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Abstract—Clinicians need transparent reasoning to trust Ar-
tificial Intelligence recommendations, but standard explanation
methods lack clinical semantics. To address this, we transform
an Onkopedia colon carcinoma guideline into a semantically
enriched Knowledge Graph by segmenting text, extracting and
merging semantic concepts, enriching gaps with registry data, and
anchoring features to graph nodes. Using a predictive model, we
compute Shapley Additive Explanations feature attributions and
generate fact-grounded narratives via large language models that
directly reference guideline evidence. We compare three contexts
across 65 synthetic colorectal cancer cases (195 narratives) and find
that KG-based narratives reduce hallucinations, speculation, and
contradictions. Embedding KG-grounded narratives in clinical
decision-support tools promises to shorten expert review cycles,
surface guideline deviations, and bridge the explainability gap
between data scientists and clinicians.

Keywords-Keywords— Explainable Artificial Intelligence; XAI;
Knowledge Graphs; Shapley Additive Explanations; SHAP; Narra-
tive Generation; Claim Verification.

I. INTRODUCTION

Clinical decision support models promise early insights but
often function as opaque black boxes [1]. Clinicians require
transparent, evidence-based explanations to understand how
input features drive predictions [2]. In practice, model develop-
ment is a collaborative, iterative process: data scientists train
and refine predictive models, generate interim explanations, and
oncologists review these artifacts against clinical knowledge,
suggest adjustments, and feed feedback into retraining until
statistical performance and clinical relevance converge. This
real-world feedback loop motivates our work.

To bridge the gap between raw model outputs and clinically
meaningful interpretation, we augment Shapley Additive Expla-
nations (SHAP) outputs with fact-grounded narratives linked
to an authoritative guideline-derived Knowledge Graph (KG).
Our contributions are threefold:

1) Extract and structure clinical guideline content into a
semantically rich KG.

2) Compute SHAP attributions for model features and anchor
them to KG nodes.

3) Generate narrative explanations referencing the KG, yield-
ing traceable, domain-specific rationales.

Standard SHAP bar charts quantify feature influence but
lack clinical semantics. By mapping attributions to KG nodes
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derived from colon carcinoma guidelines, our approach en-
riches explanations with medical context—enabling clinicians
to reason in domain-specific terms and data scientists to
identify discrepancies from accepted evidence. We therefore
ask how such fact-grounded narratives affect four claim
categories—Hallucination, Contradiction, Speculation, and
Extrapolation:

(RQ1) Does KG anchoring reduce hallucinations?
(RQ2) Does KG anchoring reduce contradictions?
(RQ3) Does KG anchoring reduce speculative statements?

(RQ4) Does it keep extrapolations within the boundaries
established by using guideline text alone?

If successful, this strategy could streamline expert review
and facilitate the way for prospective clinical validation. The
remainder of the paper is organized as follows: In Section III
we present the proposed methods, including KG construction
and narrative generation. Section IV reports quantitative
and qualitative results. Section V discusses implications and
limitations. Section VI concludes with future directions.

II. RELATED WORK

Shapley values provide theoretically grounded, local feature
attributions that have become standard in explainable clinical
ML [3], but dense bar-chart displays impose high cognitive load
on physicians [4]. To improve interpretability, template-based
systems, such as SHAPstories, convert attributions into short
rationales, yielding modest trust gains [S], while constrained
decoding in EXPLINGO reduces hallucinations in general
domains [6]. Burton et al. frame explanation verbalization as a
data-to-text task with the TEXEN corpus—496 SHAP/LIME-
to-narrative pairs—reporting factual error rates of 25%-42%
for models like BART and T5 [7]. Although these methods
enhance usability, they lack integration with domain-specific
clinical knowledge.

Evaluation of explanation quality typically distinguishes
between faithfulness—how accurately an explanation reflects
the underlying model—and plausibility—how well it aligns
with human judgment [8—10]. Kroeger et al. demonstrate
that larger language models can yield less faithful post-hoc
explanations without additional constraints [11], and Lanham
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et al. offer a fine-grained benchmark for faithfulness in chain-
of-thought reasoning [12]. Diagnostic probes, such as Walk-
the-Talk and the FaithEval suite, complement traditional lexical
overlap metrics (BLEU, ROUGE) by assessing deeper semantic
and factual fidelity [13][14]. To build upon this strand, we
introduce a structured factual-consistency framework that
quantifies divergences across four categories: Hallucination,
Extrapolation, Speculation, and Contradiction, as defined in
Table II and applied in Table IV.

Knowledge Graphs enhance semantic structure, traceability,
and bias control in otherwise opaque model explanations [15].
Typical KG construction pipelines involve text segmentation,
entity and relation extraction, canonicalization, ontology align-
ment, and population [15], while widely used biomedical
resources, like the UMLS Metathesaurus and Bio2RDF, in-
tegrate millions of curated concepts from diverse ontologies
[16]. Domain-grounding systems, such as XplainLLM, anchor
generated explanations in KG triples; DR.KNOWS integrates
UMLS—a large compendium of biomedical terminologies—for
diagnostic safety [17][18]. Cross-domain cybersecurity work
highlights that LLM-based verbalization of SHAP tables can
still wander off-fact without authoritative grounding [19].
Emerging LLM-based tools (e.g., Text2KG, LLM-Assisted
Knowledge Graph Engineering) automate parts of these
pipelines but face challenges, such as hallucination and schema
drift [20][21]. Crucially, no existing approach constructs
KGs directly from prescriptive clinical guidelines—a gap our
guideline-driven pipeline addresses by extracting semantic
concepts from Onkopedia guidelines, enriching them with
registry data, and anchoring model features to KG nodes.

Building on post-hoc feature attributions (SHAP), narrative
verbalization, domain-specific evaluation metrics, and estab-
lished KG construction pipelines, we address the challenge of
grounding model explanations in clinical evidence. We integrate
guideline-derived Knowledge Graph construction with SHAP-
anchored narrative generation to produce explanations that are
both interpretable and verifiable. We evaluate factual accuracy
by fact-checking statements in the generated narratives against
patient case records and quantify divergences from the ground
truth. This methodology yields fact-anchored narratives that
clinicians can immediately verify against clinical guidelines,
enhancing trust and accelerating prospective validation.

IIT. PROPOSED METHODS

We developed an end-to-end pipeline that (i) transforms
the Onkopedia colorectal-cancer (CRC) guideline [22] into a
semantically enriched Knowledge Graph, (ii) computes Shapley
Additive Explanations attributions on an XGBoost predictive
model to quantify feature importance, and (iii) generates fact-
grounded narrative explanations via large language models
(LLMs), which we evaluate experimentally for factual consis-
tency.

A. Knowledge Graph Representation

We represent the guideline-derived KG as a labeled directed
graph, where nodes correspond to clinical semantic concepts

(e.g., therapies, biomarkers, patient characteristics), edges
denote typed relationships between them, and both nodes and
edges carry labels derived from the medical guideline.

We implemented a six-stage pipeline to transform the CRC
guideline into a semantically enriched Knowledge Graph:

Step 1: Preprocessing & Chunking: Clean raw guideline text
(remove headers, footers) and segment into traceable
100-character chunks with metadata (chapter, page,
hash).

Concept & Relation Extraction: Apply GPT-04-
mini-high with structured prompts to extract semantic
concepts as entities with attributes (name, description,
confidence) and their inter-relations into a validated
JSON schema.

Subgraph Integration & Clustering: Merge chunk-
level subgraphs into an initial graph, cluster entities
by thematic category, consolidate identical identifiers,
and link synonyms.

Step 2:

Step 3:

Step 4: Registry Enrichment: Identify missing clinical con-
cepts, insert placeholder nodes, and enrich them with
real-world CRC registry attributes (e.g., age, KRAS

status, ECOG).
Master Graph Assembly: Integrate all enriched

subgraphs under a central root node, serialize in Mark-
down, and export to Neo4j format for queryability.

Step 5:

Step 6: Provenance Annotation: Attach detailed source meta-
data (document, chapter, page, chunk ID, hash) to

every node and edge for auditability.

B. Narrative Generation

Based on a real-world colorectal-cancer registry data schema
excerpt provided by our research partner, we built a simulation
and generated 20,000 synthetic patient records. We trained an
XGBoost model to forecast patient-level treatment decisions
and quantified feature importance with SHAP contribution
scores (¢;) using the TreeExplainer algorithm [3]. SHAP
decomposes each prediction f(x) as:

M
Fx)=do+ > ¢,
i=1

where ¢ is the model’s expected output and each ¢; the
marginal contribution of feature . We linked features to their
corresponding nodes in the guideline-derived KG, ensuring
semantic grounding. However, not all features can be anchored
to the KG, since some registry variables (e.g., body mass index
or weeks since initial diagnosis) are not guideline-based clinical
concepts. We then synthesized 65 colorectal-cancer patient
personas—each defined by demographic variables, TNM stage,
ECOG performance status, Charlson Comorbidity Index [23],
and molecular biomarker profile—and stratified them into three
complexity tiers: (i) uncomplicated cases without guideline
conflicts; (ii) biomarker-driven cases; and (iii) multimorbid
cases with conflicting recommendations. For each persona,
we computed SHAP attributions using TreeExplainer on the
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XGBoost predictive model and selected the ten highest-impact
features by absolute SHAP magnitude. We then generated
narrative explanations in three grounding contexts (OA, GL,
KG), defined in Table I, with GPT-04-mini-high, supplying
both the complete patient CSV record and the top-ten SHAP
features as patient case data. This 3 x 65 factorial design
produced 195 narratives, enabling paired comparisons of
factual consistency across grounding strategies. To evaluate
the incremental impact of integrating clinical guidelines and
Knowledge Graph information, we prompt the LLM (GPT-04-
mini-high) to generate narrative explanations under the three
controlled contexts (OA, GL, KG). All narratives follow a
standardized Markdown template to control for length and
format, ensuring identical format and length constraints across
experimental conditions.

TABLE I. GROUNDING CONTEXTS FOR NARRATIVE GENERATION

Context

OA (Only-Attributes)

Description

Patient case data alone, excluding
guideline or KG context.

Patient case data plus extracted
guideline excerpts with explicit
citations.

Patient case data and full KG in
Markdown, including labels,
relations, and provenance.

GL (Guideline)

KG (Knowledge Graph)

C. Claim Extraction and Evidence Matching

We parsed each created narrative with GPT-04-mini-high to
extract individual asserted claims (complete sentences). For
each claim, we matched its content against the patient case data
(patient attributes and corresponding SHAP attributions). The
LLM was prompted to flag each claim without direct support
in the patient case data as inferred and to classify it into four
categories: Hallucination, Contradiction, Extrapolation, and
Speculation, as defined in Table II.

TABLE II. INFERRED CLAIM CATEGORIES AND DEFINITIONS

Category Why the claim is inferred

Hallucination The claim asserts a patient-specific fact
that is not present in the case data or
SHAP features; the model introduces
new clinical information not observed in
the input.

Contradiction Claim conflicts with patient case data.

Extrapolation Guideline-consistent generalization that
lacks direct case evidence.

Speculation Conjecture with insufficient grounding

(not verifiable against case or guideline).

In the following, we illustrate examples of the LLM evaluated
claim extraction and evidence matching phase. Each category in
Table II is exemplified with excerpts from the LLM evaluation

to illustrate the four distinct ways in which a generated inferred
claim can arise. According to the Extrapolation criterion, a
claim is clinically plausible and drawn from the guideline but
lacks direct support in the patient record. For example:

“For a patient with stage I (T2 NO MO0) colon

carcinoma, complete surgical resection is curative

and no adjuvant chemotherapy is indicated.”
Here, the tumor stage (T2 NO MO) is correctly taken from the
case data, yet the recommendation about cure and omission
of chemotherapy, while guideline-based, cannot be verified
against any patient-specific attribute. Such extrapolations are
nevertheless desirable, because they showcase the language
model’s ability to enrich its output with domain knowledge and
provide broader narrative explanations rather than relying solely
on SHAP-derived feature attributions. A Speculation covers
plausible inferences that nonetheless lack explicit evidence. For
example:

“ECOG 1 (-0.12) and a high comorbidity burden

(CDRRHIGH _yes, —0.10) further lowered the proba-

bility because of toxicity concerns.”
Although ECOG and comorbidity are real features, attributing
the SHAP-driven probability drop to “toxicity concerns” is
conjectural and not encoded in the patient case. Such specu-
lation are undesirable, as it introduces clinical reasoning not
backed by case data and can mislead users about the true
factors influencing the model. By contrast, a Hallucination
arises when the model fabricates a patient-specific fact that
does not appear in the input at all. Consider:

“Difference 1: According to the guidelines, an anti-

EGFR antibody should be added for RAS-wild-type

disease, whereas the model instead selects a BRAF-

targeted agent (AB).”
This statement wrongly attributes BRAF targeting to AB—a
fact not mentioned in the case data. Such hallucinations are
undesirable because they introduce clinical assertions not
backed by case data, undermining trust in the explanation
and potentially misleading downstream decisions.

Finally, Contradiction occurs when a claim directly conflicts
with documented attributes. For instance:

“This 55-year-old man with resected rectal cancer

(T3 N1 M1) and solitary liver and lung metastases

has undergone complete surgical removal of all

metastases.”
This contradicts the record’s single-metastasis count
(NUMBER_METASTASES=1) and notes RO resection only
for the primary tumor. Such contradictions are undesirable
because they misrepresent case facts.

To validate claim extraction and evidence matching, which
were performed automatically using the OpenAl GPT-04-mini-
high model, we randomly sampled 20 claims and computed
classification accuracy with 95% Wilson-score confidence
intervals to account for small-sample inference [24]. The LLM
correctly classified 19 out of 20 cases (95% accuracy), yielding
a Wilson 95% confidence interval of 76.4%-99.1%. Even at
the lower bound, fewer than 25% of labels are expected to
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be incorrect, justifying the use of automatic evaluation for the
quantitative analyses.

IV. RESULTS

To evaluate the factual consistency of the generated narratives
across three grounding contexts—KG, GL, and OA—we report
both quantitative counts and qualitative examples. Results are
presented in three parts: overall observed vs. inferred claim
counts, composition of inferred categories, and evaluation
reliability.

A. Observed vs. Inferred Claims

We evaluated the generated narratives and labeled every
asserted claim as either observed or inferred. A claim is
observed when it is directly supported by the patient record
(e.g., tumor stage or biomarker status) or explicitly grounded
by a SHAP attribution that links a named feature to the model’s
prediction. A claim is inferred when it lacks such direct support;
inferred claims were further categorized.

TABLE III. OVERALL OBSERVED VS. INFERRED CLAIM COUNTS BY

CONTEXT
Context Total O % Observed
KG 1128 367 761 32.5%
GL 1125 243 882 21.6%
OA 1107 395 712 357 %

We report the proportion of observed versus inferred claims
across the 195 narratives. Table III summarizes the total number
of observed (v') and inferred (O) claims across the three
grounding contexts. Narratives generated with KG grounding
achieved 32.5 % observed claims (367/1 128), outperforming
the GL context, which yielded only 21.6 % (243/1 125). The
OA context performed comparably to KG with 35.7 % observed
claims (395/1 107 vs. KG).

Overall observed vs. inferred claim counts

1000 A
800 -
600

400

Number of claims

200 A

OA

KG GL
B Observed mm Inferred

Figure 1. Overall observed vs. inferred claim counts by context (observed =
case/SHAP-backed; inferred = not directly case-backed).

Figure 1 plots overall observed vs. inferred claim counts
by context. Observed shares differed across the three contexts:
explanations grounded in the KG achieved higher observed
shares than those from the GL baseline, while OA and KG
did not differ much. These findings indicate that KG-grounded
input improves consistency over GL-context narratives, while

OA may benefits from a narrower input scope with fewer
opportunities for inferred claims.

B. Inferred Claim Categories

Table IV details the distribution of inferred claims by
category—Extrapolation, Speculation, Hallucination, and
Contradiction—expressed as a percentage of total claims in
each context.

TABLE IV. INFERRED CLAIM CATEGORY RATES (PERCENTAGE OF TOTAL

CLAIMS)
Category KG GL OA
Extrapolation 64.8% 73.7% 61.9%
Speculation 05% 20% 1.1%
Hallucination 0.0% 04% 02%
Contradiction 0.1%  0.6% 1.1%

Extrapolation is the predominant inferred category across
all contexts. However, the KG condition achieves substantial
gains in factual precision and safety: no hallucinations were
observed under this setup (0.0 %), speculation drops to 0.5 %,
and contradictions fall to just 0.1 %. In contrast, the GL context
shows higher rates of speculation (2.0 %) and contradiction
(0.6 %).

Extrapolation rates by context
100% -

80% A

73.7%

60% -

40% -

% total claims

20% A

0% -
Other inferred category rates by context
3.00% A

2.50% A
2.00% A

1.50% A

% total claims

1.00%

0.50% -

0.00% -

OA

KG GL

B Hallucination B Contradiction

B Extrapolation mmm Speculation

Figure 2. Inferred claim category composition per context (% of total claims).

Figure 2 visualizes these differences as stacked bars (%
of total claims). The KG approach yields markedly fewer
speculative and contradictory issues than both the GL and
OA baselines, and reduces extrapolation by nine percentage
points compared to GL. Despite these gains, many claims
remain inferred, reflecting our design choice to allow clinically
plausible, guideline-based extrapolations that may not be
explicitly present in the patient record. These results support
RQ1 (hallucination), RQ2 (contradiction), RQ3 (speculation),
and RQ4 (extrapolation).
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C. Qualitative Illustrations

Table V presents an excerpt of one narrative of the same case
under the different grounding contexts. The KG narrative cites
a unique guideline node [27205d9] and the recorded feature
RASIwildtype, both verifiable in the case file, demonstrating
domain-rich yet fact-bound explanation. By comparison, the
GL narrative, while fluent, infers “stage III disease” solely from
N1 and offers no patient-specific evidence for adjuvant need,
showing readability at the expense of precision. The OA excerpt
repeats guideline buzzwords (“high-risk stage III”’) relying on
generic statements (73 NI MO0), resulting in the most vague
prose. For completeness, the last example in Table V presents
an GL hallucination example. The mentioned fact— “left-
sided tumor (+0.04)”—illustrates a feature not present in the
patient case and most likely misattributed from the referenced
guideline’s (§6.1.4.3.1.1) metastatic EGFR-therapy discussion,
underscoring how lack of authoritative grounding can introduce
factual errors.

TABLE V. REPRESENTATIVE NARRATIVE EXCERPTS ACROSS GROUNDING
CONTEXTS, WITH GL HALLUCINATION EXPLICITLY MARKED

Context

KG

Narrative Excerpt

Both guideline and model utilise an oxaliplatin +
fluoropyrimidine backbone [27205d9]; the SHAP
feature RASlwildtype supports full cytotoxic
sensitivity.

The SHAP value for NI (0.28) flags stage
III disease and confirms the need for adjuvant
therapy (guideline §6.1.3).

Both guideline and model emphasise high-risk
stage III features (73 NI MO) as key drivers of
therapy intensification.

Hallucination: RAS wildtype (+0.03) and left-
sided tumor (+0.04) slightly increased probabil-
ity, mapping to metastatic guidelines for EGFR-
directed therapy (guideline §6.1.4.3.1.1).

GL

OA

GL

The GL hallucination example highlights a reference to a non-existent feature
(left-sided tumor).

Together, these qualitative vignettes also reinforce our
quantitative results: The KG-grounded narrative delivers deep,
context-rich explanations that remain verifiable, while the GL
outputs sacrifice fidelity for readability and the OA outputs rely
on overly generic statements, evidencing a tendency toward
vagueness.

V. DISCUSSION

Our study demonstrates that anchoring narrative explanations
in a guideline-derived KG improves factual reliability. The KG
context reduced hallucinations to 0.0% of total claims in our
sample—i.e., none were observed under this setup—supporting
RQI. Moreover, contradictions dropped to 0.1% and speculative
claims to 0.5% of total claims, supporting RQ2 and RQ3 that
KG grounding reduces both contradictions and speculation.

Moreover, anchoring explanations in the KG cut extrapola-
tion rates from 73.7 % under the GL context to 64.8 %—a 9.0
percentage-point drop—demonstrating that guideline-derived
KG grounding effectively constrains extrapolations to within
established bounds and thereby confirms RQ4 (See Table IV).

Although the OA context exceeds KG in overall observed-
claim rate (35.7% vs. 32.5%), its narrower input scope yields
shallower, less semantically rich narratives. OA’s lower extrap-
olation rate (61.9%) comes at the expense of actionable detail,
whereas KG grounding delivers fully audit-ready, guideline-
anchored explanations (See Table III and Figure 2). Finally, the
relatively high share of inferred claims across conditions largely
reflects clinically plausible, guideline-based extrapolations that
provide useful framing but may not be directly present in patient
records. In settings that require stricter evidencing, prompts or
decoding constraints can restrict extrapolation at the cost of
brevity; conversely, future work may calibrate this trade-off
per user role (e.g., clinical vs. data science review).

These findings extend prior LLM explainers by showing
that structured KG context not only enriches inference but
also constrains factual drift [7]. We note that the absence of
hallucinations should not be interpreted as impossibility; rather,
it likely reflects the combination of KG constraints and the
controlled, synthetic case distribution used here.

In practice, clinicians must rapidly validate Al recom-
mendations. The traceable paths in KG narratives—Ilinking
each feature attribution to specific guideline nodes—can
reduce expert review time by directly surfacing conflicts or
affirmations in the guideline text. In our qualitative examples
(Table V), KG narratives allowed unambiguous verification
of treatment rationale, whereas GL outputs required additional
cross-checking. We anticipate that integrating KG-grounded
narratives into decision-support dashboards will shorten itera-
tion cycles between data scientists and clinicians, as envisaged
in collaborative Al workflows [25].

Our evaluation is constrained by some factors. First, we
used 65 synthetic patient personas rather than real-world cases;
while this allowed controlled variation, it may not capture
the full complexity of clinical data. Second, we benchmarked
against a single guideline (Onkopedia CRC) and one LLM
version (GPT-04-mini-high); generalization to other specialties
or model variants remains to be demonstrated. Third, our error
annotations—though 95% accurate in spot-checks—rely on an
automated evaluation LLM; residual misclassifications could
slightly bias absolute error rates. Finally, we measured only
claim-level errors; additional dimensions such as usability,
cognitive load, and end-user satisfaction were not assessed
here.

VI. CONCLUSION AND FUTURE WORK

Having demonstrated through our evaluations that KG-
grounded narrative explanations outperform both attribute-only
and guideline-excerpt baselines in factual reliability, we now
outline directions to build on this work. To address limitations
and extend our findings, we propose the following directions:
(1) Apply the pipeline to real-world data and diverse guidelines;
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quantify clinician review time and simulated decision impact.
(2) Tteratively refine KG-narrative prompts with user feedback
and on-the-fly graph augmentation, aligning with human-
centered XAl [5]. (3) Evaluate usability, trust calibration, and
clinical actionability; extend metrics (e.g., comprehensiveness,
empowerment).

Overall, our results confirm that fact-grounded narrative
explanations built on guideline-derived Knowledge Graphs
deliver superior factual reliability and coherence compared to
attribute-only or guideline-excerpt baselines. By transparently
linking model attributions to clinical evidence, this approach
paves the way for more trustworthy, actionable Al in health-
care—bridging the critical gap between statistical performance
and domain relevance.
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