
3D Web-Based Shape Modelling: Data Extraction and Delivery

Ali Abdallah

The National Centre for Computer Animation,
Bournemouth University
Poole, United Kingdom

E-mail: ccengineer@gmail.com

Abstract— Despite the rapid development of hardware
including specialized graphical processing units (GPUs) and
widening the bandwidth, truly interactive applications
allowing for near real-time visualization without loss of a
visual quality are still to become a reality. Building up an
adaptive 3D Web-based shape modelling environment enables
us to design platform independent 3D objects in a collaborative
manner, yet delivering compressed meshes, and images to
clients with different platforms and devices in an optimized
manner is still a difficult job. In this paper, we explore the
crucial issues of delivering 3D objects. We focus on data
transmission over different transmission bandwidths between
servers delivering the service and clients with different
platform devices. Our case study relies on a client-server
adaptive architecture, supported by different rendering
techniques, and is able to deliver compressed meshes and
images. We identify the obstacles in delivering compressed
data files as well as image streams, and present results based
on bandwidth capacity, storage size, extraction and loading
times.

Keywords- Adaptive architecture; 3D shape modelling;
compression; mesh; image streams.

I. INTRODUCTION

Online applications should be efficient and characterized
by real time response. Collecting information about clients
is a must to keep any online application updated. This
process is done using different available scenarios provided
by different online and offline resources such as hardware
changes, bandwidth monitoring, server stability and
performance, memory consumption and availability, etc.
[1].

Three major elements constitute the Web -based
collaborative 3D shape modelling environment:
Networking, Modelling and Rendering. The proposed
environment requires a way of communication between its
different parts, which is done by the Network element. 3D
shape modelling takes place using the Modelling element
which constitutes the core of the proposed environment.
Rendering is responsible for generating the geometric model
after rendering it at the GPU Level.

Polygonal meshes are considered the most common
format to store and represent 3D models. They are
embodied in the Boundary Representation (BRep). All
modern application programming interfaces (APIs) usually
support this format, and allow its implementation to the

Web browsers. However, the polygonal mesh, by definition,
is an approximation of the mathematically precise model
that have well-known issues concerned with loss of the
precise shape and visual property definition, limited
complexity, large memory consumption, problem with
transferring through networks, etc. The inability to access
the construction history is also an issue. Transmission of 3D
scenes is still a major issue in spite of the extensive research
dedicated to resolve this kind of problems [2].

Flash animations are widely used on browsers which
cannot support large amount of computational resources,
and cannot handle large data files that require high Internet
bandwidths, power GPUs and large memories. All are
accessed by the browser itself. The problem with such
option is that it does not support interactivity over the Web.
Another option to be mentioned is generating a stream of
images of a 3D model, taken from different angles covering
360 degrees, and displaying them on the browser after being
arranged and grouped. The object will be loaded as a 3D
model to the browser [3].

In a client-server architecture, 3D data is usually
generated at the server side, and presented as polygonal
meshes which are composed of vertices and facets and can
be transmitted over the network [2][4]. Delivering 3D data
and visualizing it using a Web browser over the Web is
considerably slow and requires a lot of hardware resources
(GPU and Memory) [5][6][7].

In this work, we address the problem of extracting and
delivering 3D data contents resulted from different
rendering techniques. We introduce data extraction methods
to support the data delivery process over the client-server
architecture; our aim is to optimize the extraction and the
delivery process for better performance.

The paper explores different ways of extracting and
delivering 3D models based on the used rendering
technique. We focus on extracting and delivering 3D models
built using a special adaptive 3D shape modeling
environment. The paper structure is as follows: after a
survey of related works, we describe the adaptive 3D shape
modeling environment and identify the types of models
generated based on its three rendering techniques. After
that, we discuss the data extraction methods used. The paper
discusses three different 3D content extractions and delivery
methods based on the applied rendering technique, it

5Copyright (c) IARIA, 2017. ISBN: 978-1-61208-587-6

FASSI 2017 : The Third International Conference on Fundamentals and Advances in Software Systems Integration

compares the methods based on bandwidth, data size,
computational time and visualization time. Finally, we
discuss the results, as well as some practical
recommendations reflecting the advantages and drawbacks
of the proposed extraction and delivery techniques.

II. RELATED WORK

Modern computers, and even smaller devices such as
tablets and smart phones, are equipped with suitable graphic
adapters. Kristian et al. focus on improving the global
positioning system (GPS) functionality and trying to
decrease the expenses resulted from the browser at the client
side. They try to increase performance of the current
implemented Web features by designing an extension of the
available Web document, in the form of 3D scene
description format [14].

The huge demands on the transmission of Web -based
3D scenes over the Internet from servers to clients,
accompanied by a variety of users with different hardware
platforms, devices and GPU powers, prompt researchers
focus on mesh compression techniques to ensure the
delivery of 3D objects over the Web [2][8][9][12].
Progressive meshes (PM) were presented by Hoppe [10] in
1996, as a cumulative, trimmed and continuous format of
polygonal mesh. PM are used in remote visualization, and
are capable to display objects’ details according to the
performance of the requesting client machine [5][10]. In 3D
scenes, minimizing the size of the transmitted data by
compressing the polygonal mesh is not the only concern.
The main objectives of the PM are speeding up the
transmission of 3D data, compressing associated attributes
like colour and texture, and keeping the quality level of
details. Guillaume et al. discuss the above mentioned issues
and propose an algorism that allows quick compression for
3D data and generates a binary compressed file [5].

Ramani et al. pointed out that, in order to distribute a
model, a special modeller should be installed on each client,
so that they can share and modify the same model using the
Web browser, in a collaborative manner. They mention that
some collaborative modelling systems allow editing some
operations such as changing some specific and basic
characteristics of the model. One good example of
collaboration among users is WebSPIFF [11], which is a
tool that allows users to create, modify and delete geometric
objects.

Cloud computing empowers different existing
technologies such as virtualization and parallel computing
by applying some of its characteristics, which include
rendering on demand, reliability and efficiency. Cloud
computing allows users to benefit from high computing
speed over the Web; it also allows storing a large amount of
data and real time 3D rendering. Wu et al. described some
requirements for their cloud based manufacturing, some of
which include the real-time information collection about the
clients. Another requirement is 3D models’ distribution and
sharing by accessing big data files stored on the cloud, as

well as processing and managing these data files for
modelling and rendering purposes [22].

One of the 3D data compression methods is the
curvature prediction method, discussed by Adrien et al. This
method is supported with a wavelet formulation method
designed to improve rate-distortion (R-D) performance, it is
a quantization method to increase the compression rate.
These methods are applied to a simple algorithm designed
for 2-manifold mesh compression [9].

Xinshu et al. discuss the problem of 3D sensitive
information, and suggest an intra-origin data control system
(CRYPTON), that allows owners to monitor and direct
sensitive 3D data loaded to the browser at the client side
[13].

III. ADAPTIVE 3D SHAPE MODELING ARCHITECTURE

The used modelling environment, which is an Adaptive
3D shape modelling architecture (ASMAR), is based on
Hybrid representation or HRep, which is the integration and
combination of both function and boundary representations.
HRep acquires the characteristics of both functional
representation (FRep) and boundary representation (BRep),
and allows dealing with objects as volumes having an
internal structure; it keeps the constructive tree of the
modelling process, and allows the representation of the
model in the form of a polygonal mesh.

BRep represents 3D objects in the form of a polygonal
mesh, which is the approximation of the mathematically
precise model. 3-dimensional objects are stored and
represented as a set of inter-related facets and vertices,
which when rendered, generates an image of a 3D model.
This representation can be implemented in Web browsers
because it is widely supported by the modern 3D APIs [15].
BRep can be stored in different 3D file formats using the
polygonal mesh. Such files can hold all the necessary data
needed to render the 3D object at the GPU level and they
are easy to be created, stored, and accessed. One of the main
concerns of such representation is about the loss of the
model precision with the fact that BRep, as mentioned
before, is an approximation of the real object. Another
concern is about the lack of construction history of the
object. Whenever the object is subjected to a change, the
original 3D object will be lost and replaced by the latest
version of the edited object. Another drawback is that BRep
cannot handle objects with internal structures, and it is only
concerned with the external surfaces of 3D objects rather
than their internal structures. The size of 3D data files can
be enormous when dealing with complex objects and facets.
Serious problems can arise when transferring the files over
the Internet, in addition to large memory consumption.

FRep is based on function representation of 3D models
rather than facets and vertices. Such representation reduces
the complexity of 3D models and can easily manipulate
complex objects without the need of handling large data
files and a huge amount of computational resources.
HyperFun, which is an open source and high level

6Copyright (c) IARIA, 2017. ISBN: 978-1-61208-587-6

FASSI 2017 : The Third International Conference on Fundamentals and Advances in Software Systems Integration

programming language, uses FRep [16] to implement
complex 3D models; HyperFun files are of small size and
can handle complex geometric objects [16]. Even though
FRep reserves the development track of the model, there are
still major weaknesses in using FRep models, such as the
fact that they are difficult to be treated and controlled inside
a Web browser. Browsers load 3D models using polygonal
meshes. This allows users to edit and modify 3D scenes and
objects in an interactive manner [18]. One of the serious
problems when using FRep, is the need for Java Applets to
generate and display HyperFun objects to the Web browser,
which could be a very expensive procedure and need vast
amount of computational resources.

HRep, as mentioned before, is the combination and
integration of both FRep and BRep modeling techniques. It
combines the two and synchronizes them, trying to make
use of their characteristics in an efficient way, by
eliminating the drawbacks of each one.

Since HRep is composed of two major components, the
conversion to these two components is a must. The
conversion of FRep to BRep can be done through a process
called Polygonization, which is a way of converting FRep
object surface into a polygonal mesh by creating flat
polygons to approximate shapes. Another way of conversion
FRep to BRep is voxelization, which is a procedure
responsible for the extraction of voxel representation from a
continuous geometric representation. The extraction process
can be very expensive in terms of time and resources [19].
The bi-directional conversion process, in Fig. 1, represents
the conversion of BRep to FRep, using signed distance
fields. Starting from a given polygonal mesh, using the
distance-fields technique, we are able to obtain the exact
function representation for that mesh, both the interior and
the exterior of the object can be represented [20].

Figure 1. HRep bi-directional conversion showing a two way
transformation between FRep and BRep (forward-backward).

IV. 3D DATA EXTRACTION AND DELIVERY

A. 3D Model Data File

3D models are often stored as a set of 3D points called
vertices. Indexing these vertices, allows to construct
polygons, which constitute the surface of the 3D model [21].

Object (Obj) file is based on text file with “.obj”
extension, it is an extensible 3D graphics (X3D) text based.
It allows user authorship, and it is considered as an

environment for 3D scenes construction using XML or
classic VRML encoding [21]. Open file format was
developed by Wavefront [15]. 3D Obj file was adopted by
different 3D graphic vendors because it was easy to be
imported and exported. Table I shows the structure of the
file. The indicator is a single command line followed by a
series of values representing the indicator. This digital data
is loaded into the Obj file. Our 3D shape modeling
environment is supported by special tools that allow to
access the GPU buffer, and to extract the rendered 3D object
data as vertices and facets and to save them to the Obj file
[15].

TABLE I. OBJ FILE INDICATORS AND VALUES DESCRIPTION

Indicator Description

Comment

v Vertex

vn Normal

vt Texture Coordinate

f Face

l Line

G Group

Extracting the 3D model from the GPU buffer takes
place using the Marching Cubes Algorithm [15], which is
one of the most applied rendering techniques used in 3D
modeling. The extraction process allows to access the GPU
memory and to extract both the vertices and the facets .The
extracted vertices and facets are re-assembled where
suitable obj indicators are added before being saved into the
text based Obj file.

Figure 2. Obj File showing indicator v as vertex and three different
extracted points next to each vertex as vertex values.

When completed, the obtained Obj file is loaded using
OBJLoader, a special JavaScript function declared in
Three.js JavaScript file engine. The OBJLoader function is
responsible for loading 3D models with Wave front file
format using Three.js as shown in Fig. 3 [23]. The code
below shows X3D file embedded in XML encoding.

<X3D id="x3d">
<Scene id="sc1">

<Viewpoint position="0.15255 0.10231 0.19884"

7Copyright (c) IARIA, 2017. ISBN: 978-1-61208-587-6

FASSI 2017 : The Third International Conference on Fundamentals and Advances in Software Systems Integration

orientation="- 0.27505 0.95696 0.09264
0.55979" >

</Viewpoint>
<Transform id="Hemi">

<Inline url="Hemi-spher.x3d" solid="false"></Inline>
</Transform>

</Scene>
</X3D>

Figure 3. Hemi-sphere and sake-pot complex objects loaded from Obj files.

B. Data Extraction and Delivery

The data extraction and delivery process passes through
different phases where different extraction and delivery
techniques will be applied according to the technique used
in rendering the 3D model. As shown in Fig 4, the Marching
Cubes and Hybrid WebGL use the same extraction
technique by accessing the GPU memory, extracting all
vertices and facets, saving them to a predefined Obj file and
loading the Obj file into the browser.

Figure 4. Work flow model showing three different data extraction and
delivery processes applied on three different rendered techniques starting
from GPU level.

Server based rendering uses a different approach. It
starts by accessing the GPU, not to read the points from
memory, but to take snapshots for images, from different
angels, then it sends the images as an image stream to the
client after saving them in an image matrix. The image
matrix is then displayed in the browser, as indicated in Fig
4.

The data extraction process is designed to extract and
deliver 3D data safely over the Internet. Its role is to access
the GPU buffer, extract all the needed data, save them in

Wavefront (Obj) file format, then deliver the Obj file over
the transmission media. Using (1), we can obtain all points
that constitute the 3D model [23].

(1)

Where
s: Size of the geometric cube.
pt : 3D point.
vert[]: array of extracted 3D point vertices.
vindex: vertex index.
va[] : array of all vertices.
facet: array of facets .

ptx =pt+1 (2)
pty = pt + s (3)
ptxy = pty + 1 (4)
ptz = pt +z2 (5)
ptxz = ptx + s2 (6)
ptyz = pty + s2 (7)

ptxyz = ptxy + s2 (8)

The process of extracting a vertex is shown in (9)

∑
=

=
3

0
index][i]vertices[v[]

i
vert (9)

The vertices of the whole object can be obtained using (10)

(10)

And the facets can be obtained using (11).

(11)

In our study, since we have three types of rendering
techniques (Marching cubes, Hybrid WebGL and Server
based using C++), it is useful to do experiments on the three
rendering types. Our experiments are applied to three
different models, one simple model (Android) and two
complex models (Hemi-sphere and Sake pot).

All experiments run over a 64-bit windows 7 operating
system, use Intel core i7-6700 CPU at 3.4 GHz. The
available installed RAM is 16 GB, the GPU being used is
Intel HD Graphics 530 (GT2) with 1150 MHz clock with
ability to access the main memory (2x64 bit DDR3L-1600),
we use google chrome browser version 59.0.3071.115 (64
bit).

Since we are using dynamic complex objects that are
subjected to different parameter changes, the 3D data
extraction process will directly be affected by these changes.
One of the parameters is the resolution parameter. In our
experiment, we apply the extraction process to the
resolution test, in order to monitor the extraction process

.
0 0 0

2∑
=

∑
=

∑
=

∗+∗+=
s

z

s

y

s

x
zsysxpt

∑

=

=
Nb

a

avertva

0

][[]

∑
=

∑
=

=
Nb

a
ia

i
faceface

0
]][

3

0
[

8Copyright (c) IARIA, 2017. ISBN: 978-1-61208-587-6

FASSI 2017 : The Third International Conference on Fundamentals and Advances in Software Systems Integration

time and size. The extraction test of the resolution parameter
is performed on the three different models we have.

C. Marching Cubes Data Extraction and Delivery

In this study, we use three objects, Hemi-Sphere and
Sake Pot (both are complex objects) and Android robot
(simple object). The loaded files formats are OBJ and X3D
file formats.

TABLE II. RENDERING USING MARCHING CUBES

Rendering using Marching Cubes

Hemi-Sphere
(complex
object)

Sake Pot
(complex
object)

android
(simple
object)

Loading time in sec 0.382 sec 0.275 sec 0.104 sec

No. of Vertices 52504 55652 2828

No. of Facets 27119 27814 1352

Total 79623 83466 4180
Loading Obj File in

sec 0.559 sec 0.598 sec 0.105 sec

OBJ File Size in KB 1707 KB 1875 KB 86 KB

Loading X3D File 0.001 sec 0.002 sec 0.001 sec

X3D File Size in KB 1976 KB 1902 KB 72 KB

Figure 5. Graphical representation for the total extracted vertices and
facets, comparing the 3 different objects.

After the extraction process is performed, we obtain the
following results, as shown in table II.

• The loading time difference between the three
objects is minor, with no big difference.

• The extracted facets and vertices for the two
complex objects are approximately the same, and
they are double of those of the simple objects

• The OBJ loading time of all objects is acceptable
and is less than 0.6 sec.

• The file size of the complex objects is relatively big
(more than 1.5 MByte) while that of the simple
objects is relatively small, less than 100 Kbytes.

• The loading time of the X3D file is significantly
better than that of the Obj file and is considered
relatively short.

• The X3D file size is close to the Obj File size of
the three objects.

Table II shows the variation in loading extraction time
between 0.104 sec for simple object and 0.382 sec as max
for the Hemi-sphere complex object. This variation
indicates that the extraction process can be very fast and

with no major difference between simple and complex
objects when applying Marching Cubes rendering. We can
notice that the total number of extractions for Hemi-sphere
(79623) is less than that for the sake-pot (83466) by 5%
while the extraction time for Hemi-sphere is considerably
higher (0.382 sec) than that of the sake-pot (0.275 sec) by
almost 37%. The fact is that the extraction time is not
directly proportional with the extracted number of facets
and vertices, but it is related to the complexity level of the
rendered object itself. In our case, the Hemi-sphere model is
considered more complex than the sake-pot model and that
is the reason why the extraction process taking more time.
The number of the extracted facets and vertices in Fig. 5
shows that the more vertices and facets to be extracted, the
longer the extraction time.

D. Hybrid Data Extraction and Delivery

This test is applied to two complex objects using the
Hybrid rendering technique. Here, the 3D complex objects
are subjected to a resolution parameter. The extraction
process takes place in six different phases, where the
resolution parameter is changing accordingly.

TABLE III. EXPERIMENT APPLIED ON THREE DIFFERENT
OBJECTS USING HYBRID RENDERING.

D
en

si
ty

L
o

ad
ti

m
e

in
se

c

N
o

.o
f

V
er

ti
ce

s

V
er

ti
ce

s
E

x
tr

ac
ti

on
T

im
e

N
o

.o
f

F
ac

et
s

F
ac

et
s

E
x

tr
ac

ti
on

T
im

e

T
o

ta
l

ex
tr

ac
ti

on
T

im
e

.O
bj

S
iz

e
in

K
B

Hemisphere: Complex Object using Hybrid modeling

30 0.1 sec 12868 25.7 sec 12868
17.2
sec

42.9
sec

769
KB

40 0.4 sec 12868 60.0 sec 12868
73.3
sec

133.3
sec

1787
KB

50 0.4 sec 38160 419.9 sec 38160
285.7

sec
705.7

sec
2341

KB

60 0.9 sec 55648
1076.8

sec 55648
918.5

sec
1995.4

sec
2751

KB

70 1.5 sec 73568
3584.2

sec 73568
2544.6

sec
2128.8

sec
4666

KB

80 1.7 sec 94584
8544.0

sec 94584
6585

sec
4529.0

sec
5227

KB
Sake-Pot: Complex Object using Hybrid modeling

30 0.1 sec 2636 5.7 sec 2636 3 sec
8.6
sec

157
KB

40 0.2 sec 7848 39.0 sec 7848
21.5
sec

60.5
sec

322
KB

50 0.2 sec 16460 180.2 sec 16460
90.0
sec

270.2
sec

531
KB

60 0.5 sec 28468 136.8 sec 28468
121.6

sec
258.4

sec
699
KB

70 1.3 sec 37492 124.8 sec 37492
280.2

sec
405.0

sec
1053

KB

80 2.2 sec 40488
1140.2

sec 40488
1140.2

sec
1080.4

sec
1355

KB

From the results shown in Table III, we conclude the
following:

• The loading time is increasingly changing with the
changing of the resolution of the extracted objects.
The higher the resolution, the longer the loading

9Copyright (c) IARIA, 2017. ISBN: 978-1-61208-587-6

FASSI 2017 : The Third International Conference on Fundamentals and Advances in Software Systems Integration

time needed to display the object. A simple
comparison shows that loading an object of 30%
resolution takes a small fraction of a second (0.179
sec for a Hemi-sphere) while loading the same
objects of 80% resolution takes 1.701 seconds,
which means 10 times more time is needed to load
the same object.

• The number of extracted points (vertices and
facets) increases as the resolution of the extracted
object increases. Therefore, the file size increases.

• Table III shows that the more complex the 3D
object are, the longer extraction time is needed,
because more facets and vertices are to be
extracted. Therefore, more storage space is needed
to save the Obj files.

• Fig. 6 shows a large difference in the extraction
times between two different complex objects. The
extraction time is directly affected by the resolution
of the object, the level of complexity and the
number of extracted facets and vertices.

• Fig. 7 compares the Obj file sizes, and shows that
the higher the level of complexity, the more storage
is needed to save the Obj files. In our experiment,

the Hemi-sphere needs more than 5 Mbytes to
store the Obj file of 80% resolution while it needs
less than 1.5Mbyte to store the Obj file for the
sake-pot model at the same level of resolution.

Figure 6. Graphical representation for the time taken (a) and the extracted
values (b) for Hemi-sphere (orange line) and Sake Pot (blue line)
respectively when applying the resolution parameter.

Figure 7. Bar chart representation illustrating the Obj file size with respect
to resolution parameter. As the resolution parameters increase, the file size
increases.

E. Server Based Data Extraction and Delivery

TABLE IV. EXPERIMENT APPLIED ON SAKE-POT OBJECTS USING
SERVER BASED RENDERING

Server based rendering generates images with fixed size;
the precision of the object depends on the number of
generated images. The snap-shot rate determines the rate of
captured images per sec. In our test, we apply eight different
rates starting from two and increasing up to nine. As the rate
increases, the number of generated images decreases.

Table IV shows that at rate two, the image matrix is 45
by 45 or 2025 images, while at rate nine, the image matrix
becomes 22 by 22 or 484 images only. As the snap-shot rate
increases, the number of captured images and the time taken
to generate the images decreases; therefore, the total size of
the generated images decreases as well. That means, the
higher the snap-shot rate, the more precision we obtain, and

more storage size and image generation time are needed.
Table IV reveals that when the image matrix starts to

shrink, the number of images starts to decrease, and the time
taken to generate the images starts to decrease too, since the
image size is fixed, the storage size needed to save all the
generated images is directly proportional to the number of
generated images. As a result, when the image matrix
shrinks, the precision of the 3D model is reduced, and the
storage space needed to store the object images is reduced
as well.

V. CONCLUSION

In this work, we identify and implement a special
extraction and delivery data module to extract the online
mesh (vertices and facets) and deliver the raw data after
being loaded into different file formats or image streams.

The visual and numerical results have lead us to the
following conclusions:

• Extracting raw data from the GPU buffer can be
done. The extraction time depends on the level of

S
n

ap
-s

h
ot

ra
te

M
at

ri
x

si
ze

N
o

.o
f

im
ag

es

T
im

e
ta

k
en

Im
ag

es
/s

ec

Im
ag

e
si

ze
\K

by
te

s

T
o

ta
l

si
ze

2 45*45 2025 198 sec
10
image/sec 100 KB 197.7 KB

3 42*42 1764 224 sec
7.8
image/sec 100 KB 172.2 KB

4 38*38 1444 274 sec
5.2
image/sec 100 KB 141.0 KB

5 35*35 1125 160 sec
7.0
image/sec 100 KB 109.8 KB

6 32*32 1024 166 sec
6.1
image/sec 100 KB 100 KB

7 28*28 784 126 sec
6.2
image/sec 100 KB 76.5 KB

8 25*25 625 112 sec
5.5
image/sec 100 KB 61.0 KB

9 22*22 484 104 sec
4.6
image/sec 100 KB 47.2 KB

(a) (b)

10Copyright (c) IARIA, 2017. ISBN: 978-1-61208-587-6

FASSI 2017 : The Third International Conference on Fundamentals and Advances in Software Systems Integration

complexity of the object rather than the number of
facets and vertices that exist.

• Raw data extracted from Marching Cubes or hybrid
rendering is delivered using Obj and X3D file
formats.

• Extracted objects using server based rendering use
image stream to deliver the 3D object.

• Loading the extracted file (.obj) which hides the
functions and data from users, and displays 3D
models on the browser can be done.

• There is a considerable difference when extracting
raw data between simple and complex objects, in
terms of extraction time, file size and loading time.

• Image streams can be a good solution to clients
with low GPU power, but require more storage and
bandwidth.

When comparing the three extraction tests, we can
conclude the following:
• The loading time for Hemi-sphere with Marching

Cubes rendering is almost equivalent to that of
Hybrid rendering at 40% resolution.

• The loading time for Hybrid rendering with 80%
resolution is 4.4 times higher than that of marching
cubes. That is why Hybrid rendering is best used
with powerful GPUs.

• The Obj file size loaded with Hybrid rendering at
80% resolution (5227 KB) is considerably smaller
compared with that loaded from Marching Cubes
rendering (1707 KB). That means we need more
extraction time and more GPU power in Hybrid
rendering, but lower storage to save Obj files
compared to Marching Cubes rendering.

REFERENCES

[1] Y. Jung, J. Behr, T. Drevensek, and S. Wagner, “Declarative
3D Approaches for Distributed Web-Based Scientific
Visualization Services,” Proceedings of the 1st International
Workshop on Declarative 3D for the Web Architecture, 2012.

[2] M. Limper, S. Wanger, C. Stein, Y. Jung, A. Strok, F. IGD,
and T. Darmstadt, “Fast Delivery of 3D Web Content: A case
Study, Web3D,” Proceedings of the 18th International
Conference on 3D Web Technology, pp. 11-17, 2013.

[3] M. Rodrigues, M. Kormann, and L. Davison, “A Case Study
of 3D Technologies in Higher Education: Scanning the
Metalwork Collection of Museums Sheffield and its
Implications to Teaching and Learning,” International
Conference on Information Technology. IEEE, 1-6, 2011.

[4] A. Evans, M. Romeo, A. Bahrehmand, J. Age, and J. Blat,
“3D Graphics on the Web: a Survey,” Interactive Technology
Group, University Pompeu Fabra, Barcelona, Spain. 2014.

[5] H. Lee, G. Lavoue, and F. Dupont, “Rate-distortion
Optimization for Progressive Compression of 3D Mesh with
Colour Attributes,” The Visual Computer, 137-153, 2012.

[6] M. Rezayat, “The Enterprise-Web Portal for Life-cycle
Support,” J. Computer-aided design, 2000: 32 .85-96.

[7] S. Abrahamson, D. Wallace, N. Senin, and P. Sferro,
“Integrated Design in a Servicemarket Place,” Computer-
Aided Design, 2000.

[8] J. Peng, C. Kim, And C. Jay Kuo, “Technologies for 3D Mesh
Compression: A survey,” Journal of Visual Communication
and Image Representation. Volume 16, issue 6, 2005.

[9] A. Maglo, C. Courbet, C. Alliez., and C. Hudelot,
“Prouressive Compression Of Manithld Polyzon Meshes,”
Computers and Graphics, Shape Modeling International
(S1\11) pp. 349-359. 2012.

[10] H. Hoppe, “Progressive Meshes,” Proceedings of the 23rd
Annual Conference on Computer Graphics and Interactive
Techniques, pp. 99-108. 1996.

[11] K. Ramani, A. Agrawat, and M. Babu, “CADDAC: Multi-
Client Collaborative Shape Design System with Server-based
Geometry Kernel,” in Journal of Computing and Information
Science in Engineering, volume 3, issue 2, 2003.

[12] H. Grasberger, P. Shirazian, B. Wyvill, and S. Greenberg, “A
Dataefficient Collaborative Modelling Method Using
Websockets and the Blobtree for Over-the Air Networks,” in
Proceedings of the 18th International Conference on 3D Web
Technology. New York, pp. 29–37, 2013.

[13] X. Bong, Z. Chen, H. Siadati. S. Tople. Saxena, and Z. Liang,
“Protecting Sensitive Web Content From client-side
vulnerabilities with CRYPTONs,” Proceedings of the 2013
ACM S1GSAC Conference on Computer & Communications
Security pp. 1311-1324, 2013.

[14] K. Sons, F. Klein, D. Rubinstein, S. Byelozyorov, and P.
Slusallek, “ XML3D- Interactive 3D graphics for the Web,”
Proceedings of the 15th International Conference on 3D
Technology, pp. 175-184, 2010.

[15] A. Abdallah, O. Fryazinov, V. Adzhiev, and A. Pasko, “3D
Web-Based Shape Modelling: Building up an Adaptive
Architecture,” ACI-11 2014 . The Seventh International
Conference on Advances in Computer-Human Interactions.
2014.

[16] R. Cartwright, V. Adzhiev, A. Pasko, Y. Goto, and T. Kunii,
“Web-based Shape Modelling with Hyper-Fun,” ILIN
Computer Graphics and Applications. Vol. 25. pp. 60-69,
2005.

[17] C. Vilbrandt, G. Pasko, A. Pasko, P. Fayolle, T. Vilbrandt,
and J. Goodwin, “Cultural Heritage Preservation Using
Constructive Shape Modeling,” Volume 23, number 1 pp. 25-
41, 2004.

[18] O. Fryazinov, A. Pasko, and V. Adzhiev, “An Exact
Representation of Polygonal Objects by Differentiable Scalar
Fields Based on Binary Space Partitioning,” Technical Report
“TR-NCCA-2008-03”, The National Centre for Computer
Animation. Bournemouth University. UK. 2008.

[19] J. Pantaleoni, “VoxelPipe: A Programmable Pipeline for 3D
Voxelization,” (NVIDIA), in High Performance Graphics,
2011.

[20] M. Sanchez, O. Fryazinov, and A. Pasko, “Efficient
Evaluation of Continuous Signed Distance to a Polygonal
Mesh,” 12 Proceedings of the 28th Spring Conference on
Computer Graphics, pp. 101-108, NY, USA, 2012.

[21] K. McHenry, and P. Bajcsy, “An overview of 3D Data
Content File Formats and Viewers,” National Center for
Supercomputing Application. USA. 2008.

[22] D. Wu, D. Rosen, L. Wang, and D. Schaefer, “Cloud-Based
Manufacturing: Old Wine in New Bottles? Variety
Management in Manufacturing,” Proceedings of the 47th
CIRP Conference on Manufacturing Systems, 2014.

[23] A. Abdallah, “Securing Online 3D Web-Based Models”, ICT
and Societal Challenges, LAU Beirut / New York, 2017.

11Copyright (c) IARIA, 2017. ISBN: 978-1-61208-587-6

FASSI 2017 : The Third International Conference on Fundamentals and Advances in Software Systems Integration

