
Implementing and Deploying an Execution Environment for Multidisciplinary-Analyses

in a Heterogeneous Tool Landscape

Philipp Helle, Stefan Richter, Gerrit Schramm
Airbus Central R&T
Hamburg, Germany

email: {philipp.helle, stefan.richter, gerrit.schramm}@airbus.com

Abstract—More complex products, shorter product lifecycles,
as well as a faster entry into the market forces engineering
departments to develop and deploy new strategies. Model-based
Systems Engineering (MBSE) is thought to play a vital role to
master the current and future challenges. MBSE provides its
full benefits when the models are not only used descriptively but
also analytically. The execution of multidisciplinary analyses in
a heterogeneous tool landscape requires the development and
deployment of an analysis execution environment. Based on
microservices, message bus technology and a centrally managed
data exchange format it was possible to build a set of applications
that are efficiently extendable, maintainable and scalable. The
paper describes the implemented execution environment and
provides feedback on the technologies that were used.

Keywords–model-based systems engineering; microservices;
docker.

I. INTRODUCTION

As systems and products become more integrated and more
complex engineering departments seek strategies to cope with
their complexity. MBSE is recently gaining popularity for the
engineering of complex systems. In the majority of appli-
cations, MBSE is used descriptively rather than analytically.
While descriptive modelling is an important step towards a
formal representation of the information about a system [1],
re-using the same models for analysis provides additional ben-
efits. These benefits include a reduction of repetitive work due
to re-use and avoidance of error-prone human interaction while
model processing by using a formalized machine-readable
format.

To illustrate the need for evaluating different engineering
solutions we take the example of a regional aircraft. This
aircraft shall be analyzed regarding its propulsion system.
Two options are foreseen, either electric propulsion or jet fuel
propulsion. Both solutions require a wide-range of physical
modelling. Different engineering disciplines typically use dif-
ferent tools for their analysis. The complexity of the system
components and disciplines, in this case for an aircraft, cannot
be properly addressed by a single tool (e.g Simulink/Matlab,
Dymola) or even a tool suite (e.g. ModelCenter, 3DEXPE-
RIENCE). Some disciplines use optimized solvers encapsu-
lated in business owned tools, that do not naturally integrate
with Commercial off-the-shelf (COTS) solutions. Enabling the
execution of multidisciplinary analyses therefore requires the
development and deployment of an execution environment that
integrates this heterogeneous set of tools.

This paper provides a description of a software architecture
for executing multidisciplinary-analyses that are described in

Systems Modeling Language (SysML) models in a heteroge-
neous tool landscape. It is, in spirit, a continuation of the work
described in [2]. The major differences are:

• The use of message queuing and a publish/subscribe
pattern for service integration

• Using centrally defined message schemata to ensure
interface consistency

• Extensive use of containers and templates to improved
horizontal scaling

• A new metamodel based on the SysML standard
instead of a proprietary Domain-Specific Language
(DSL) to ensure integration into the corporate tool
landscape

This paper is structured as follows: Following this intro-
duction, Section II provides background information regarding
descriptive MBSE and the concept of Parametric Analysis
Definition Model (PAM). In Section III, the paper explains
the implementation of a computation chain for PAMs and its
components. Next, in Section IV it discusses and evaluates the
advantages of the described implementation. This is followed
by a brief outlook on challenges of automation and eco-
efficiency ahead in Section V. Section VI concludes the paper
and summarizes the most promising changes that have been
made compared to previous work.

II. MOTIVATION

The SysML tools nowadays typically come with the ca-
pability for model execution based on Activity Diagrams and
statecharts as well as the possibility of evaluating Parametric
Diagrams. These capabilities have been proven helpful to
verify the models and validate their behavior. However, they
are typically executed in the modelling tool running on a
desktop machine. This often leads to challenges regarding
scalability and reproducibility and the desktop computer is typ-
ically blocked for the duration of the analysis, which renders
long-running tasks with a runtime of several days unfeasible.
Additionally, the integration of external tools requires writing
and adding code into the model, which requires programming
skills that modelling experts do not necessarily have.

SysML’s strength is to describe and capture many aspects
of complex systems, their parts and their interdependencies.
When it comes to modelling, simulating and optimizing the
details in various disciplines, specialized domain-specific tools
do this job better and are already well-established in the
industry. The analysis of the regional aircraft with the two
propulsion options requires not only specific COTS tools to
perform the calculations for the electrical system or the jet
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propellant system, but also in-house tools for costs or weight
distribution. In order to enable the selection of the best tool
for each discipline, domain-specific tools have to be integrated
into a computational chain, where data is sent from one tool
to another to provide an overall analysis. To benefit from the
strength of modelling, e.g., to make hidden/implicit knowledge
explicit and reviewable, this kind of computational chain or
analysis, is best captured in a model as well.

To achieve this, [3] proposes a shift from purely descriptive
MBSE models towards models that also contain a description
of the analysis in the form of PAMs. A PAM is an extension
of the SysML based on SysML Activity Diagrams that allows
the description of a flow-based analysis process. A software
architecture is required to actually interpret and execute these
PAMs. Figure 1 shows a high level logical view of the
architecture that is required.

Figure 1. Architecture overview

SysML models are stored in a SysML Model Storage com-
ponent that provides typical versioning functionality. However,
access to this SysML Model Storage is slow and only possible
using a proprietary Application Programming Interface (API).
To alleviate this and to enable integrating information from
other sources, a Graph Database component is used to store
and integrate all relevant data. This database has both faster ac-
cess mechanisms and allows more sophisticated querying using
SPARQL Protocol and RDF Query Language (SPARQL). A
web-based Frontend is provided for interaction with the user.
It lists all PAMs stored in the database and allows the user
to configure and start analyses. Once a PAM is selected and
parameters are set the user can request the launch of an analysis
through the Frontend. The Analysis Execution component is
able to execute and analysis request by interpreting the PAM
and following the flow-based analysis process. As part of
the analysis execution, the Analysis Execution component has
the capability to figure out, if and which external domain
models need to be executed. It can trigger the execution of
these domain models by specialized Domain Model Execution
components and integrate the results back into the overall PAM
execution. Once every part of an analysis has been executed,
the analysis result is stored in an Analysis Result Storage
component. The process is fully asynchronous, and the user
receives a notification once a new result is available to be
displayed through the Frontend.

III. IMPLEMENTATION AND INTEGRATION

In the previous section the logical architecture of the PAM
analysis execution environment was described. This section
further explains how these logical components where imple-
mented, integrated and deployed. To address the large scope

challenges outlined in Section II it is obvious that such an
application cannot be efficiently implemented as a monolithic
software. The Micro Service Architecture (MSA) is a style
that has been increasingly gaining popularity in the last few
years [4] and has been called ’one of the fastest-rising trends
in the development of enterprise applications and enterprise
application landscapes’ [5]. Many organizations, such as Ama-
zon, Netflix, and the Guardian, utilize MSA to develop their
applications [5]. Adopting the MSA paradigm, leads to an
infrastructure with many services that may evolve over time.
Figure 2 depicts the services that have been implemented.

The different services perform different tasks. Depending
on the type and the context of each task different programming
languages are suitable for implementing the service that has
to perform the task. The MSA paradigm allows to choose the
programming language for implementing a given service that
is best suited for the task.

A typical sequence of tasks for a PAM analysis consists of
the following steps:

• The user requests an analysis through the User Inter-
face.

• The User Interface emits an analysis request message
on Pulsar through the Reverse Proxy and the Pulsar
Gateway.

• The Experiment Executor receives the message and
loads the model that is the basis of the analysis request
through the Marklogic Connector.

• The Experiment Executor interprets the model and
determines which domain models are involved in the
trade study.

• The Experiment Executor emits execution requests for
each involved domain model.

• The Task Router receives each domain model exe-
cution request and forwards it to a Domain Model
Processor that is suited to perform the request.

• The Domain Model Processors perform their re-
quested computations and emit a result message.

• The Experiment Executor collects all results, com-
putes the overall analysis result and emits one message
for storing the result and one message for notifying the
User Interface that a new result is available.

• The user receives the notification and is able to
view the analysis result that was loaded through the
Cassandra Connector in the User Interface.

Processing more complex models for an analysis and
supporting additional user needs can easily lead to an increased
number of services, e.g., to solve different domain specific
models or provide new result analysis features. To cope with
such scenarios it is important to implement measures to in-
crease efficiency of maintainability, extensibility, upgradability
and scalability of the overall architecture. Furthermore, the
strategy used by the development team to implement the
software services needs to be efficient, so that new services
can be developed and integrated quickly. The most notable
enablers with the highest impact on a successful and flexible
software implementation are:

• End-User Interface
• Inter-service messaging
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Figure 2. Detailed Architecture

• Interfacing concept
• Service Deployment

The following subsections focus on the key characteristics,
which are influencing the technology concept selection.

A. User Interface
The User Interface is an important brick of the whole

application as it needs to hide the functional complexity of
the backend services and infrastructure from the end-user. It
needs to be as flexible as the backend to adapt to new or
changed functional requirements. As Figure 2 shows, the User
Interface on the left side is the sole interface to the end-user,
i.e., the System Architect. It is made up from the following
different components.

• A Reverse Proxy to fulfill corporate security require-
ments.

• A Webserver hosting a React application to fulfill
corporate design principles.

• Two database connector services, the Marklogic Con-
nector and the Cassandra Connector that provide
access to persistent data.

• The Pulsar Gateway that provides direct access to the
broker for interaction with the analysis backend

B. Brokering and Message Queuing
When the user dispatches an analysis request several tasks

are triggered on different services. In order to coordinate this,
the architecture requires Brokering and Message Queuing.

Brokering is required to allow services to dynamically con-
nect to a service bus without the emitting service knowing the

addresses of each connected service a priori. This reduces the
effort for configuration management of the service landscape
drastically and enables horizontal scaling. Message Queuing
ensures in a scaled environment that no task is being missed
or computed twice. All services publish their requests on the
message bus The message bus routes the messages to the
services that have a subscription for it. In case a service is
currently not availability to receive a message, e.g., due to a
high workload or any temporal error, the message bus can
queue and temporarily buffer the data until the service is
accepting messages again. Depending on the selected Quality
of Service (QoS) level, messages can be sent to several
recipients in parallel or just to one for example.

Apache Pulsar, which offers both Brokering and Message
Queuing has been chosen as the implementation for this for a
number of reasons:

• Quality of Service (strong ordering and consistency
guarantees)

• Horizontal scalability (millions of independent topics
and millions of messages published per second)

• Load balancing
• Pulsar functions for implementing lightweight com-

pute processes
• Pulsar IO for connecting to other external services

such as databases
• Client API with bindings for different programming

languages

C. Service Implementation Examples
To show that different reasons influence the choice of

programming language for implementing the services, this
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subsection explains the rationale for choosing a programming
language for a subset of services.

The Experiment Executor service is implemented in Java
as some of the libraries that are used for handling the PAM
interpretation such as the graph-theory based cycle detection
exist in Java. The Sampler service that provides statistical
methods for generating random data samples is written in
Python because it is based on OpenTurns, which is exclu-
sively available in python. The Marklogic Connector and the
Cassandra Connector are programmed in TypeScript as they
provide data access in JavaScript Object Notation (JSON)
format through Hypertext Transfer Protocol (HTTP). Type-
Script is based on JavaScript and has native support of JSON,
well maintained packages for connecting to Cassandra and
Marklogic databases and integrated asynchronous web server
modules available.

An efficient service landscape consists of services written
in different languages to enable exploiting the strengths of
each language. This results in interfaces between services
implemented in different languages and requires a mechanism
to keep these interfaces coherent. Protocol Buffers [6] was
chosen for this.

D. Protocol Buffers
Providing a language independent definition of each ex-

changed message that can be translated into different languages
reduces the effort required for implementing the services and
helps debugging. It is important for the message definition to
provide serialization and deserialization functionality as well
as compatibility with all different programming languages that
are used. Googles Protocol Buffers promise to accomplish
that. In comparison to JSON or Extensible Markup Language
(XML), Protocol Buffers have a binary encoding resulting in
a smaller footprint on the network. This is important as large
analysis with many domain model invocations require many
large messages to be transmitted.

E. Containers
As already explained, different languages are required to

build the service landscape shown in Figure 2. Each service
requires a different runtime environment and is required to
scale horizontally individually, i.e., some services are required
more often than others. There are several options to automat-
ically deploy and maintain these services. Type 1 hypervisors
like Kernel-based Virtual Machines (KVM), Xen or Elastic
Sky X integrated (ESXi) in conjunction with automation tools
like Ansible or Terraform are common solutions to roll out
and maintain complex software architectures. Virtual machines
running on hypervisors can be used to run the services, but the
resource costs are high, and it requires that service developers
have a deep knowledge of the underlying operating system to
deploy their services.

A comparably lightweight alternative for service deploy-
ments are containers. The most common implementations are
Linux Containers (LXC) or Docker. Both provide a promising
set of features to support an end-to-end service automation
scenario. Docker was chosen as service deployment platform
for its wider community support, publicly available resources
and features. The following list of Docker features were
essential for choosing it as a deployment platform:

• Docker services are built from a series of layers. In
Docker, each service consists of a base layer and
every consecutive layer adds a piece of functionality.
This allows Docker to reuse services with the same
functionality across multiple services with different
base layers [7].

• Docker uses a client-server architecture. This client-
server architecture with the possibility to connect any
public or private image registry offers new possibilities
of distributed docker instances [8].

• The Docker swarm mode is Docker’s native support
for orchestrating clusters of Docker engines [9].

• Docker compose decreases the deployment effort for
complex applications. It allows configuring service
stacks consisting of multiple containers [10].

• Docker registry is a centralized store that keeps
and provides Docker layers. An individual Docker
Registry can be deployed locally or publicly avail-
able Docker registries like Docker Hub, Quay.io and
Google Container Registry can be used [11].

The combination of these key characteristics offer a valu-
able support for a Continuous Integration (CI)/Continuous
Deployment (CD) system.

IV. EVALUATION

This section evaluates the design decisions made for im-
plementing and deploying the software architecture. It explains
how the key characteristics of the selected technologies made
a difference with respect to scalability, message processing,
maintainability and implementation efficiency. Scalability de-
pends on several factors. One aspect is the better utilization
of available computational resources by horizontally scaling
services, and spreading functionality across multiple services.
The later behavior has a strong link to implementation effi-
ciency and maintainability, because smaller services with fewer
lines of code require individually less maintenance effort.
Additionally to its smaller profile of encoding/decoding and
transmission message processing is also evaluated by the de-
velopment time required to implement the message processing
into a service using certain message processing paradigms.

A. Message Bus
The message bus connects all services relevant for per-

forming PAM analyses. It is therefore a central element of the
overall application as shown in Figure 2.

The Experiment Executor acts as an orchestrator for an
analysis. It interprets the PAM, and executes it given the input
variable values provided by the end-user. During this execu-
tion, it emits messages to trigger Domain Model Processors.
When the Domain Model Processors finish their calculations
the results are sent back and the Experiment Executor acts
now as a subscriber. The signal on the message bus that a
domain calculation result is available triggers a task to store
it. A finished analysis task signals through the message bus to
the Frontend that new results can be viewed or downloaded.

The architecture diagram shows only three different domain
model processor services, i.e. Excel, Python and Functional
Mock-up Interface (FMI). This is reduced list to exemplify
the principle of an extendable pool of calculation services. In
reality, more processors have been implemented and deployed.
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Given this scenario, not using a message bus means that
every new processor attached to the system results in a new
peer-to-peer interface with the Experiment Executor. Further-
more, additional new interfaces would be required to signal
the calculation status.

Figure 3. Interface complexity: Peer-to-peer vs. message broker topology

Figure 3 compares the complexity of a peer-to-peer topol-
ogy to a message broker topology. Even if not all services
have a connection to all other services, the cost factor of the
interfaces is much higher with a peer-to-peer topology than
with a centralized broker topology.

The breakeven for an interface concept using a message
broker compared one with peer-to-peer interfaces is reached
with a service number of N = 3 already. If there are more
services than the use of a broker is in favor.

Using the message broker was especially helpful during
the initial development, when the set of services changed
constantly as the overall system grows. The development speed
for implementing new features and adding new solvers did
not slow down even when the number of logical interfaces
increased. Even unstable services during rapid prototyping
periods and testing did not compromise the availability of the
message bus. Furthermore, Pulsar supports the deployment as
container and in case of this study it means running in the
same network environment as the attached services.

B. Protocol Buffers

In the previous work published in [2], the main messaging
exchange format was JSON to be sent via HTTP Represen-
tational State Transfer (REST). Each service that sent data
defined the schema of the data itself and the receiving services
needed to look up that data schema and implement the data
deserialization. One lesson learned from that work is that
using such a decentralized message definition paradigm will
rapidly lead to high efforts to maintain consistency between
the implementation of the interfaces in the different services.

With Protocol Buffers a centralized message definition was
introduced that could be easily controlled. Protocol Buffers
support a wide range of libraries and compilers for various de-
velopment environments to enable a transparent cross-platform
interoperability. For the message instantiation in code itself,
JSON provides an equal level of human readability, but when
it comes to message schema definition, Protocol Buffers is
in favor regarding human readability. A side effect of Protocol
Buffers is the much reduced footprint of the binary data format
on the network.

// JSON
JSONArray modelParameters = manifest .getJSONArray (←↩

JSON_KEY_PARAMETERS ) ;
modelParameters .forEach (parameter −> {

JSONObject manifestParameter = (JSONObject ) parameter ;
i f (manifestParameter .has (JSON_KEY_REFERENCE ) ) {

[ . . . ]
}

}

// Protobuf
List<FieldSpec> modelParameters = manifest .←↩

getInputSpecList ( ) ;
modelParameters .forEach (parameter −> {

i f (parameter .hasReference ( ) ) {
[ . . . ]

}
}

These Java-snippets show on one limited example the
difference in traversing through a JSON and a ProtoBuf datas-
tructure. While the JSON part requires two string constants
and a downcast, the ProtoBuf part does not have any of them.
If the structure of the data is changed, the JSON part still is
valid code, but will throw a JSONFormatException or Class-
CastException at runtime. The ProtoBuf part will no longer
compile and the compiler will show the programmer exactly
where the problem is. This example shows the maintainability
advantages ProtoBuf provides.

C. Service deployment using Docker
The different functionalities of the MBSE automation ap-

proach are realized by various services using different lan-
guages. In this case the layered structure of docker images
shows its strengths, such as:

• Common functionality, e.g., corporate certificates,
proxy settings, platform configuration files, are pro-
vided as base images.

• The storage requirements of derived service specific
images consist only of the additional data added to
the base image.

• For deploying new versions of services, only the
changed layers need updates. This drastically reduces
the network footprint when pushing large images to
the registry and makes services available faster.

• With a CI/CD system in place that manages image
dependencies, changes to base images can be auto-
matically distributed to all derived services.

Some fundamental images that provide, e.g., a Maven,
Python or npm environment are retrieved from public container
registries. Sensitive derivations from these base images that
contain proprietary corporate data, can be stored in a secured
environment.

Part of the evaluation of new methods for MBSE automa-
tion was the ability to scale up to process large analysis tasks.
Using Docker in a swarm mode enabled the distribution of
the computational load across different Docker hosts. This is
required when several tasks of the same kind, e.g., for hundreds
or thousands of Design of Experiments (DoE) runs, have to be
executed in parallel or when the structure of the PAM allows
parallel execution of different tasks as shown by Figure 4.

More complex services, e.g., services that consist internally
of a number of different individual containers, have been
deployed as a stack. This eases the configuration of the
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Figure 4. Parallel Model Execution

inter-service communication across the swarm via overlay
networks which is managed by the swarm infrastructure itself.
Whole service aggregations can be started and stopped by
executing a single command or via a single click on the
swarm management Graphical User Interface (GUI). Overall,
this allowed deploying more services with a reduced functional
complexity instead of having growing services that accumulate
functionality to a level of unmanageability.

V. OUTLOOK AND FUTURE CHALLENGES

The main focus of this paper is on developing an archi-
tecture topology, applying CI/CD methodologies and using
technologies that allow a more efficient service deployment,
interaction and coupling. So far, there has not been a focus on
the automation of the infrastructure deployment. An automated
deployment not only of the services but also of the service
infrastructure provides the capability to release different evo-
lutions of the service implementations. It will also allow local
replication of services, e.g., in case a company operates world-
wide. There are a lot of challenges ahead to automate the
release of multiple container environments under corporate
restrictions, e.g., limited subnets, internet access restrictions,
corporate certificates.

Furthermore, replicating environments tie a lot of com-
putational resources. This is especially important nowadays
that the CO2 footprint of a company comes into public focus.
Therefore, in a next step also different hardware platforms with
a higher efficiency on power consumption, e.g., ARM-based
servers, will be investigated. To succeed, measures need to
be in place to have services that can run on such a hybrid
infrastructure and can scale according to the computational
requests even across those different hardware architectures.

VI. CONCLUSION

In a previous project published in [2], an approach for
distributed computations in a heterogeneous tool landscape
was already implemented. With an increasing service number
it became more challenging to maintain the system as it was
architected then. The extended analyses capabilities resulted
in an increase in the number of services due to new and more
processors for the problem evaluation. Also, the message con-
tent and structure became more exhaustive and complex. The
approach required fundamental improvements to address new
challenges such as the transition to a SysML-based modelling
approach, more complex and larger system descriptions and a

higher number of users and therefore increased computational
load.

This paper shows how these challenges lead to fundamen-
tal changes in the new architecture. The introduction of a
message bus with a publish/subscribe pattern makes a huge
difference regarding implementation efficiency, maintainability
and horizontal scaling. It also provided more system stability
and availability.

Furthermore, the transition from a locally defined JSON
based message encoding via HTTP REST towards a centrally
defined message schema definition based on Protocol Buffers
in conjunction with the message bus reduced interface incon-
sistencies between services drastically. It is now much easier
to extend the software architecture with more services to solve
even more exhaustive problem descriptions.

Code and Container templates helped to be more agile in
a CI/CD environment. New functionalities were implemented
and made available within hours. With the same development
team and the former deployment paradigm as described in [2]
such changes would have taken several days.

It can be concluded that the transition to a more structured
approach for service interoperability can have a significant im-
pact with respect to implementation time, efforts and resource
costs.
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