
JeroMF
A Software Development Framework for Building Distributed Applications Based on Microservices and

JeroMQ

Aditi Jain
Computer Science Department

Utah State University
Logan, Utah, U.S.A.

email: aditi.jain@aggiemail.usu.edu

Stephen Clyde
Computer Science Department

Utah State University
Logan, Utah, U.S.A.

email: Stephen.Clyde@usu.edu

Abstract— This paper describes the design, implementation, and
testing of a software development framework, called JeroMF,
that can help developers create scalable distributed applications
based on a microservice architecture and that uses JeroMQ (a
native Java implementation of ZeroMQ) for message passing.
JeroMF includes an execution framework and extensible
components for implementing processes, services,
communication channels, messages, communication statistics,
and encryption. Applications built with JeroMF do not require
a message broker or any other middleware processes. However,
they may include an optional Service Registry that can facilitate
service discovery and secure communications. The Service
Registry itself was implemented with JeroMF and is included as
part of the JeroMF distribution. Thorough unit, integration,
and system test cases exist for every component of JeroMF. For
validation, JeroMF was used to re-design and re-implement a
distributed health-care application with 13 separate types of
services and very strict security requirements.

Keywords-Microservices; Distributed Applications; Software
Development Frameworks.

I. INTRODUCTION
Microservices are an architectural style for structuring

applications around loosely coupled services and for making
those services as granular as possible without compromising
efficiency [1][2]. Microservices are highly maintainable,
testable, independently deployable, and scalable [3]. Also,
software engineers can organize them around business
capabilities, thereby creating systems with excellent
modularity and encapsulation, which can help with dynamic
service composition and improve overall reliability, security,
and fault tolerance. Microservices can also facilitate the
continuous deployment of large, complex applications.

However, without a development framework, an
application based on microservices can be hard to construct,
test, debug, deploy, and maintain [3][4]. Simply splitting an
application into multiple independent services generates
more artifacts to manage without necessarily obtaining the
desirable properties mentioned above. In fact, a haphazard
refactoring of a distributed application into lots of
independent services may create more complexity and
thereby making maintenance and deployment more difficult.

When building an application based on microservices,
developers need to modularize carefully, isolate relatively
independent subsets of data together with the functionality
for managing that data. Doing so will help reduce coupling
and increase cohesion [5][6], and thereby improve reuse,
maintainability, extensibility, and even scalability.

Also, when developers use microservices, they need to pay
attention to all the typical implementation details for
distributed applications, such as a) ensuring consistent
implementation of communication protocols, b) ensuring the
safety and consistency of transactions, c) achieving the
desired amount of reliability despite communication or
process failures, and d) guaranteeing the required level of
security. Because a microservice-based application may have
finer grain and diverse services and more communications
than a similar application based on a client-server or service-
oriented architectures, these challenges can be daunting and,
if poorly handled, can cause the ultimate failure of the
application.

This paper describes an open-source software
development framework, called JeroMF, for creating
distributed applications based on microservices efficiently
and effectively. Specifically, JeroMF’s goal is to make it
easier for developers to create secure and reliable distributed
applications by providing an execution framework and base
components for processes, services, communication
channels, messages, and communication statistics. JeroMF
uses JeroMQ [7], a native Java port of ZeroMQ [8], as its
communication library.

Section II provides some additional background on
distributed applications in general, microservices, and
JeroMQ. Then, Section III describes a sample application for
illustration purposes. This is followed by an overview of
JeroMF in Section IV. The full implementations for JeroMF
and the sample application are available in public Git
repositories. The URLs for these repositories are given later.

To verify JeroMF, we have created executable unit,
integration, and system test cases. These test cases provide
thorough test coverage using path and input domain
partitioning testing techniques (see Section V). To validate
JeroMF, we use it to re-design and re-implement a non-trivial

14Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

distributed application for the Utah Department of Health.
This application, called the Child Health Advanced Records
Management (CHARM) system. A brief summary of this
case study is also provided in Section V. Finally, Section VI
provides a summary and some thoughts about future work.

II. BACKGROUND AND RELATED WORK

A. Distributed Applications
A distributed application is a software system that

requires multiple processes to coordinate via network
messages to complete its tasks. As such, they have to deal
with both inter- and intra-process concurrency, as well as
delays dues to message transfer [9]. Also, except for certain
kinds of testing, the processes in a distributed application
typically run on multiple independent hardware devices and
therefore have to deal with the complexities of partial failure
due to device or network failure [10]. Many mobile, Web-
based, and enterprise applications today are actually
distributed applications.

B. Microservices
To date, there is no concrete or widely accepted definition

for microservices. Instead, microservices are general
understood to be an architectural design concept, where the
functionality of a distributed application is modularized into
relatively small cohesive services. Each microservice works
with its own data, can use other services, and can be
implemented, tested, and deployed independent of other
microservices [11].

Using microservices to build complex systems is not
entirely a new idea. It stems from ideas central to Object-
oriented Software Development [12] and that are found in
many different types of architectures and design patterns,
including Service-oriented Architecture [13], Domain-
Driven Design [14], and Bounded Context [15].
Furthermore, they are consistent with software engineering
principles, such as the Single Responsibility principle from
SOLID [16] and the unified definitions of Abstraction,
Modularization, and Encapsulation [17].

Some of the hoped-for benefits of microservices, include
independent development, deployment, and scalability [4], as
well as reusability, maintainability, and extensibility.
Unfortunately, these benefits do not come for free.
Developers must apply a wide range of expertise to address
challenge inherit to distributed applications and to achieve
designs with good modularity. Below is a summary list of
some of these challenges identified in [4]:

• Increased complexity due to application features
spanning multiple services;

• Increased complexity in setting up unit, integration,
and system tests;

• The components or subpart of a real-world system
often have poorly defined boundaries and, therefore,
mapping them to services is non-trivial;

• Developers need to be expert in analyzing and
balancing design decisions;

• Developers are responsible for the entire life cycle
of a component (service);

• The complexities of state, when stateless services
are not possible; and

• The complexities of communications, especially in
achieving certain degrees of reliability and security.

C. Software Development Frameworks
In general, software development frameworks are

collections of reusable components that provide execution
infrastructures [18] and “inversion of control” [19]. With
“inversion of control”, developers don’t have to write the
main control logic directly and can focus on the functionality
that is unique to an application [20], and can thus help
developers to be more productive. Currently, there are many
frameworks for developing distributed applications, such as
Grails [21], Angular [22], and Coco [23] to name just a few.
However, to our knowledge, none of them supports the
creation of distributed applications using microservices and
JeroMQ for communications.

D. ZeroMQ and Its Native Java Port, JeroMQ
In 2007, Pieter Hintjens along with Martin Sustrik

introduced ZeroMQ as a high-performance, asynchronous,
lightweight messaging library for scalable distributed
applications [8]. ZeroMQ is fast, simple, and provides easy
scalability. Also, it has been ported to over 40 programming
languages, including a native implementation for Java, called
JeroMQ [7]. Its application programming interface (API) for
in-process, inter-process, peer-to-peer, and multicast
communications is simple and consistent.

Developers working with ZeroMQ can create distributed
application more quickly than with lower-level socket
libraries because of its convenient abstractions and simple
API. However, ZeroMQ is just a class library and not a
development framework. As such, it does not directly
provide an execution infrastructure or “inversion of control”.
Furthermore, it does not directly help developers with the
challenges listed above.

III. SAMPLE APPLICATION
To illustrate the architecture and use of JeroMF, we use a

simple distributed application for managing used cars for
multiple dealers (see Figure 1). With this sample application,
every used-car dealer would run its own Used-car Server
(only one shown in Figure 1) and each Used-car Server would
contain a microservice, called Used-car Service. This service
would encapsulate the dealer’s own used-car data and
provide a network-accessible API that would allow remote
clients, e.g., the end user interface, to query what cars the
dealer currently has in inventory and their prices.

15Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

This sample application is minimal and only for
illustration purposes. It does not contain all of the
functionality one would expect in a real used-car application.

IV. OVERVIEW JEROMF
JeroMF is a framework that helps developers manage the

complexities identified in Section II.B, so they can build
quality distributed applications efficiently and effectively.
Specifically, JeroMF aims to make it easy for developers to

1. Setup containers (processes) of services;
2. Manage service configuration parameters;
3. Create custom services that can a) access their

own data stores, b) respond to incoming requests,
and c) discover and use other services;

4. Define and implement reliable application-level
communication protocols;

5. Use secure communications based on either
asymmetric or symmetric encryption;

6. Monitor the status of all services in a distributed
application;

7. Track service load and communication statistics;
8. Gracefully startup and shutdown services; and
9. Test services and inter-service communications.

A. Architectural Overview
The Unified Modeling Language (UML) Class Diagram

[12][24] in Figure 2 shows JeroMF’s primary packages with
their essential classes and relations. From left to right are the
base components for implementing custom processes,
application-specific services; and communications.
Developers create distributed applications in JeroMF by
implementing specializations of these components or by

reusing them directly. The following sections describe them
in more detail, beginning with the process-related
components.

B. Processes
A process in JeroMF, defined as a specialization of

BaseProcess, is an execution container that holds one or more
services. If a developer is following a strict microservice
architecture, then each JeroMF process will hold exactly one
service. However, JeroMF allows a process to hold more than
one service, at the developer’s discretion, to achieve better
execution and deployment efficiencies in certain situations.

A JeroMF process also contains a Session object, which in
turn contains a Settings object. The Session object keeps
track of the process’s name, status, Settings object, JeroMQ
context, and encryption keys. The Settings object holds all
the configurable settings for a process and its services. Each
setting has value that can be changed at runtime through
either property files, environment variables, or command-line
parameters. The Session object is shared with all the
process’s services so they can make use of that information.

Figure 3 contains a Class Diagram of used-car application,
with the components implemented by the developer in light

Figure 2. The primary packages in JeroMF with their key classes and

relationships.

Figure 1. Sample Distributed Application for Tracking Used Cars

Used-car Server

Used-car Service

Dealer
Inventory

List Cars

Get Car Price

Dealer Host Machine

User Interface

End User’s Device

Figure 3. Classes in the Used-car Application, with those
implemented by developer shown in light blue.

public class UsedCarServer extends BaseProcess {
 public static void main(String[] args){
 UsedCarServer process=new UsedCarServer();
 try {
 process.initialize(args,"server.config");
 UsedCarService service = new
 UsedCarService(instance.getSession(),
 "UsedCarsService");
 process.addService(service);
 process.run();
 }
 catch (Exception e) {e.printStackTrace(); }
 finally { process.cleanup(); }
 }

 @Override
 protected Settings createSettings() {
 return new UsedCarSettings();
 }
}

Figure 4. Implementation of the UsedCarServer class

16Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

blue. Figure 4 contains the code for UsedCarProcess from the
sample application and is typical of most JeroMF processes.
When a process starts, the main() routine calls the initialize()
method – a Template Method [25] that setups the Session and
Settings objects using virtual methods that the developer can
override in the specialization. For example, the
UsedCarProcess needs a custom Settings, so developer
simply implements a specialization of Settings (not shown)
and then overrides createSettings() method to return an
instance of that specialization. See Figure 3.

After the process is initialized, the main() method
instantiates the service that it will contain, adds it to the
process, and then calls a run() method to begin execution.
The run() method will only return once the process is stopped,
which typically occurs after a service receives a Shutdown
command or when it determines that the process needs to
enter a terminal state. Finally, once the run() method does
return, main() method will call cleanup().

C. Services
The BaseService class (see Figure 2) represents a basic

microservice with an optional database connection. It has
access to the process’s Session object, which is provided as a
parameter to the constructor. The ZmqService class is a
specialization of BaseService class that represents a
microservice with communication capabilities based on
JeroMQ. As such, it can have zero or more communicators,
i.e., instances of the Communicator class, for interacting with
clients or other services. Typically, and by default, a
ZmqService would include three communicators:

• a registration client that is responsible for listing the

service with the Registry (if application uses a
Registry), so other processes can find it and for
setting up secret keys for symmetric encryption,

• a command responder that listens for general control
messages from the Registry or some other control
process, and

• an API responder for handling requests from clients.

None of these communicators are required and are only
setup if their configuration settings have values in the
Settings object.

Although BaseService and ZmqService can be used as-is
for instantiating many types of services, they can be further
customized through specialization. Like JeroMF processes,
services have initialize() and run() methods that follow the
Template Method pattern, with the customizable parts
encapsulated in virtual methods.

Figure 5 contains a specialization of ZmqService, called
UsedCarService, for the used-car application. When a
UsedCarService is initialized, which happens when the
service is started, it calls its super’s (i.e., ZmqService’s)
initialize() method, which automatically sets up instances of
the three types of communicators listed above.

ZmqService’s initialize() method also calls its super’s
(i.e., BaseService’s) initialize() method, which sets up
everything that is needed for working with the database. The
actual opening the database connection is deferred until the
first time it is used, thereby minimizing initialization time

After calling its super’s initialize() method,
UsedCarService’s initialize() method customizes its API
Responder to handle two types of messages, namely ListCars
and GetCarPrice, by setting up message handlers for them. A
message handler for a type of message defines what kind of
encryption to expect for the incoming message and what type
of encryption to use for the reply, along with a lambda
function for processing incoming messages. In this example,
the both lambda function simply call private methods. The
private methods (implementations not shown) get a reference
to database connection using a protected method inherited
from BaseService and then use that connection to retrieve the
requested information. They return a reply message or a null,
if the desired information could not be retrieved.

D. Communicators
Communicator is an abstract base class for the objects that

handle all the communications in JeroMF. A communicator
uses JeroMQ, which in turn uses one of three transport-layer
communication mechanisms, namely: Transmission Control
Protocol (TCP), in-process (Inproc), or inter-process
communication (IPC) [26]. Each communicator has an end
point that defines both the transport-layer communication
mechanism and either the local address that the
communicator will bind to or the remote end point that it will
connect to. The details about a communicator’s end point are
encapsulated in an instance of CommInterface class.
Developers do not need to directly create or access these
objects.

JeroMF includes six reusable communicators:

public class UsedCarService
 extends ZmqService {

 UsedCarService(Session session, String srvName)
 throws ServiceException {
 super(session, srvName);
 }

 @Override
 protected void initialize()
 throws ServiceException {
 super.initialize();
 apiResponder.addMessageHandler(ListCars.class,
 EncryptionMode.None,
 EncryptionMode.None,
 msg -> listCars());
 apiResponder.addMessageHandler(GetCarPrice.class,
 EncryptionMode.None,
 EncryptionMode.None,
 msg -> getCarPrice(msg));
 }

 private Message listCars(){ … }

 private Message getCarPrice(Message request){ … }
}

Figure 5. Code snippet of UsedCarService

17Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

• The Requester and Responder communicators
handle reliable request-reply style communications
where the requester initiates all conversations

• The Active Responder and Passive Requester, which
also handle reliable request-reply style
communications, but the responder starts by
indicating its readiness to receive requests

• The Command Publisher and Command Responder,
which provide for simple but secure one-way
message broadcasts.

JeroMF also includes a special type for Requester, called
RegistrationClient, that registers services with the optional
Registry process. This was mentioned above as one of the
standard communicators for a ZmqService.

All communicators can send and receive encrypted or
unencrypted messages. For encrypted messages, a
communicator may use either asymmetric encryption based
on a public-private key pair or symmetric encryption based
on a shared secret key. For asymmetric encryption where a
communicator needs to encrypt or decrypt with a private key,
a ZmqService will give the communicator the name of the
key pair and the password for opening the private key. It
should get these values from the Settings object. For
asymmetric encryption where a communicator needs to
decrypt or encrypt a message with a public key, it can ask its
ZmqService to lookup the public key by name. If the
distributed application is using a Registry, then a ZmqService
can use the Registry to discover this public key, if it is not
already known.

Since communicators send and receive messages,
JeroMF provides a base class, called Message, for
implementing message structures quickly. Developers simply
have to create specializations of this base class and then
define appropriate data members with getters and setters.

V. TESTING AND EVALUATION

A. Verification
JeroMF was tested at the unit, integration, and system

level with executable test cases using JUnit [27]. For unit
testing, we used a combination of path testing [28] and input
domain partitioning testing [29] techniques and achieved
reasonably good coverage by striving to meet the following
criteria:

• Every statement is executed in at least one test case.
• Every possible outcome of each conditional clause

is tested in at least one test case.
• Representative examples of each boundary case for

every looping construct is executed in at least one
test case.

• Every possible exception is thrown in at least one
test case.

• Representative examples from each partition
element of each input domain for each method is
used in at least one test case.

During the unit testing, we discovered that some of the

declared exceptions from JeroMQ and other 3rd party libraries
are impossible to stimulate in automated test cases. So, our
coverage for unit testing is not 100%, but it is very close.

For integration and system testing, we also created
executable unit test cases using Junit. However, each of these
test cases have to ensure that other services are running and,
if not, start them up before executing and shut them down
afterwards. To this end, we created some utility components
for checking the status of another service, for launching a
process that contains that service, and for eventually shutting
that process down. These utilities components allow us to
create automated integration and system test cases, giving us
confidence that the individual components of JeroMF are
working together correctly and that the framework as a whole
is satisfying its requirements.

B. Validation
Validating JeroMF requires using it to develop real

distributed applications. Over the last 20 years, Utah State
University has developed a number of distributed
applications for the Utah Department of Health, including an
information broker, called the Child Health Advanced Record
Management (CHARM) system [30]. This system allows
health-care professionals to view a wide range of health-care
data for a given child from multiple data sources, securely
and in real-time. To do its job, CHARM must monitor and
interact with multiple data sources and data consumers,
matcher child records across the data sources, identify special
situations about which health-care professionals need to be
alerted, and monitor itself.

This distributed application, which has been operating
since 2006, seemed like a good candidate to re-design and re-
implement using JeroMF. It is complex, requires high levels
of security, maintainability, and extensibility. So, as an initial
case study, we selected a major portion of this system, called
the Sync Facility, and re-built this subsystem using JeroMF.

After refactoring into microservices, the Sync Facility
ended up with 16 different types of services, hosted in 13
processes. The refactoring simplified the architectural design
of the Sync Facility and improved its ability to be tested and
deployed. Though antidotal evidence, the developers also
believe that the new Sync Facility will be more maintainable
and extensible.

C. Continuous Integration and Deployment
All of JeroMF (i.e., its base components, Registry, and

utilities) and the used-car example are contained in the public
Git repositories on Bitbucket.org, under the
“usucssedevelopment” user [31]–[34]. Specifically, the base
repository [31] contains the JeroMF source code and test
cases. It compiles to a distribution package that distribution

18Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

application will import to use JeroMF. It is configured to use
CircleCI [35] for continuous integration and to automatically
deploy its distribution package to a Maven repository. The
second repository [32] contains the Registry and is itself a
program built with JeroMF. The third repository [33]
contains some utility components, such as a process launcher,
that are used for the integration and system testing of JeroMF
but can also help with the deployment and launching of
distributed applications, in general. The fourth repository
contains the a barebones but functional implementation of
used-car example [34].

VI. CONCLUSION
Our initial experience with JeroMF has provided

preliminary evidence that it is valuable framework for
implementing distributed applications based on
microservices and JeroMQ. Its BaseProcess class makes it
easy to define new service containers that can run on bare-
bones Java platforms, i.e., a platform with no Web servers or
application servers. Its BaseService and ZmqService classes
make it easy to create custom microservices that can
implement diverse and sophisticated functionality. The
predefined Communicator and Message classes allow
developers to implement common styles of communication
and provide excellent starting points for implementing
application-specific communication protocols. Also, the
Communicator class makes it easy for developers to use
either asymmetric or symmetric encryption. Furthermore,
the optional Registry process can act like a key store for the
public keys of registered services, simplifying key
management.

The JeroMF services also have built in monitoring logic
that can allow monitoring processes to either actively query
the service status or receive periodic updates from services.
Services can also track statistics about workloads and
message traffic, and then provide that information to
monitoring processes for analysis. Finally, the standard
Command Responder for a service provides a simple but
secure way to shut down or restart services.

Despite its rich set of features, JeroMF is still in its
infancy. We envision several important enhancements to
JeroMF in the near future. First, we aim to create other
specializations of BaseService, like ZmqService, that would
support different messaging libraries. For example, we plan
to create an HttpService that uses HTTP [36] instead of
JeroMQ and that has built-in support for RESTful [37]
operations. After that, we plan on implementing and testing
extensible services that will act as request proxies and load
balancers.

We also plan to conduct several empirical studies and
qualitative analyses that will aim to answer questions about
its utility, reusability, extensibility, scalability, security,
reliability, and maintainability. In preparation for some of
these studies, we will track detailed information about
software problem reports, time to resolution, induced errors
from bug fixes, and more.

Finally, we plan to create more public examples that can
help explain how to use JeroMF in build production-quality
distribution applications and to serve as testbeds for empirical
studies.

We welcome feedback and contributions from
developers who would like to use JeroMF to build distributed
applications.

REFERENCES
[1] “Microservices,” martinfowler.com. Available from: https://

martinfowler.com/articles/microservices.html. [retrieved:
Sept., 2019].

[2] D. Taibi, V. Lenarduzzi, and C. Pahl, “Architectural Patterns
for Microservices: A Systematic Mapping Study.,” presented
at the CLOSER, 2018, pp. 221–232.

[3] P. Hauer, “Microservices in a Nutshell. Pros and Cons.,”
Phillip Hauer’s Blog. Available from https://phauer.com/
2015/microservices-nutshell-pros-cons/. [retrieved: Sept.,
2019].

[4] D. Kerr, “The Death of Microservice Madness in 2018,” Dave
Kerr’s Blog, 12-Jan-2018. Available from: https:// dwmkerr.
com/the-death-of-microservice-madness-in-2018/. [retrieved:
Sept., 2019].

[5] G. Gui and P. D. Scott, “Coupling and Cohesion Measures for
Evaluation of Component Reusability,” in Proceedings of the
2006 International Workshop on Mining Software
Repositories, New York, NY, USA, 2006, pp. 18–21.

[6] I. Candela, G. Bavota, B. Russo, and R. Oliveto, “Using
Cohesion and Coupling for Software Remodularization: Is It
Enough?,” ACM Trans Softw Eng Methodol, vol. 25, no. 3, pp.
24:1–24:28, Jun. 2016.

[7] Pure Java ZeroMQ. Contribute to zeromq/jeromq development
by creating an account on GitHub. The ZeroMQ project, 2019.

[8] “ZeroMQ.” Available from: https://en.wikipedia.org/wiki/
ZeroMQ. [retrieved: Sept., 2019]

[9] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair,
Distributed Systems: Concepts and Design, 5 edition. Boston:
Pearson, 2011.

[10] J. Link, “Chapter 11 - Distributed Applications,” in Unit
Testing in Java, J. Link, Ed. San Francisco: Morgan
Kaufmann, 2003, pp. 225–240.

[11] E. Wolff, Microservices: Flexible Software Architecture, 1
edition. Addison-Wesley Professional, 2016.

[12] G. Booch et al., Object-Oriented Analysis and Design with
Applications, 3 edition. Upper Saddle River, NJ: Addison-
Wesley Professional, 2007.

[13] “What Is SOA?,” Available from: https://web.archive.org/
web/20160819141303/. [retrieved: Aug., 2019].

[14] E. Evans, Domain-Driven Design: Tackling Complexity in the
Heart of Software, 1 edition. Boston: Addison-Wesley
Professional, 2003.

[15] M. Fowler, “BoundedContext,” martinfowler.com, Available
from: https://martinfowler.com/bliki/BoundedContext.html.
[retrieved: Sept., 2019].

[16] S. Metz, “SOLID Object-Oriented Design - GORUCO 2009.”
Available from: http:// https://www.youtube.com/watch?v=v-
2yFMzxqwU. [retrieved: Sept., 2019].

[17] S. Clyde and J. E. Lascano, “Unifying Definitions for
Modularity, Abstraction, and Encapsulation as a Step Toward
Foundational Multi-Paradigm Software Engineering
Principles,” in Proceedings of the Twelfth International

19Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

Conference on Software Engineering Advances, Athens,
Greece, 2017.

[18] “Library vs. Framework?,” Program Creek, Available from:
https://www.programcreek.com/2011/09/what-is-the-
difference-between-a-java-library-and-a-framework/.
[retrieved: Sept., 2019].

[19] “Inversion of Control Containers and the Dependency
Injection pattern,” martinfowler.com. Available from: https://
martinfowler.com/articles/injection.html. [retrieved: Sept.,
2019].

[20] “The Difference Between a Framework and a Library,”
Developer News, 01-Feb-2019. Available from: https://
www.freecodecamp.org/news/the-difference-between-a-
framework-and-a-library-bd133054023f/. [retrieved: Sept.,
2019].

[21] “Grails Framework.” Available from: https://grails.org/.
[retrieved: Sept., 2019].

[22] “Angular.” Available from: https://angular.io/. [retrieved:
Sept., 2019].

[23] “Coco: A New Open-Source Blockchain Framework –
MontageJS.” MontageJS. Available from: http://montagejs.
org/coco-open-source-blockchain. [retrieved: Sept., 2019].

[24] A. S. Evans, “Reasoning with UML class diagrams,” in
Proceedings. 2nd IEEE Workshop on Industrial Strength
Formal Specification Techniques, 1998, pp. 102–113.

[25] E. Gamma, R. Helm, R. Johnson, J. Vlissides, and G. Booch,
Design Patterns: Elements of Reusable Object-Oriented
Software, 1 edition. Reading, Mass: Addison-Wesley
Professional, 1994.

[26] P. Hintjens, ZeroMQ: messaging for many applications.
O’Reilly Media, Inc., 2013.

[27] “JUnit – About.” Available from: https://junit.org/junit4/.
[retrieved: Sept., 2019].

[28] A. Watson and T. McCabe, “Structured Testing: A Testing
Methodology Using the Cyclomatic Complexity Metric,”
National Institute of Standards, NIST Special Publication 500-
235, Sep. 1996.

[29] J. Tian, “Input Domain Partitioning and Boundary Testing,” in
Software Quality Engineering: Testing, Quality Assurance,
and Quantifiable Improvement, IEEE, 2005, pp. 127–146.

[30] S. Clyde, Child-Health Advanced Record Management
Systems. Salt Lake City, Utah, USA: Utah Department of
Health, 2006.

[31] S. Clyde and A. Jain, JeroMF Base Components. Logan, Utah,
USA: Utah State University, 2019. Available from: https://
bitbucket.org/usucssedevelopment/base.git. [retrieved: Sept.,
2019].

[32] S. Clyde and A. Jain, JeroMF Registry. Logan, Utah, USA:
Utah State University, 2019. https://bitbucket.org/
usucssedevelopment/registry.git. [retrieved: Sept., 2019].

[33] S. Clyde and A. Jain, JeroMF Utilities. Logan, Utah, USA:
Utah State University, 2019. https://bitbucket.org/
usucssedevelopment/utils.git [retrieved: Sept., 2019].

[34] S. Clyde and A. Jain, JeroMF Used-car Example. Logan, Utah,
USA: Utah State University, 2019. https://bitbucket.org/
usucssedevelopment/jeromfexamples-usedcars.git [retrieved:
Sept., 2019].

[35] “Continuous Integration and Delivery,” CircleCI. Available
form: https://circleci.com/. [retrieved: Oct., 2019].

[36] J. F. Reschke and R. T. Fielding, “Hypertext Transfer Protocol
(HTTP/1.1): Authentication.” Available from: https://tools.
ietf.org/html/rfc7235. [retrieved: Sept., 2019].

[37] “What is RESTful API? - Definition from WhatIs.com,”
SearchMicroservices. Available from: https://
searchmicroservices.techtarget.com/definition/RESTful-API.
[retrieved: Sept., 2019].

20Copyright (c) IARIA, 2019. ISBN: 978-1-61208-750-4

FASSI 2019 : The Fifth International Conference on Fundamentals and Advances in Software Systems Integration

