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Abstract— In the development of diverted software, impact 
analysis, which determines the extent of software impact on 
change requests, is an important task because it greatly affects 
the quality and efficiency of the development. We proposed a 
method that machine-learns the modification histories of the 
projects using word-embedding techniques and multi-label 
classifiers to accurately generate a ranking list of modification 
candidates of the software components in order of their sigmoid 
values. To improve accuracy of the method, this paper proposes 
to use the multi-label classifier algorism to take co-occurrence 
between labels into account because of the assumption of the 
dependencies between the components. Experiments were 
conducted on actual project data to compare the accuracy of the 
four algorisms: Convolutional neural networks, BR method, LP 
method, and RAkEL method. The result shows that RAkEL 
method, which takes co-occurrence relationships into account 
and does not over-learn, has the best accuracy among them. 
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I. INTRODUCTION 
Software impact analysis is the task of determining the 

extent to which a change request affects when implemented 
[1]. Its failure may result in incomplete implementation of 
change requests or degrades on existing functionalities. 
Therefore, when many small projects that put small changes 
on a large source code base concurrently and continuously run, 
the accuracy and efficiency of impact analysis is crucially 
important for their development productivity and quality [2]. 

When conducting an impact analysis to identify the 
components to be fixed in a source code base for a change 
request (modification targets), the following two tasks are 
required: selecting modification candidates and determining 
modification targets from them. Since the latter task can only 
be performed by the developers by reviewing the modification 
candidates, it is important how well the former task can be 
performed with complete coverage and without waste in order 
to increase the accuracy and efficiency of the impact analysis. 

Requirements traceability is commonly used to seek 
for modification candidates. It is a discernible association 
between a requirement and its relating requirements, 
generally difficult to establish and maintain traceability 
continuously with a high degree of accuracy. Moreover, it 
is required to correctly identify the existing requirements 
affected by the change request before applying the 
traceability. 

Iwasaki et al. [4] proposed and implemented a method 
for estimating a list of components of a source program 
as modification candidates directly from a change request 
by machine-learning the history of changes for the change 
requests. The implemented tool has two components, one 
is word embedding part which translates a change request 
text into a vector form, and the other is machine-learning 
part which estimates modification candidates from the 
change request vector. In paper [4], the machine-learning 
part was implemented using a convolutional neural 
network (CNN) and evaluated using real project data. The 
results showed that the method works effectively when 
there exist many projects each of which implements a 
small set of change requests for the same source code base. 

The tool provides the ranking list of components most 
likely to be modified (modification candidates) in 
descendant order of sigmoid value, however it does not 
provide how to determine the range of modification 
candidates from which the reviewer determines the 
modification targets. To determine the range of 
modification candidates, we set the threshold from the 
actual data so that it can narrow the range to around 30%. 
As a result, the rate of missing modification targets for the 
candidate range was around 23% in case of the above 
implementation. 

In this paper, to improve the accuracy of the tool, we 
propose to change machine-learning part of the tool from 
CNN to the other multi- label classification algorithms 
that take into account label correlations: LP (Label 
Powerset) and RAkEL (RAndom k-labELsets) [12]. In 
addition, for comparison of performance, CNN, and 
BR (Binary Relevance) are used in the experiment. As a 
result, he RAkEL shows the best results among them. 
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Section 2 describes the proposed method and its 
implementation presented in paper [4], Section 3 introduces the 
algorithms for multi-label classification, and Section 4 
describes the experiment to compare the four implementations 
and show its evaluation results. 

II. PROPOSED METHOD AND ITS CNN IMPLEMENTATION 

This section describes the experimental data treated in this 
study and the algorithmic structure of previous studies. 

A. Characteristics of the Target Project and its Deliverables 
In the software development for diverse and continuously 

evolving products (multi-product, small-change development 
[5]), a large number of changes have been made to a source 
code base to periodically add new features, customizing it for 
different sets of hardware and various shipping destinations. 
This type of development often causes many small projects 
with multiple change requests running in parallel without 
sufficient human resource with sufficient knowledge on the 
source code infrastructure to perform impact analysis 
accurately and efficiently. 

The target project group adopts a derivative development 
method called XDDP (eXtreme Derivative Development 
Process) [6], in which one change design document is 
supposed to be created for each change request. 

This document describes the following items. 

• Change Request ID 
• Requirements (natural language) 
• Mounting 
• Details of changes to software method design 

specifications 
• Modification details regarding the module of the 

software detailed design specification 
• Description of changes made to the source code, 

including names of components and modules that have 
been modified 

About 30 projects occur every year, and about 10 change 
requests are made per project in average. 

The input change request text is written in Japanese, having 
20 to 400 characters, and the output is 32 components, which 
the source code based has. 

B. Proposed Method 
The proposed method learns a large number of change 

design documents to estimate modification candidates 
directly from new change requests [4]. 

 

Figure 1 Configuration of the implemented tool. 

As shown in Figure 1, for each change request document, 
a change request text is extracted, and then a vector of change 
request text is created using a word-embedding technology. 
On the other hand, a component vector is created from the 
information on the modified modules in the source code base 
corresponding to the change request. Each index of the vector 
is uniquely corresponding to some component in the source 
code base, whose value is either 0 or 1 (1 means modified and 
0 means unmodified). 

At the time of estimation, the proposed method outputs the 
ranking list of components most likely to be modified for a 
new change request text. 

Compared to the impact analysis using traceability, the 
proposed method has the advantage of being able to select 
modification candidates directly from a new change request 
without burdening development activities. 

 

Figure 2 Proposed Method for Estimating Modified 
Candidates. 

C. Algorithm Structure of Previous Studies 
1) Text vectorization 

When vectorizing a text, the text is decomposed into words 
by applying the morphological analyzer mecab [7]. The 
decomposed words are processed in three stages: extraction of 
words to be used from all the words (word extraction), 
vectorization of the words, and vector integration. The 
resulting vector has 100 dimensions. 

In a previous study, we tried three implementation 
methods shown in Table 1 and as a result found out that noun 
selection + doc2vec [8] (Implementation 3) produced the best 
results. 
TABLE I: IMPLEMENTATIONS EVALUATED IN PREVIOUS STUDY 

 

Implementation 
No 

Word 
extraction 

Word 
vectorization 

Vector 
integration 

I１ Noun 
selection 

word2vec 
(skip-gram) 

Simple 
averaging 

I２ Full selection doc2vec 

I３ Noun 
selection doc2vec 

 
2) Machine learning 

The machine-learning part can be seen as the multi-label 
classifier since it determines whether the 32 vectors of values 
are 0s or 1s for a vector of change request text. To implement 
the tool, convolutional neural networks (CNNs) have been 
used as a multi-label classifier. 

Figure 3 shows the structure of the implemented CNN. 
The input is a 100-dimensional vector of change request text, 
and the output is a 32-dimensional vector of component lists. 
The reason the number of components output is 32 is that the 
number of components in the data used in the experiment is 
fixed at 32. 
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Requirement vector 
(100) 

Component vector 
(32) 

 
 
 
 
 
 
 
 
 

Figure 3 Adopted structure of CNN. 

 

Table 2 shows the metrics measured for the data of the 
previous study. 

TABLE II THREE METRICS FOR THE PREVIOUS STUDY 

 
 

The parameters of the CNN are as follows. 

• Intermediate layer: 4 (1000, 500, 300, 100) 

• Number of epochs: 50 

• Batch size: 50 

• Learning rate: 0.1 

• Function on output: sigmoid 

D. Reassessment of Previous Studies and Issues 
In the previous study [4], a ranking list of modification 

candidates is ordered by the likelihood to be modified to a 
change request. The output list contains a mixture of 
modification targets and the others. The modification targets 
are the components that need to be modified by the change 
request. 

The previous study used two metrics to evaluate its 
performance: coverage range ratio and accuracy in the 
coverage range, where the coverage range is up to the position 
where the last modification target appears in the list.    

However, prior research has not provided a method for 
determining which components need to be reviewed. To do 
this, we devise a method that determines a threshold on the 
sigmoid value to determine the range to be reviewed, where 
the threshold is to be determined from the actual data to be a 
specified range ratio. In addition, we defined three metrics 
shown in Figure 4 to evaluate the performance of the method. 

 

Figure 4 Measurements to evaluate effect on impact 
Analysis. 

1. Candidate range ratio: percentage of components with 
higher sigmoid value than the threshold out of the 
number of all components. 

2. Accuracy in the candidate range: percentage of 
modification targets out of components in the candidate 
range. 

3. Missing rate: percentage of the modification targets 
beyond the candidate range out of all the modification 
targets. 

In the Table 2, the threshold is 0.06 when A is set to 30%. In 
case, the tool of the previous study resulted in B of 35% and 
C of 23%. The problem is that C is considerably high. A 
higher missing rate may cause bugs in the program because it 
increases the likelihood of leakage of reviewing. Therefore, it 
is necessary to reduce the missing rate for practical use. 

E. Improvement Targets 
The goal of this study is that the candidate range ratio is less 

than 30% and the missing rate is 5% or less. The reason we 
set the goal is that we want to keep the missing rate within the 
2σ interval from the viewpoint of quality assurance, obtaining 
a certain level of effort reduction of reviewing tasks. 

III. ALGORITHMS FOR MULTI-LABEL CLASSIFICATION AND 
CO-OCCURRENCE RELATIONSHIPS 

This section explains the reasons for focusing on co-
occurrence relationships and the methods that take co-
occurrence relationships into account. 

 
A. Co-occurrence relationships in the source code base 
To improve the missing rate in the previous study, we focus 

on the architectural dependencies between the components in 
the source code base. Such architectural dependencies 
include:  

 
• Call Relationships 
• Resource sharing relationships (communication, 

memory, I/O) 
• File read/write relationships 
• Inheritance relationships 
• Include relationships 

 

Figure 5 Dependencies between components. 
 

In particular, the target source code base has a layer   
structure as illustrated in Figure 5, having: 

• Calling relationships may occur between the 
components of adjacent layers. 

Input 
(100) 

Fully 
connected 

layer 
(1000) 

 Fully 
co nnected co   Fully 

nnected 
layer layer 
(500) (300) 

Fully 
connected 

layer 
(100) 

 Output 
(32) 

Threshold A B C 

0.06 30.0％ 18.0％ 23.0％ 
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• Components in a specific layer (Layer B in Figure 5) 
handle a common resource, causing indirect 
dependencies. 

Concerning this observation, we hypothesize that 
components having dependencies are often modified together. 
If it is true, we can improve the machine-learning part by 
applying multi-label classification algorithms that take into 
account label correlations to it, which may increase its 
performance. 

B. Algorithms for handling multi-label classification 
As mentioned earlier, machine-learning in this study is 

attributed to the problem of multi-label classification, in 
which multiple labels are assigned to a single object [7]. 

The major difference between multi-label classification 
and single-label classification is that it is expected to improve 
accuracy by using the co-occurrence relationships between 
labels in the prediction process. 

In this study, in order to incorporate co-occurrence 
relationships among outputs, several multi-label classifiers 
are examined, with a combination with the Support Vector 
Machine (SVM). SVM is a supervised learning algorithm [8] 
that can be used for classification and regression problems 
such as natural language processing and speech recognition. 

The Binary Relevance (BR) method is one of the 
representative methods for multi-label classification (without 
considering correlations between labels), predicting labels by 
transforming a multi-label classification into multiple single- 
label classification. In detail, the BR method creates a binary 
classifier for each label and outputs the sum of the classifier 
results [9]. For our problem, each element of the component 
vector is trained with the input sentences vector (Figure 6). 

 

 
Figure 6 Configuration of the learning algorithm for the BR 

method. 

C. Algorithm to model co-occurrence relationships 

1) Label Powersets  method (LP method) 
Label Powersets method (LP) is one of the basic algorisms 

for multi-label classification considering the correlation 
between labels. 

The LP method treats each element of the power set of 
labels as a class, transforming multi-label classification into 
multi-class classification. A power set is all possible 

 
 

Figure 7 Configuration of the learning algorithm for the LP method. 

Combinations, for example, a power set of labels 1, 2, and 3  
are 𝜙𝜙, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}. The LP 

method use all the set except 𝜙𝜙 as classes, classifying an input 
into one class.Figure 7 illustrates what pattens are to be 
learned. 

The LP method calculates the probability of occurrence of 
a label from the sum of the probability of occurrence of the 
classes in which the label appears, shown in Figure 8. 

 
 
 
 
 
 
 
 

Figure 8 Estimation results for each label. 

     Although the LP method has the advantage of prediction 
based on co-occurrence relationships among labels, it has 
some disadvantages: 

• The computational complexity increases exponentially 
with the number of labels. 

• The number of classes increases, resulting in 
overlearning when the number of data is small. 

 
Figure 9 Creating a subset from a set of labels. 

 
2)  Random k Labelsets method (RAkEL method) 

As mentioned above, the LP method has some 
disadvantages when the number of labels increases. The 
RAkEL method [10] was proposed to conquer them. 

 

 
Figure 10 Estimation results by label. 
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The RAkEL method first randomly creates label subsets of 
size k for the input label set, and then applies the LP method 
to each subset, as illustrated in Figure 9. 

The classification results for each subset are then 
integrated to predict the label, as shown in Figure 10. 

The RAkEL method is an algorithm with high potential for 
improving accuracy compared to the LP method because it 
can significantly reduce the computational complexity of LP 
calculations for subsets compared to the LP method for the 
whole set, and it can also reduce the bias in the distribution 
of each class value. 

IV. EVALUATION AND EXPERIMENT 

This section describes the experimental results and 
evaluation of the proposed method.  
A. Purpose of the experiment 

We consider that the applicability and accuracy of the 
algorithms described in previous section will differ 
depending on the nature of the problem domain and the 
number of available training data. To examine them, we 
apply the BR, LP, and RAkEL methods to the machine 
learning part of the proposed method and conduct an 
experiment to compare their accuracy using the same project 
data.  

Our research question is whether the algorithms that take 
co-occurrence relationships into account may improve the 
accuracy for this problem or not. To answer this question, we 
select the following four implementation of the machine- 
learning part for comparison: 

1. CNN (implementation in [4], already shown in Table 2) 

2. BR with SVM (no consideration on co-occurrence) 

3. LP with SVM 

4. RAkEL with SVM 

This will allow us to evaluate whether algorisms 
considering co-occurrence relationships improve accuracy, 
investigating effects of the LP method’s disadvantages. 
Furthermore, by presenting the measurement results of the 
CNN-based classifier, we will evaluate tow what extent they 
improve the accuracy from the previous study. 

 
B. Experimental data 

This experiment uses data from 405 change design 
documents provided. The data was divided into training and 
test data at a ratio of 4:1, with 324 books used as training data 
and 81 books used as test data (Figure 11). This sequence of 

 
 
 
 
 
 
 

 

Figure 11 Data size used for the experiment. 

experiments were conducted five times with other 
combinations, and the average of the results was calculated 
as the experimental result. 

 
C. Experimental Methods 

The experiment was conducted according to the following 
procedure. 

1. Change request sentences are vectorized by noun 
extraction + doc2vec and features are extracted. 

2. The machine learning component is configured using 
Scikit-learn. BR/LP/RAkEL methods as multi-label 
classifiers (k=3) ＋Implemented three SVMs: + SVM. 

3. For the five sets of experimental data shown in Figure 
11, the following were performed and averaged to 
calculate the accuracy: 

a) Create a training model from training data. 

b) Estimation of labels is performed on the remaining 
test data. 

TABLE III: BR METHOD + SVM Values 
 

Threshold 
Percentage of 

candidate Range 

Accuracy in the 

candidate range 

Missing 

rate 

0.04 38.1% 14.7% 12.3% 

0.05 33.5% 17.1% 15.2% 

0.06 29.4% 19.1% 17.1% 

0.07 25.7% 21.0% 20.5% 

0.08 23.1% 22.4% 23.7% 

0.09 21.1% 23.1% 28.1% 

0.1 19.4% 24.5% 29.9% 

 
TABLE IV: LP METHOD + SVM 

 
Threshold 

Percentage of 

candidate Range 

Accuracy in the 

candidate range 

 
Missing rate 

0.04 46.0% 16.8% 10.0% 

0.05 39.9% 18.7% 13.4% 

0.06 35.8% 19.9% 16.7% 

0.07 32.8% 21.0% 19.7% 

0.08 29.7% 22.2% 23.0% 

0.09 26.6% 23.7% 26.4% 

0.1 24.1% 25.0% 29.9% 

   

TABLE V: RAkEL method ＋SVM 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

405 
Machine-learn 

Test data(80) 
 

Change request Proposed tool 

List of modified 
components 

Change request 
hange design 
document 

List of modification candidates 

Training data (325) 
 

Threshold 
Percentage of 

candidate Range 

Accuracy in the 

candidate range 

 
Missing rate 

0.04 41.4% 18.7% 9.6% 

0.05 36.5% 20.8% 11.3% 

0.06 32.6% 22.7% 13.5% 

0.07 29.5% 24.5% 15.6% 

0.08 27.2% 26.2% 16.7% 

0.09 25.2% 27.6% 18.8% 

0.1 23.1% 29.3% 20.9% 
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D. Evaluation methods 

Three measures were obtained: the candidate range ratio, 
which indicates effectiveness of narrowing the review range; 
the accuracy in the candidate range, which indicates amount 
of waste in the review process; and the missing rate, which 
indicates adequacy of determining candidate range. 

The sigmoid threshold was moved in 0.01 increments until 
the candidate range ratio over 30 percent. The threshold value 
where it is the closest to 30 for each algorism is selected for 
comparison. 

E. Experimental results 

Table 3-5 show the values of three measures respectively 
for method 2-4. The values are shown in the range of 
0.04 to 0.1 for sigmoid values, in line with previous studies. 
The value when it is closest to 30% is shown. 

Table 6 compares the accuracy of four methods (including 
CNN’s in Table 4) around a candidate range ratio of 30%. 

TABLE VI: COMPARISON RESULTS OF ALL METHODS 

method 
Candidate range 
ratio (threshold) 

Accuracy in the 
candidate range Missing rate 

CNN(Previous 
research) 30.00% (0.06) 18.00% 23.00% 

BR＋SVM 29.10% (0.06) 19.10% 17.10% 

LP+SVM 29.70% (0.08) 22.20% 23.00% 

RAkEL+SVM 29.50% (0.07) 24.50% 15.60% 

 

The results of our analysis are: 
• The accuracy of the error rate was improved by 5.9% 

when comparing the BR method + SVM with the 
conventional method (CNN). This result indicates that 
SVM is more accurate than CNN for this problem. 

• When comparing the BR and LP methods, the LP method 
was less accurate than the BR method, which is not the 
expected result because it must have superiority of the 
method that takes co-occurrence relationships into 
account. This is most likely due to overlearning, as the 
number of output labels is as large as 32, resulting in a 
huge number of combinations. 

• The RAkEL + SVM method is the most accurate of the 
above methods, improving the missing rate by 1.5 points 
and the accuracy in the candidate range by 5.4 points 
compared to the BR method (improving 7.4 and 6.5 to 
CNN respectively). This result indicates that the RAkEL 
method did not cause overlearning problems, showing 
that the co-occurrence relationship is effective in 
improving accuracy to some extent. 

• The highest accuracy of the RAkEL method was 15.6%, 
and the target accuracy of 5.0% or less could not be 
achieved. 

V. CONCLUSION 
In this paper, we compared and evaluated a total of four 

algorithms: two that take co-occurrence relationships into 
account (LP and RAkEL) and two that do not (CNN and BR)． 
The results of the  experiment  show  that  the  RAkEL  
method 

considerably improves the accuracy from the CNN in the 
previous study. 

Future work includes further improvement of algorisms 
such as the application of the improved RAkEL method 
(overlapping version). Further validation of the effectiveness 
of the proposed method by applying it to another dataset is 
also needed, including exploring the necessary size of 
historical data to obtain a certain accuracy. 
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