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Abstract—Recommendation systems are designed to rank
items according to users’ predicted interest. As these systems
increasingly affect choices in domains like e-commerce and media,
understanding the reasoning behind their rankings becomes
essential. However, most existing approaches that explain recom-
mendations focus on individual predictions, rather than explaining
why one item is prioritized over another. To bridge this gap, this
paper introduces RanXplain, an approach specifically designed
to explain the ranking decisions produced by recommendation
models. RanXplain operates as a separate machine learning
model trained on pairs of items, using features that are derived
from the original ranking model. The impact of different
feature sets and model architectures on model performance
is systematically investigated. Furthermore, a simulation based
performance evaluation was presented on different breakdowns,
specifically analyzing the proximity of item ranks and whether
items belong to the same category to detect scenarios in which
RanXplain yields superior performance. A practical insight is
discussed regarding instances in which RanXplain fails to identify
the ranking model’s prioritization.

Keywords-Recommendation System; Explainable AI (XAI); Ma-
chine Learning Explainability.

I. INTRODUCTION

Explainability in machine learning has become a cornerstone
of responsible and trustworthy artificial intelligence, especially
as these models are increasingly deployed in high-stakes and
diverse domains, such as healthcare, finance, legal systems,
and digital platforms. As predictive systems grow more
complex, understanding how and why a model arrives at a
particular decision is essential not only for debugging and
improvement but also for ensuring fairness, accountability, and
user trust. Therefore, developing effective methods to interpret
machine learning models is crucial for aligning technical
performance with ethical and practical expectations in real-
world applications.

Recommendation systems, a key application of machine
learning, have become integral in modern digital platforms,
connecting users with relevant items across various domains,
from e-commerce to entertainment. While traditional machine
learning tasks provide precise point predictions, the core
objective in recommendation systems is to accurately rank
items based on users’ predicted preferences. This change in
focus underlines the need to adapt explainability techniques
to better align with ranking based recommendation systems.
Most of the existing explainability methods are effective for
explaining individual predictions but they are often insufficient
in expressing the comparative logic behind a generated ranked
list. For instance, understanding why a model recommends

“Item A” over “Item B” is crucial for user trust, system
transparency, and even for identifying potential biases.

This paper introduces RanXplain, a methodology specifically
designed to address this gap by explaining the comparative
behavior of rankings generated by recommendation models.
RanXplain functions as an independent machine learning
model, trained on pairs of items recommended by the ranking
model. It utilizes features derived from the original ranking
model, enriched with additional comparison features that
capture the differences between items. The application of
both inherently explainable models and more complex, high-
performing models were explored within RanXplain framework.
The approach addresses the unique challenges of explaining
rankings, offering flexible and detailed insights into why one
item is placed above another in a recommendation list. By
doing so, RanXplain aims to increase the transparency and
interpretability of recommendation systems, promoting user
understanding and trust.

The remainder of the paper is organized as follows: Section
II reviews the related work on explainable AI and explanation
methods. Section III introduces the RanXplain methodology
in detail. Section IV offers the key results and experiments,
along with a brief evaluation and discussion. Finally, Section V
concludes the paper and outlines directions for future research.

II. RELATED WORK

Explainable Artificial Intelligence (XAI) is now one of
the most important topics in many machine learning systems,
due to the increasing need for transparency, trustfulness, and
accountability [1][2]. With the high adoption of artificial
intelligence in various fields, such as healthcare, banking, law,
e-commerce, entertainment, interpreting predictions has been as
important as creating the predictions themselves. Approaches
to XAI may be categorized in terms of their usage with models
and explaining the local or global behaviors.

1) Model-Intrinsic (or Inherently Interpretable) vs. Model-
Agnostic (or Post-Hoc):
• Model-intrinsic methods rely on the inherent trans-

parency of certain machine learning algorithms, such
as linear models or decision trees, whose internal
structures make them naturally suitable for generating
explanations.

• On the other hand, model-agnostic methods are comple-
mentary for so-called black box models, such as neural
networks, gradient boosting trees in a way that these
methods are used after the predictions have been made.
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These methods are, therefore, more flexible and may
be used with any algorithm.

2) Local vs global explanations:
• Local explanations aim to clarify individual input-

output decisions, such as why a specific application
was rejected or why a particular prediction probability
was assigned.

• Global explanations, however, try to give a general
image of the behavior of the models and can be thought
of as a summary of the model.

Local Interpretable Model-Agnostic Explanations (LIME) [3]
and SHapley Additive exPlanations (SHAP) [4] are two
popular model-agnostic local explanation approaches designed
to explain any given black box classifier. Both of them work
as feature attribution linear models, trying to understand the
degree of change in predictions and particular features used to
generate these predictions.

Even though they are extremely widely used and general,
SHAP and similar feature attribution methods are basically
limited [5][6][7], especially in ranking tasks. These methods
are designed to explain instance-wise predictions by attributing
the outcome to each feature one at a time. However, in
recommendation systems, where the main task is to rank
items relative to one another, such pointwise explanations
are not able to capture the relative dynamics among items.
For instance, the fact that the particular feature had a positive
impact on the score of Item 1 tells us relatively little about the
reasons why Item 1 outperformed Item 2. In Figure 1, row-wise
SHAP-style feature attributions for the top four recommended
items for a user are shown to illustrate this limitation. Each
row corresponds to one item, with SHAP values color-coded
based on their magnitude and impact within that row. Green
indicates positive contribution toward the item’s ranking score,
and red indicates negative contribution. Though single-item
contributions are formulated for each item, they do not provide
insight into relative differences that cause the ensuing ranking
order. A seemingly logical, yet misleading, approach would be
to simply compare feature contributions between two items. For
instance, the SHAP value for price feature (Feature 1) could
be positive for Item 1 and negative for Item 2. This large,
opposing difference in SHAP values might incorrectly suggest
that price is the primary reason for the ranking disparity. In
reality, Item 2 can be cheaper than Item 1 and other features
like user affinity for specific categories (or brands) might be the
true drivers, creating these conflicting individual attributions.
This means a feature crucial for an item’s individual score may
be irrelevant when explaining its comparative rank.

Global explanation methods like Permutation Feature Im-
portance [8] or Partial Dependence Plots [9] similarly fall

Figure 1. Row-wise SHAP-style feature attributions.

short in explaining the behavior of ranking models. While they
can identify influential features on average across predictions,
they do not provide specific, contextual information. For
example, price is generally the most important factor for
ranking models in e-commerce; however, it does not explain
why, for a particular user and context, a more expensive Item
A might be ranked higher than a cheaper Item B, contrary
to average user behavior. These gaps highlight that neither
standard local nor global approaches are inherently suited to
the comparative nature of ranking explanations, motivating the
need for specialized pairwise or listwise approaches.

One of the most influential pairwise approaches is the
Analytic Hierarchy Process (AHP) and its generalization,
the Analytic Network Process (ANP), introduced by Saaty
[10][11] for decision-making based on pairwise comparisons.
In AHP/ANP, decision-makers explicitly provide judgments on
the relative importance of alternatives or criteria, and a priority
ranking is then derived using the principal eigenvector of the
comparison matrix. This framework has been widely applied
in domains, such as project selection, resource allocation,
and policy evaluation. The RanXplain framework, however,
addresses the inverse problem: instead of deriving rankings
from human-provided comparisons, it seeks to explain rankings
that have already been produced by machine learning models.
While one might envision applying Saaty’s eigenvector method
directly to model-generated pairwise scores, several practical
obstacles arise.

First, the scale of modern recommender systems far exceeds
the typical scope of AHP/ANP: a single user session may
involve thousands of candidate items (e.g., in e-commerce
with catalogs exceeding 10 million products) and hundreds
of input features (e.g., user–item embeddings, contextual fea-
tures, temporal recency signals). Constructing and processing
complete n × n pairwise matrices under such conditions
becomes computationally intractable. Second, the eigenvector
solution yields overall item priorities but does not provide
feature-level contributions to rankings, which are essential for
transparency in explainable AI. Third, while AHP assumes
relatively stable and consistent comparison judgments, machine-
learned rankings are highly context-dependent, with the relative
importance of features varying substantially across users and
sessions. These distinctions underscore why classical AHP/ANP
methods are not directly applicable to explaining large-scale
AI ranking systems.

In the following sections, a comparative RanXplain method-
ology will be discussed in detail on how to mitigate the gaps
of the current methods of XAI.

III. METHODOLOGY

The methodological framework for the RanXplain model
outlined in this section, addresses the aforementioned limita-
tions of existing explainability methods in ranking. RanXplain
provides explanations for pairwise preferences within a ranked
list of items, clarifying the comparative reasoning of the original
ranking model. Effectively, RanXplain operates as a seperate
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machine learning model, trained to explain the primary ranking
system’s comparative behavior.

A. Data Generation for RanXplain: The Pairwise Paradigm

RanXplain focuses on enhancing a personalized recommen-
dation system in terms of explainability. The underlying notion
behind RanXplain is to transform the complex problem of
explaining the ranking of the whole item list into a series of
manageable binary classification problems based on pairwise
comparisons. A training instance is constructed for RanXplain,
for each relevant pair of items derived from the output of the
primary ranking model.

In personalized recommendation systems, the common ap-
proach involves generating pointwise predictions for individual
user-item pairs. Items are then ranked for each user based on
these scores. However, while it might be possible to explain why
a single item received a particular prediction score (although
even this is often challenging with typical ranking models),
it’s rarely clear why “Item A is ranked higher than Item B.”
This explanation is often more intuitive for users trying to
understand their preferences.

This lack of clarity regarding relative rankings makes it
difficult for both users and developers to grasp the underly-
ing behavior of the recommendation framework. RanXplain
addresses this explanatory deficiency by evaluating ranking
model behavior through considering combinations of items.

1) Selection of Pairs: RanXplain relies on modeling pairwise
preferences to effectively explain the comparative logic of
the primary ranking model. However, it is computationally
challenging to generate every possible combination from a
large set of items. Therefore, a strategic approach to sampling
these pairs is vital, not only for practical implementation but
also to ensure the most informative pairs of items are included.

The preferred methodology for generating these pairwise
comparisons involves two main strategies, both beginning by
determining top K items for each user from their recommen-
dation lists.

The first strategy for generating user-item-item indices
involves randomly selecting a subset of k (k < K) items
for each user, from their selected top K recommendations.
All possible pairwise combinations are then created from
this subset. This ensures that each item within the chosen
subset appears in multiple comparisons for that user, providing
a substantial set of data for learning specific comparative
preferences of the ranking model.

The second strategy initially forms all possible combinations
from the entire set of K top items for each user. Then, a random
sampling is applied to obtain a comprehensive collection of
pairwise comparisons from this potentially vast dataset. This
strategy differs from the first as it creates a subset of the original
dataset rather than representing the full data. While this can
make the model more robust, it has a key drawback: it might
miss some pairwise comparisons between items. For example,
if we consider three items (i1, i2, and i3) recommended to a
user, the first strategy includes all pairwise comparisons (i1
vs. i2, i2 vs. i3, and i1 vs. i3). In contrast, this strategy might

include only some of these pairs, which makes it harder to
capture three-way (or higher-order) relationships. Furthermore,
this approach may introduce greater imbalance in the number
of data points per user, which can lead to biased training or
decreased generalization performance.

2) Features of RanXplain: Creating meaningful features
is crucial for the RanXplain model to learn from and ex-
plain the comparative relations. Original feature set F =
{f1, f2, . . . , fN} which were used by the primary ranking
model to make pointwise predictions are added to the feature
set for both items in each pair (i1, i2), so that the feature set
of RanXplain contains 2N item features for each index since
both items have N features.

Additionally, a set of comparison features that explicitly
capture the relationship between i1 and i2 are derived from the
features in F . Let x1 and x2 be the values of a feature fj ∈ F
for i1 and i2, respectively. A small constant ε (e.g., 10−6) is
introduced to handle potential division by zero. Using x1, x2,
and ε, a set of comparison features Fcomp is constructed as
follows:
Ratio: The ratio of feature values for items i1 and i2 is defined
as shown in (1):

x1

x2 + ε
(1)

Mean Percentage Error (MPE): The MPE between feature
values, as calculated in (2), is computed as:

x1 − x2

x1 + x2 + ε
(2)

Difference: The absolute difference between feature values is
simply expressed by (3):

x1 − x2 (3)

Relative Deviation: The relative deviation, given by (4),
captures the proportional difference:

x1 − x2

x1 + ε
(4)

Equality Indicator: For categorical features, an indicator
function checks equality, as defined in (5):

Ix1=x2
=

{
1 if x1 = x2,

0 otherwise
(5)

The full feature set of RanXplain includes both item features
from the original ranking model and features that describe the
comparison between item pairs in order for the model to learn
more detailed comparison logic. All different combinations of
feature sets have been tested by adding and discarding them
to optimize the feature set for effective comparative learning.

3) Target Variable: The target variable for RanXplain is a
binary indicator, which has the value of 1 if the first item i1
in the pair (i1, i2) is ranked higher by the primary ranking
model. If the second item i2 is ranked higher, the target is 0.
This approach turns the primary model’s unknown pairwise
decisions into a clear, learnable signal for RanXplain.
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B. RanXplain Model Selection
Selecting the type of underlying machine learning model is

critical for development of RanXplain. It requires balancing
robust predictive performance with the need for interpretability
when explaining comparative behaviors. Logistic Regression
and XGBoost are considered as two prominent models for this
purpose.

• Logistic Regression: Initially advanced by [12] and further
generalized by [13], Logistic Regression is a linear
model which is particularly advantageous for its inherent
interpretability in binary classification. RanXplain’s aim
of interpreting ranking behavior by classifying pairwise
preferences, directly aligns with capability of this model
type. Within RanXplain, Logistic Regression models the
probability that i1 is prioritized over i2 by the primary
ranking model. Its direct interpretability comes from its
learned coefficients:
– A positive coefficient for a feature fj(i1) indicates that

an increase in fj for i1 directly raises the probability
of i1 being preferred, assuming other features remain
constant.

– Critically, for comparison features, such as fj(i1) −
fj(i2), a positive coefficient directly quantifies that
a higher difference in fj in favor of i1 contributes
proportionally to its higher predicted preference.

This direct mapping between feature values and their
impact on the log-odds of preference provides transparent
and comprehensible explanations for the primary ranking
model’s comparative logic. Its main limitation in this
context is its inability to capture complex non-linear
relationships or feature interactions that may characterize
the primary ranking model’s decision-making process.

• XGBoost (Extreme Gradient Boosting): An optimized
gradient boosting framework which is introduced by [14],
offers superior predictive performance by constructing
an ensemble of decision trees. While inherently a black-
box model, its utility within RanXplain for generating
explanations is realized through the application of SHAP
values. SHAP provides a robust, unified framework to
attribute the contribution of each feature to a specific
prediction.
– For a RanXplain model trained with XGBoost, SHAP

values precisely quantify the impact of each feature
on the prediction of whether i1 is preferred over i2.
This enables local explanations for individual pairs (e.g.,
attributing i1’s preference to its higher “discount” and
“popularity” differential).

– Furthermore, aggregating SHAP values enables global
insights into the most important features effecting
comparative preferences across the entire dataset (e.g.,
identifying “price difference” as a universally strong
determinant of higher ranking).

XGBoost’s advantage lies in its competency to model com-
plex non-linear relationships and high-order feature interactions,
potentially offering a more accurate representation of the

primary ranking model’s intricate decision boundaries. The
need for post-hoc explanation methods like SHAP is the
disadvantage of using XGBoost for RanXplain. Although
SHAP is a powerful method to produce explanations, it is
more complex and computationally intensive than using direct
coefficients from Logistic Regression.

C. Explanation Generation and Presentation

The practical applicability of the RanXplain methodology
extends beyond its predictive capacity, addressing the non-
trivial step of translating its output into useful, understandable
explanations for end-users and system designers. This process
is fundamentally guided by the ability to use the model’s
internal feature weights and contributions to pinpoint the most
influential factors in a ranking decision.

Consider a real-world e-commerce scenario in which a
recommendation system presents a user with a ranked list of
products. Within this list, two items are of particular interest:
Item A, an expensive shoe from a well-known brand with an
applied discount, and Item B, a medium-priced shoe from a
common brand without a discount. The primary ranking model
prioritizes Item A over Item B, and RanXplain successfully
predicts this outcome.

When RanXplain correctly predicts the prioritization of
one item over another, its model coefficients (for Logistic
Regression) or feature importance values (for XGBoost) reveal
which comparison features were most influential. For instance,
the model can identify that the difference in discount ratio,
relative brand popularity, or the user’s affinity for a specific
brand were the key drivers behind the ranking. These features,
which quantify the relative properties of the two items, allow
for the generation of clear and concise explanations.

This capability enables the extraction of concrete insights,
such as: “Item A was ranked higher than Item B because, while
Item B is cheaper, the model gave more weight to the discount
available on Item A and the user’s affinity for Item A’s brand.”
This ability to generate detailed, feature-based explanations
serves several primary purposes in real-world applications:

• User Trust and Understanding: Providing explanations
for why a specific item was prioritized helps users
understand the system’s logic, leading to increased trust
and confidence in the recommendations.

• System Debugging and Improvement: Explanations act
as a critical tool for developers to diagnose the primary
ranking model’s behavior. By analyzing why certain items
are ranked in a particular order, developers can identify
potential biases, correct model errors, and gain insights
for future feature engineering.

• Cross-functional Insights: Explanations can be shared with
other teams (e.g., merchandising, marketing) to provide a
deeper understanding of customer behavior and content
performance. For example, by analyzing explanations, a
merchandising team could determine that a 10% price
decrease on a specific product would cause it to be ranked
higher than a competitor’s product for a particular segment
of users.
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IV. RESULTS | EVALUATION

Experimental evaluation of RanXplain involves a rigorous
process, beginning with the detailed construction of three
distinct datasets: (i) training set, (ii) test set and (iii) sim-
ulation set. The training dataset was formed using top 50
recommendations per user generated by the ranking model
within a specified historical period. It consists of 4.5 million
rows by over 30,000 unique users and more than 130,000
distinct items while maintaining a balanced 50% target ratio. As
the test set has been obtained by splitting the initial training set
according to 80%-20% parity, it contains 1.1 million rows while
exhibiting comparable unique user and item counts and the
same 50% target ratio. Crucially, simulation dataset, consisting
of 50 million rows, was generated by incorporating all 50
top-ranked items for each user from a later temporal period
than the training set, including approximately 45,000 users and
over 175,000 distinct items, also with a 50% target ratio.

The choice of sampling strategy is crucial for both the
practical impact and computational efficiency of RanXplain.
By transforming the complex task of explaining a ranked list
into a series of pairwise classification problems, RanXplain
becomes computationally tractable for large-scale recommen-
dation systems, which is a significant advantage over other
methods. Two different sampling strategies were explored for
training RanXplain: (i) content-based sampling and (ii) random
sampling. Performance metrics of the models trained on both
datasets were observed as highly similar. However, content-
based sampling yielded slightly superior performance and
provided a more representative distribution across diverse users.
This intentional sampling approach makes the training process
more efficient and ensures that the resulting explanations are
representative and of high quality, which is vital for real-world
application. Consequently, content-based sampling method was
adopted by randomly selecting 20 items per user from their top
50 recommendations and generating all possible combinations
for the selected 20 items.

Experiments of RanXplain proceeded to exploring two
critical dimensions in more detail: feature set composition
and model architecture, concluding with a detailed simulation-
based performance evaluation.

A. Experimentation of Feature Sets

To investigate the impact of features on RanXplain model, a
set of experiments were conducted. Table I depicts performance
metrics across train, test and simulation datasets of the
Logistic Regression models trained with different feature sets in
BigQuery ML [15]. Performance of the models were assessed
using the Receiver Operating Characteristic Area Under the
Curve (ROC-AUC), which quantifies the ability of a classifier
to discriminate between positive and negative classes across
various thresholds [16]. Similar behavior was observed across
other performance metrics, such as accuracy and recall.

Initially, Model 1 was trained using only item features which
is an approach that mirrored the original ranking model. By
incorporating comparison features alongside these item features
in Model 2, a significant improvement in model performance

TABLE I. RANXPLAIN MODEL PERFORMANCE WITH DIFFERENT
FEATURE SETS

Metric Model 1 Model 2 Model 3
Item Features Included Included Excluded

Comparison Features Excluded Included Included

Train ROC-AUC 0.62 0.73 0.74

Test ROC-AUC 0.61 0.74 0.74

Simulation ROC-AUC 0.61 0.69 0.70

was observed across all ROC-AUC metrics for the training,
test, and simulation datasets.

Interestingly, Model 3 which is trained exclusively with com-
parison features achieved slightly better predictive performance
than the models with item features. While the predictive gains
were marginal, using only comparison features significantly
enhanced the qualitative aspect of explanations compared to
Model 2. The increase in qualitative aspect is due to the
directness of interpretability that comparison features provide
when comparing two items.

Slightly improved performance along with stronger inter-
pretability indicates the vital role of comparison features in
accurately capturing the relative ranking of items. Therefore, the
comparison features are adopted as the feature set of RanXplain.

B. Experimentation of Model Types

For model selection, Table II shows performances of models
that differ by model type and maximum tree depth. Although
Model 3 was the best performer in the experiments of feature
sets, Model 2 was chosen as a baseline model to be compared
with XGBoost models (which are trained using BigQuery ML
[17]) so that both item and comparison features are included
in experimentation of model types.

TABLE II. RANXPLAIN PERFORMANCE FOR DIFFERENT MODELS

Metric Model 2 Model 4 Model 5
Model Type Log Reg XGBoost XGBoost

Max Tree Depth - 15 5

Train ROC-AUC 0.73 0.92 0.79

Test ROC-AUC 0.74 0.92 0.79

Simulation ROC-AUC 0.69 0.78 0.69

Reducing the maximum tree depth in the XGBoost model
causes significant decrease in model performance across all
train, test and simulation sets. This decrease is evident in Table
II, as shown by the performance difference between Model 4
and Model 5. This observation motivates the use of a more
sophisticated XGBoost model within RanXplain. Additional
complexity is required to effectively approximate the behavior
of primary ranking model, which is a highly complex model.
However, while higher complexity increases the prediction
performance, it also makes the interpretation of the explanation
model more challenging.
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It can be inferred from Table II that Model 2 underperformed
Model 4 with respect to ROC-AUC metrics. However, Logistic
Regression possesses inherent interpretability as opposed to
XGBoost which requires additional methods like SHAP for
explanations. Although more complex models like XGBoost
might be a better fit depending on the specific application’s
requirements, Logistic Regression is found more suitable for
RanXplain of the primary ranking model that is used in this
study.

C. Simulation Based Performance Evaluation

Simulation dataset was used to conduct various offline
evaluations on the preferred model (Model 3). Consistent ROC-
AUC performance was observed across the training, test, and
simulation datasets, with only a slight performance decrease
on the simulation set. Further analyses were conducted on
the simulation data to understand the behavior of RanXplain
model more comprehensively. These analyses are based on two
key factors: (i) proximity of item ranks in the original ranking
model and (ii) whether item pairs belonged to the same high
level item category (e.g., electronics category).

Table III depicts train, test and simulation performances of
Model 3. Simulation performance was analysed with respect
to three additional breakdowns: subset of the simulation data
(i) where the difference between rankings of two items are
greater than 20 (rdiff > 20) (ii) where the difference between
rankings of two items are less than or equal to 3 (rdiff ≤ 3)
and (iii) where the two items belong to the same category
(Same Category).

TABLE III. SIMULATION PERFORMANCE

Metric Model 3
Train ROC-AUC 0.74

Test ROC-AUC 0.74

Simulation ROC-AUC 0.70

Simulation ROC-AUC (rdiff > 20) 0.80

Simulation ROC-AUC (rdiff ≤ 3) 0.54

Simulation ROC-AUC (Same Category) 0.70

The results revealed a clear trend, predictive capability of the
model significantly improves as the rank difference between
item pairs increases. For example, the model performed substan-
tially better when the rank difference exceeded 20, achieving
an ROC-AUC of 0.80. On the contrary, performance dropped
considerably for closely ranked items ((rdiff ≤ 3)), with an
ROC-AUC of approximately 0.54. This finding indicates that
RanXplain has difficulty in predicting (and thus explaining)
prioritization when the primary ranking model assigns similar
scores to items, which is expected.

This behavior is a key advantage of the RanXplain approach,
as it allows us to know in advance when its outputs can be
used to confidently interpret the ranking model’s decisions,
thereby preventing misleading or false insights. The correctness
of RanXplain’s predictions (and therefore their reliability for

generating insights) is known in advance, since the real rankings
are already known. This enables the clear identification of when
it is safe to use RanXplain’s outputs to interpret the behavior
of the underlying ranking model for specific item pairs, thereby
avoiding misleading or false insights.

Regarding category influence, RanXplain’s predictions for
pairs within the same item category were very similar to its
performance on pairs from the whole simulation set, indicating
no significant performance differential. Consequently, for the
application of this study, improving RanXplain’s performance
on closely ranked pairs is of minor importance, although such
improvements are feasible by adjusting sampling strategies or
incorporating additional comparison features.

V. CONCLUSION AND FUTURE WORK

This paper introduced RanXplain, a methodology designed to
address a significant gap in recommendation systems, which is
the need to explain ranking decisions rather than individual item
predictions. As outlined in the previous sections, RanXplain
functions as a seperate machine learning model trained on
item pairs, employs features derived from the original ranking
model. Both the effectiveness and operational behavior of
RanXplain is illustrated through a systematic investigation
of various feature sets and model architectures, along with
simulation-based performance evaluation.

The main contribution of RanXplain lies in shifting the focus
of explainability from pointwise predictions to the comparative
logic behind ranked outputs. RanXplain enables a more intuitive
and actionable understanding of why one item is ranked above
another by reframing the task of explaining a ranked list as
a series of pairwise classification problems. The aim is to
provide interpretable insights into the decision-making process
of black-box recommendation models, supporting user trust
and contributing to system debugging.

The evaluation based on ROC-AUC across various datasets
highlighted the strong influence of comparison features. Models
trained exclusively on these features not only achieved better
predictive performance but also yielded more interpretable
explanations as a result of the direct relevance of the input
features. While more complex models, such as XGBoost,
offered better predictive performance, Logistic Regression
proved to be more suitable for applications that require
interpretability, even at a modest cost to accuracy.

The simulation based evaluation further revealed that RanX-
plain’s predictive performance improves significantly as the
rank difference between items increases. On the other hand,
its performance naturally decreased when items were very
closely ranked, which is expected given that the ranking
model assigns similar scores in such cases. It is important
to note that one of RanXplain’s primary advantages is that
the correctness of its predictions is known in advance, since
the ground truth rankings are available. This capability allows
for the identification of cases where RanXplain’s outputs can
be confidently used to interpret the ranking model’s decisions,
thus avoiding potential misinterpretations. This observation
also draws a parallel to the concept of rank reversal in pairwise
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comparison methods like Saaty’s AHP, suggesting that the
underlying ranking decisions for closely-ranked items are
inherently more ambiguous and less stable, making them
difficult to explain with high confidence.

The approach shows promise in interpreting pairwise relative
rankings; however, RanXplain is not designed to provide a
single, holistic explanation for an entire ranked list. While
a high-level explanation might be desirable, it can often be
too simplistic to capture the nuanced decision-making process
of a complex ranking model. Instead, RanXplain provides a
series of granular, actionable insights. An explanation for an
entire ranked list can be composed by chaining together a
series of pairwise comparisons, such as explaining why Item
1 was ranked above Item 2, why Item 2 was ranked above
Item 3, and so on. This approach offers a more detailed and
accurate understanding of the ranking process, as it clearly
articulates the specific feature-level trade-offs that led to the
final ordering. This modular nature allows RanXplain to provide
highly specific insights on demand, supporting both user
understanding and system debugging by clarifying the reasons
behind individual ranking decisions.

For future work, several promising directions can be explored
to further enhance RanXplain. The AUC performance of the
model, particularly on closely ranked pairs, can be enhanced
through various methods. This could involve incorporating
additional non-linear comparison features, such as the power
of the difference of feature values, to better capture the
primary model’s complex decision boundaries. Furthermore,
exploring alternative and more advanced sampling techniques
or using a wider range of training data could lead to significant
improvements in model performance and a more robust
understanding of the ranking model’s behavior. An extension of
RanXplain to support counterfactual explanations could offer
more actionable insights for users and system designers by
indicating how changes in specific features would affect the
relative ranking of items. The trade-off between user-based and
random sampling, and how different sampling strategies impact
the quality of explanations, presents a key area for further
research. RanXplain can also be used in a reverse engineering
context to guide feature design in the original ranking model.
When important comparison features are identified but prove
insufficient on their own, new supporting features can be
introduced to the original ranking model. This can improve
both the model’s performance and its explainability.
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