.Shuichi@dr.mitsubishielectr

Section 2 describes the proposed method and its
implementation presented in paper [4], Section 3 introduces the
algorithms for multi-label classification, and Section 4
describes the experiment to compare the four implementations
and show its evaluation results.

II. PROPOSED METHOD AND ITS CNN IMPLEMENTATION

This section describes the experimental data treated in this
study and the algorithmic structure of previous studies.

A. Characteristics of the Target Project and its Deliverables
In the software development for diverse and continuously

evolving products (multi-product, small-change development
[5]), a large number of changes have been made to a source
code base to periodically add new features, customizing it for
different sets of hardware and various shipping destinations.
This type of development often causes many small projects
with multiple change requests running in parallel without
sufficient human resource with sufficient knowledge on the
source code infrastructure to perform impact analysis
accurately and efficiently.

The target project group adopts a derivative development
method called XDDP (eXtreme Derivative Development
Process) [6], in which one change design document is
supposed to be created for each change request.

This document describes the following items.

• Change Request ID
• Requirements (natural language)
• Mounting
• Details of changes to software method design

specifications
• Modification details regarding the module of the

software detailed design specification
• Description of changes made to the source code,

including names of components and modules that have
been modified

About 30 projects occur every year, and about 10 change
requests are made per project in average.

The input change request text is written in Japanese, having
20 to 400 characters, and the output is 32 components, which
the source code based has.

B. Proposed Method
The proposed method learns a large number of change

design documents to estimate modification candidates
directly from new change requests [4].

Figure 1 Configuration of the implemented tool.

As shown in Figure 1, for each change request document,
a change request text is extracted, and then a vector of change
request text is created using a word-embedding technology.
On the other hand, a component vector is created from the
information on the modified modules in the source code base
corresponding to the change request. Each index of the vector
is uniquely corresponding to some component in the source
code base, whose value is either 0 or 1 (1 means modified and
0 means unmodified).

At the time of estimation, the proposed method outputs the
ranking list of components most likely to be modified for a
new change request text.

Compared to the impact analysis using traceability, the
proposed method has the advantage of being able to select
modification candidates directly from a new change request
without burdening development activities.

Figure 2 Proposed Method for Estimating Modified
Candidates.

C. Algorithm Structure of Previous Studies
1) Text vectorization

When vectorizing a text, the text is decomposed into words
by applying the morphological analyzer mecab [7]. The
decomposed words are processed in three stages: extraction of
words to be used from all the words (word extraction),
vectorization of the words, and vector integration. The
resulting vector has 100 dimensions.

In a previous study, we tried three implementation
methods shown in Table 1 and as a result found out that noun
selection + doc2vec [8] (Implementation 3) produced the best
results.
TABLE I: IMPLEMENTATIONS EVALUATED IN PREVIOUS STUDY

Implementation
No

Word
extraction

Word
vectorization

Vector
integration

I１ Noun
selection

word2vec
(skip-gram)

Simple
averaging

I２ Full selection doc2vec

I３ Noun
selection doc2vec

2) Machine learning

The machine-learning part can be seen as the multi-label
classifier since it determines whether the 32 vectors of values
are 0s or 1s for a vector of change request text. To implement
the tool, convolutional neural networks (CNNs) have been
used as a multi-label classifier.

Figure 3 shows the structure of the implemented CNN.
The input is a 100-dimensional vector of change request text,
and the output is a 32-dimensional vector of component lists.
The reason the number of components output is 32 is that the
number of components in the data used in the experiment is
fixed at 32.

2Copyright (c) IARIA, 2023. ISBN: 978-1-68558-096-4

FASSI 2023 : The Ninth International Conference on Fundamentals and Advances in Software Systems Integration

Requirement vector
(100)

Component vector
(32)

Figure 3 Adopted structure of CNN.

Table 2 shows the metrics measured for the data of the
previous study.

TABLE II THREE METRICS FOR THE PREVIOUS STUDY

The parameters of the CNN are as follows.

• Intermediate layer: 4 (1000, 500, 300, 100)

• Number of epochs: 50

• Batch size: 50

• Learning rate: 0.1

• Function on output: sigmoid

D. Reassessment of Previous Studies and Issues
In the previous study [4], a ranking list of modification

candidates is ordered by the likelihood to be modified to a
change request. The output list contains a mixture of
modification targets and the others. The modification targets
are the components that need to be modified by the change
request.

The previous study used two metrics to evaluate its
performance: coverage range ratio and accuracy in the
coverage range, where the coverage range is up to the position
where the last modification target appears in the list.

However, prior research has not provided a method for
determining which components need to be reviewed. To do
this, we devise a method that determines a threshold on the
sigmoid value to determine the range to be reviewed, where
the threshold is to be determined from the actual data to be a
specified range ratio. In addition, we defined three metrics
shown in Figure 4 to evaluate the performance of the method.

Figure 4 Measurements to evaluate effect on impact
Analysis.

1. Candidate range ratio: percentage of components with
higher sigmoid value than the threshold out of the
number of all components.

2. Accuracy in the candidate range: percentage of
modification targets out of components in the candidate
range.

3. Missing rate: percentage of the modification targets
beyond the candidate range out of all the modification
targets.

In the Table 2, the threshold is 0.06 when A is set to 30%. In
case, the tool of the previous study resulted in B of 35% and
C of 23%. The problem is that C is considerably high. A
higher missing rate may cause bugs in the program because it
increases the likelihood of leakage of reviewing. Therefore, it
is necessary to reduce the missing rate for practical use.

E. Improvement Targets
The goal of this study is that the candidate range ratio is less

than 30% and the missing rate is 5% or less. The reason we
set the goal is that we want to keep the missing rate within the
2σ interval from the viewpoint of quality assurance, obtaining
a certain level of effort reduction of reviewing tasks.

III. ALGORITHMS FOR MULTI-LABEL CLASSIFICATION AND
CO-OCCURRENCE RELATIONSHIPS

This section explains the reasons for focusing on co-
occurrence relationships and the methods that take co-
occurrence relationships into account.

A. Co-occurrence relationships in the source code base
To improve the missing rate in the previous study, we focus

on the architectural dependencies between the components in
the source code base. Such architectural dependencies
include:

• Call Relationships
• Resource sharing relationships (communication,

memory, I/O)
• File read/write relationships
• Inheritance relationships
• Include relationships

Figure 5 Dependencies between components.

In particular, the target source code base has a layer
structure as illustrated in Figure 5, having:

• Calling relationships may occur between the
components of adjacent layers.

Input
(100)

Fully
connected

layer
(1000)

 Fully
co nnected co Fully

nnected
layer layer
(500) (300)

Fully
connected

layer
(100)

 Output
(32)

Threshold A B C

0.06 30.0％ 18.0％ 23.0％

3Copyright (c) IARIA, 2023. ISBN: 978-1-68558-096-4

FASSI 2023 : The Ninth International Conference on Fundamentals and Advances in Software Systems Integration

• Components in a specific layer (Layer B in Figure 5)
handle a common resource, causing indirect
dependencies.

Concerning this observation, we hypothesize that
components having dependencies are often modified together.
If it is true, we can improve the machine-learning part by
applying multi-label classification algorithms that take into
account label correlations to it, which may increase its
performance.

B. Algorithms for handling multi-label classification
As mentioned earlier, machine-learning in this study is

attributed to the problem of multi-label classification, in
which multiple labels are assigned to a single object [7].

The major difference between multi-label classification
and single-label classification is that it is expected to improve
accuracy by using the co-occurrence relationships between
labels in the prediction process.

In this study, in order to incorporate co-occurrence
relationships among outputs, several multi-label classifiers
are examined, with a combination with the Support Vector
Machine (SVM). SVM is a supervised learning algorithm [8]
that can be used for classification and regression problems
such as natural language processing and speech recognition.

The Binary Relevance (BR) method is one of the
representative methods for multi-label classification (without
considering correlations between labels), predicting labels by
transforming a multi-label classification into multiple single-
label classification. In detail, the BR method creates a binary
classifier for each label and outputs the sum of the classifier
results [9]. For our problem, each element of the component
vector is trained with the input sentences vector (Figure 6).

Figure 6 Configuration of the learning algorithm for the BR

method.

C. Algorithm to model co-occurrence relationships

1) Label Powersets method (LP method)
Label Powersets method (LP) is one of the basic algorisms

for multi-label classification considering the correlation
between labels.

The LP method treats each element of the power set of
labels as a class, transforming multi-label classification into
multi-class classification. A power set is all possible

Figure 7 Configuration of the learning algorithm for the LP method.

Combinations, for example, a power set of labels 1, 2, and 3
are 𝜙𝜙, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}. The LP

method use all the set except 𝜙𝜙 as classes, classifying an input
into one class.Figure 7 illustrates what pattens are to be
learned.

The LP method calculates the probability of occurrence of
a label from the sum of the probability of occurrence of the
classes in which the label appears, shown in Figure 8.

Figure 8 Estimation results for each label.

 Although the LP method has the advantage of prediction
based on co-occurrence relationships among labels, it has
some disadvantages:

• The computational complexity increases exponentially
with the number of labels.

• The number of classes increases, resulting in
overlearning when the number of data is small.

Figure 9 Creating a subset from a set of labels.

2) Random k Labelsets method (RAkEL method)

As mentioned above, the LP method has some
disadvantages when the number of labels increases. The
RAkEL method [10] was proposed to conquer them.

Figure 10 Estimation results by label.

4Copyright (c) IARIA, 2023. ISBN: 978-1-68558-096-4

FASSI 2023 : The Ninth International Conference on Fundamentals and Advances in Software Systems Integration

The RAkEL method first randomly creates label subsets of
size k for the input label set, and then applies the LP method
to each subset, as illustrated in Figure 9.

The classification results for each subset are then
integrated to predict the label, as shown in Figure 10.

The RAkEL method is an algorithm with high potential for
improving accuracy compared to the LP method because it
can significantly reduce the computational complexity of LP
calculations for subsets compared to the LP method for the
whole set, and it can also reduce the bias in the distribution
of each class value.

IV. EVALUATION AND EXPERIMENT

This section describes the experimental results and
evaluation of the proposed method.
A. Purpose of the experiment

We consider that the applicability and accuracy of the
algorithms described in previous section will differ
depending on the nature of the problem domain and the
number of available training data. To examine them, we
apply the BR, LP, and RAkEL methods to the machine
learning part of the proposed method and conduct an
experiment to compare their accuracy using the same project
data.

Our research question is whether the algorithms that take
co-occurrence relationships into account may improve the
accuracy for this problem or not. To answer this question, we
select the following four implementation of the machine-
learning part for comparison:

1. CNN (implementation in [4], already shown in Table 2)

2. BR with SVM (no consideration on co-occurrence)

3. LP with SVM

4. RAkEL with SVM

This will allow us to evaluate whether algorisms
considering co-occurrence relationships improve accuracy,
investigating effects of the LP method’s disadvantages.
Furthermore, by presenting the measurement results of the
CNN-based classifier, we will evaluate tow what extent they
improve the accuracy from the previous study.

B. Experimental data

This experiment uses data from 405 change design
documents provided. The data was divided into training and
test data at a ratio of 4:1, with 324 books used as training data
and 81 books used as test data (Figure 11). This sequence of

Figure 11 Data size used for the experiment.

experiments were conducted five times with other
combinations, and the average of the results was calculated
as the experimental result.

C. Experimental Methods

The experiment was conducted according to the following
procedure.

1. Change request sentences are vectorized by noun
extraction + doc2vec and features are extracted.

2. The machine learning component is configured using
Scikit-learn. BR/LP/RAkEL methods as multi-label
classifiers (k=3) ＋Implemented three SVMs: + SVM.

3. For the five sets of experimental data shown in Figure
11, the following were performed and averaged to
calculate the accuracy:

a) Create a training model from training data.

b) Estimation of labels is performed on the remaining
test data.

TABLE III: BR METHOD + SVM Values

Threshold
Percentage of

candidate Range

Accuracy in the

candidate range

Missing

rate

0.04 38.1% 14.7% 12.3%

0.05 33.5% 17.1% 15.2%

0.06 29.4% 19.1% 17.1%

0.07 25.7% 21.0% 20.5%

0.08 23.1% 22.4% 23.7%

0.09 21.1% 23.1% 28.1%

0.1 19.4% 24.5% 29.9%

TABLE IV: LP METHOD + SVM

Threshold

Percentage of

candidate Range

Accuracy in the

candidate range

Missing rate

0.04 46.0% 16.8% 10.0%

0.05 39.9% 18.7% 13.4%

0.06 35.8% 19.9% 16.7%

0.07 32.8% 21.0% 19.7%

0.08 29.7% 22.2% 23.0%

0.09 26.6% 23.7% 26.4%

0.1 24.1% 25.0% 29.9%

TABLE V: RAkEL method ＋SVM

405
Machine-learn

Test data(80)

Change request Proposed tool

List of modified
components

Change request
hange design
document

List of modification candidates

Training data (325)

Threshold
Percentage of

candidate Range

Accuracy in the

candidate range

Missing rate

0.04 41.4% 18.7% 9.6%

0.05 36.5% 20.8% 11.3%

0.06 32.6% 22.7% 13.5%

0.07 29.5% 24.5% 15.6%

0.08 27.2% 26.2% 16.7%

0.09 25.2% 27.6% 18.8%

0.1 23.1% 29.3% 20.9%

5Copyright (c) IARIA, 2023. ISBN: 978-1-68558-096-4

FASSI 2023 : The Ninth International Conference on Fundamentals and Advances in Software Systems Integration

D. Evaluation methods

Three measures were obtained: the candidate range ratio,
which indicates effectiveness of narrowing the review range;
the accuracy in the candidate range, which indicates amount
of waste in the review process; and the missing rate, which
indicates adequacy of determining candidate range.

The sigmoid threshold was moved in 0.01 increments until
the candidate range ratio over 30 percent. The threshold value
where it is the closest to 30 for each algorism is selected for
comparison.

E. Experimental results

Table 3-5 show the values of three measures respectively
for method 2-4. The values are shown in the range of
0.04 to 0.1 for sigmoid values, in line with previous studies.
The value when it is closest to 30% is shown.

Table 6 compares the accuracy of four methods (including
CNN’s in Table 4) around a candidate range ratio of 30%.

TABLE VI: COMPARISON RESULTS OF ALL METHODS

method
Candidate range
ratio (threshold)

Accuracy in the
candidate range Missing rate

CNN(Previous
research) 30.00% (0.06) 18.00% 23.00%

BR＋SVM 29.10% (0.06) 19.10% 17.10%

LP+SVM 29.70% (0.08) 22.20% 23.00%

RAkEL+SVM 29.50% (0.07) 24.50% 15.60%

The results of our analysis are:
• The accuracy of the error rate was improved by 5.9%

when comparing the BR method + SVM with the
conventional method (CNN). This result indicates that
SVM is more accurate than CNN for this problem.

• When comparing the BR and LP methods, the LP method
was less accurate than the BR method, which is not the
expected result because it must have superiority of the
method that takes co-occurrence relationships into
account. This is most likely due to overlearning, as the
number of output labels is as large as 32, resulting in a
huge number of combinations.

• The RAkEL + SVM method is the most accurate of the
above methods, improving the missing rate by 1.5 points
and the accuracy in the candidate range by 5.4 points
compared to the BR method (improving 7.4 and 6.5 to
CNN respectively). This result indicates that the RAkEL
method did not cause overlearning problems, showing
that the co-occurrence relationship is effective in
improving accuracy to some extent.

• The highest accuracy of the RAkEL method was 15.6%,
and the target accuracy of 5.0% or less could not be
achieved.

V. CONCLUSION
In this paper, we compared and evaluated a total of four

algorithms: two that take co-occurrence relationships into
account (LP and RAkEL) and two that do not (CNN and BR)．
The results of the experiment show that the RAkEL
method

considerably improves the accuracy from the CNN in the
previous study.

Future work includes further improvement of algorisms
such as the application of the improved RAkEL method
(overlapping version). Further validation of the effectiveness
of the proposed method by applying it to another dataset is
also needed, including exploring the necessary size of
historical data to obtain a certain accuracy.

REFERENCES
[1] S. Sikka, A. Dhamija, Software Change Impact Analysis,

BookRix, 2020.
[2] Bohner, Impact analysis in the software change process, a year

2000 perspective, Proceedings of International Conference on
Software Maintenance, 1996, pp. 42-51.

[3] ISO/IEC/IEEE 24765, 2017 Systems and software engineering
- Vocabulary.

[4] H. Iwasaki, et al, A Software Impact Analysis Tool based on
Change History Learning and its Evaluation, ICSE-SEIP '22,
May 21 – 29, 2022, Pittsburgh, PA, USA.

[5] N. Motoi, T. Nakajima, and N. Kuno, A case study of applying
software product line engineering to the air conditioner domain,
Proceedings of the 20th International Systems and Software
Product Line Conference, 2016, pp.220-226.

[6] K. Kobata, E. Nakai, and T. Tsuda, Process Improvement
using XDDP - Application of XDDP to the Car Navigation
System, 5th World Congress for Software Quality, Shanghai,
China, November 2011.

[7] T. Kudo, K. Yamamoto, and Y. Matsumoto, 2004 Applying
conditional random fields to Japanese morphological analysis,
In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, volume 2004.

[8] Q. Le, T. Milkolov, Distributed representations of sentences
and documents, International conference on machine learning,
pp.1186-1196, 2014.

[9] Y, Kosuke, et al, "Interdependence Model for Multi-label
Classification." International Conference on Artificial Neural
Networks. Springer, Cham, 2019.

[10] V. Vapnik, The nature of statistical learning theory, Springer
science & business media, 1999.

[11] G. Tsoumakas, and I. Katakis, Multilabel classification, An
overview, Int J Data Warehousing and Mining, Vol. 2007,
pp.1–13.

[12] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Random k-
labelsets for multi-label classification,” IEEE Transactions on
Knowledge and Data Engineering, vol. 99, no. 1, 201.

6Copyright (c) IARIA, 2023. ISBN: 978-1-68558-096-4

FASSI 2023 : The Ninth International Conference on Fundamentals and Advances in Software Systems Integration

