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Abstract—Explainability holds significant importance for
autonomous robots deployed in human-centered situations,
particularly when errors occur during execution. In the context
of robot action, it is important to consider various levels and
types of explainability. The social dimension of Artificial
Intelligence (AI) and robotic explanations, which highlights how
they affect social interaction, values, and decision-making, has
received little to no attention in prior research. With a
particular emphasis on item handover, we hypothesize that
users prefer systems with explanations and that explanations in
natural language are more appealing than heatmaps. A user
study, involving participants from diverse backgrounds and
levels of expertise, is conducted to evaluate different levels and
preferred types of explainability. The study results support our
hypotheses and offer additional valuable information for future
system development.

Keywords-Explainable  Artificial Intelligence;  Natural
Language Processing; Heatmaps; Human-Robot Interaction.

L INTRODUCTION

There have been notable developments in the disciplines
of Artificial Intelligence (AI) and robotics in recent decades,
which are both largely affiliated. Future robotics systems are
anticipated to be far more advanced and adaptable as Al and
robotics continue to grow. Rule-based systems, also referred
to as white-box artificial intelligence, place an emphasis on
transparency, making their logic processes clear and
accessible to users. On the other hand, black-box Al, such as
neural networks, often does not specify its decision-making
process. Therefore, researchers are actively refining the
interpretability of black-box Al, which can be used to improve
transparency in robot actions, especially when failures occur
[1-5].

Some challenges in Human-Robot Interaction (HRI)
necessitate transparent communication. Varying user
knowledge and expectations pose challenges in maintaining
the right level of detail in the explanations. Another challenge
is to determine the most effective explanation format for each
user [6][7]. Explainability can be classified as local (usually
focused on a single input dataset), global (describing how a
model behaves generally), model-specific [8] (limited to
particular model classes), model-agnostic [9] (may be local or
global and independent of machine learning models), and
counterfactual [10] (offering an alternate input scenario that
would have produced a different model prediction).

Meanwhile, there are three common levels of explainability
[8]: low-level (which includes techniques like linear model
coefficients or feature importance scores), medium-level
(which delves deeper into how specific features impact the
model's predictions), and high-level (which highlights
intricate decision-making processes within the model).

This paper is focusing on robot object handover tasks, with
the intention to enhance user understanding and trust in robot
actions. A user study was conducted to evaluate the
effectiveness of multiple levels of explainability in such tasks.
This study aims to encourage innovation in autonomous
robotics by providing access to more adaptable, flexible, and
user-centered systems.

The remainder of this paper is organized as follows.
Section II offers an overview of literature related to the
challenging topic this study addresses. Section III describes
the general approaches used in our methodology. Section IV
outlines our experimental results, both qualitative and
quantitative, as well as hypothesis testing. Section V
summarizes our findings and includes possible future work.

II.  RELATED WORK

Transparent or white-box models refer to algorithms that
provide users with both the end decision and a summary of the
steps used to get there. One of the most common methods used
for this is Bayesian network [11][12]. However, this method
often requires substantial manual effort from users to explore
the robot's behavior [13]. It lacks scalability and
generalizability because it involves hand-annotating every
domain-specific context up front, which hinders application to
new circumstances.

On the other hand, opaque or black-box models are
machine learning models that are difficult to explain and
understand by experts in practical domains [14][15]. These
models include random forest, support vector machine,
multilayer neural network, etc. One of the ways to obtain
information from such models are to wuse post-hoc
interpretability. Although this approach provides useful
information for end users, it often does not clarify precisely
how a model works. Therefore, a more thorough analysis of a
better strategy for building trust, reliance, and performance for
human-Al teams needs to be conducted.

The need for user-centered design practices when creating
explanations for Al systems was emphasized by [16]. They
suggest involving users in the Al system design process
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through user studies, interviews, and feedback sessions to
understand their needs, mental models, and expectations.
Even so, they primarily focused on design practices and
guidelines for creating user experiences in explainable Al
systems and did not delve deeply into technical solutions or
algorithms to achieve explainability. As a result, the technical
aspects of implementing the proposed guidelines may require
further exploration.

In Human-Robot Collaboration (HRC), human workers
should have the ability to naturally converse with robots, since
they are the most crucial members of any HRC team.
According to [17], while there are currently few means of
communication between human workers and robots, gesture
recognition has long been used as an efficient human-
computer interaction. In conclusion, they believe that HRC
will operate in a safer environment if a depth sensor and body-
model technique are combined to track human movements.

As part of the machine learning adaptation in the robot's
motion planning, our approach proposes the utilization of a
neural network. This is an alternative approach to the genetic
algorithm utilized by [14]. The adjustment in methodology
highlights our dedication to investigating different and
practical approaches that may result in improved
responsiveness and flexibility of robotic systems in dynamic
settings. In addition, inspired by [16] user-centric principles,
we conducted a user study to uncover user preferences
regarding different approaches in robot motion planning. Our
questionnaire aims to uncover user preferences regarding the
different approaches employed in robot motion planning,
shedding light on which method resonates more effectively
with particular users.

III. APPROACH

The scope of our study concentrates on the usage of
autonomous robots for object handover tasks from robot to
human, an important use case that requires an effective
explanation strategy. Giving our Toyota Human Support
Robot (HSR) a skill set that corresponds to different levels of
explainability—or, in some cases, no explainability at all—is
the current challenge at hand. Our explainability analysis for
skill execution takes into account a number of important
factors, one of which is the recognition that explainability in
our case is inherently local.

A. Proposed Approach

The current approach used in our robot to determine the
handover position is done by factoring in context-dependent
(based on the posture of the detected person) and context-
independent (static; based on the context-dependent
outcome). However, the handover position in a context-
independent approach does not consider any surrounding
environment variables; thus, we propose to train a neural
network to dynamically set the end-effector position based on
the values obtained from the 3D bounding box. By allowing
the neural network to generate random handover positions,
we can collect input-output pairs dataset that can be used to
fine-tune the model until it can automatically generate
optimal handover positions based on the user's needs. This

strategy would increase the effectiveness and usability of the
robotic system. Regrettably, a prolonged mechanical issue in
our Toyota HSR has forced us to delay the implementation of
our neural network interpretation. Upon its resumption of
operations, we shall resume our work and implement our
planned approach.

B. Explainability Setup

One of the primary concerns that drives our research is
how to determine the robot's reasoning behind certain
decisions, especially why it stops at a specific point in relation
to the detected human position during object handover. To
carry out this research, an advanced built-in program created
by [18] is used, which generates a 3D bounding box to locate
the detected person in front of the robot. It follows the right-
handed coordinate system, which includes the depth (x-axis),
horizontal (y-axis), and vertical (z-axis). Once the person is
detected, their position will be determined; in our case, there
are three possible positions: standing, sitting, and lying down.

Within our research framework, several notations play an
important role in influencing how we perceive the spatial
connection between humans and the robot during the
handover task. Figure 1 illustrates the configuration in which
Wp represents the robot's end-effector location where the
object is held, W is the robot's base frame, B denotes the
bounding box, and p is the relative position between the end
effector and the center point of the bounding box.

Figure 1. Illustration of the parameters on handover skill.

Logical predicates describing the requirements for a
successful handover interaction are adopted from [19] to
define the success preconditions. The predicates include
in_front_of,, (0,B) , far_in_front_of,,(0,B) ,
behindx‘y(p,B) s far_behindx_y(p, B), abovex,y(p,B) R
below, ,(p, B), and centered,, (p, B). Using the success
preconditions, the natural language explanation for each
position is generated manually, as shown in Tables I-II1.

In addition to manual natural language translation,
ChatGPT 3.5 [20] is employed to generate automated
translation and evaluate the results using the Bilingual
Evaluation Understudy (BLEU) score [21]. The first few
initial tests did not produce close translations to the manual
translation. Therefore, more detailed definitions of each
logical expression were provided, as well as separating each
predicate that consists of two or more coordinates; for
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example, centered, ,(p, B) becomes centered,(p,B) A
centered,(p, B). The outcome of the last iteration was then
used for assessment.

TABLE L PRECONDITIONS FOR STANDING POSITION
Types Success Preconditions
centered, ,(p,B) n in_front_of,(p, B) A
Logical —icentered,(p, B) n =belowy,,(p, B) n —behind,,(p,B) A
Predicates | —far_behind,,(p,B) A mabovey,(p,B) A
—in_front_of,(p,B) A ~far_in_front_of,(p, B)
The robot's arm should be in front of and centered around
Natural a person (corresponding to the person's height and width).
Language | It should not be behind, above, beneath, or to the right/left
of a human.
TABLE II. PRECONDITIONS FOR SITTING POSITION
Types Success Preconditions
centered,, ,(p,B) n in_front_of,(p, B) A
Logical —centered,(p, B) n =belowy,,(p, B) a =behind,,(p,B) A
Predicates —far_behind, , (p, B) rn mabove,, (p,B) A
—in_front_of,(p,B) A =far_in_front_ofy,(p,B)
The robot’s arm is positioned in front of and around the
Natural middle of a sitting person (according to the person’s
Language | height and width). It is not behind, above, beneath, and to
the right or left of the person.
TABLE IIL PRECONDITIONS FOR LYING DOWN POSITION
Types Success Preconditions
above, ,(p, B) a centered, (p,B) r ~centered,(p,B) a
Logical —below, ,(p, B) A —behind, ,(p,B) A
Predicates —far_behind,,(p, B) A —in_front_of,(p,B) A
—far_in_front_ofy,(p, B)
The robot’s arm is positioned above and centered around
Natural the person’s width. It is not below or around their head or
Language | feet. It should not extend all the way to the opposite side
from where a robot is standing next to.

BLEU provides a quantitative measure by comparing the
output of machine translation systems (candidate translation)
against reference translations, offering insights into the degree
of overlap in n-gram or word sequences with human-
generated counterparts [21]. The length of candidate
sentences that are shorter than the reference phrases is
penalized in the BLEU metric (Brevity Penalty), which is
based on the modified n -gram precision measure. The
following formula determines the BLEU score:

BLEU = BP - exp (Zh_1+ - logP), (1)

where BP = Brevity Penalty and P, = Precision for n-
gram.

The Natural Language Toolkit (NLTK) [22] and spaCy
[23] are used in our BLEU score computation to provide an
unbiased evaluation of machine-generated translations. The
translation produced by ChatGPT 3.5 (as a candidate
translation) is compared with our original translation (as a
reference). The results of the BLEU score for each translation
performed by ChatGPT in comparison to the manual
translation are presented in Table I'V.

TABLE IV. BLEU SCORE OF CHATGPT 3.5 TRANSLATION
No. Position BLEU Score
1 Standing 0.85
2 Sitting 0.81
Lying Down 0.88

The final translation output from ChatGPT 3.5 provides a
good starting point for future developments. Despite the fact
that the translations produced by the first few iterations were
not satisfactory, adding further specific information made it
generate a translation that was similar to the one that was done
manually. The key realization is that it is possible to train
models, like ChatGPT, to translate technical terminology into
natural languages effectively.

When it comes to interpreting the neural network’s
decisions about handover position, Grad-weighted Class
Activation Mapping (Grad-CAM) [24] integration shows
itself to be an effective tool for insight. It offers a transparent
and insightful lens into the decision-making processes of
complex models. Grad-CAM fills this gap by giving an
illustration of the areas in the input data that have a major
impact on a certain outcome. Unfortunately, the problem with
our Toyota HSR prevented us from implementing this
method. Despite this obstacle, a previously collected dataset
from our research team [25] was leveraged, and the video
content was edited to achieve the same heatmap effect (as seen
in Figure 2). This decision allowed us to simulate and observe
the intended outcomes, ensuring the continuity of the research
despite the technical constraints.

Figure 2. Additional heatmaps on one of the handover scenarios.

The dataset, which includes relevant information but lacks
explanations, was then extended by adding explanations in
both heatmap and natural language formats. This improvised
solution allows us to proceed with our user study within the
designated timeframe, preserve the research objectives, and
ensure the timely execution of the study.

C. Experimental Design

In our comprehensive user study aimed at investigating
user preferences in interacting with Al-based or robotic
systems, two distinct hypotheses were formulated to guide our
research. The first hypothesis is that users have a preference
for systems that offer explanations while they are using them.
The second hypothesis is about the preferred explanation
format among users; in particular, we hypothesize that people
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prefer explanations in natural language over alternative
visualization techniques like heatmaps.

Our user study adopts a mixed-methods strategy to gather
quantitative data and qualitative insights through surveys in
order to experimentally validate our hypotheses. After being
presented with simulated robotic interfaces that include
heatmaps and natural language explanations, participants’
preferences, satisfaction, and understanding were carefully
examined.

Through selectively crafted survey questions, user
experiences, preferences, and challenges are explored,
allowing us to obtain insights into the factors that contribute
to a positive or negative interaction. Additionally, scenarios
that are meant to replicate real-world interactions were chosen
by giving users experiences that were contextually appropriate
and reflected the difficulties and complexities of real-world
circumstances. Ten videos and three different explanation
varieties were presented to help construct a more
comprehensive understanding of user preferences: no
explanation, partial explanation using heatmaps, and detailed
explanation using natural language. In order to prevent any
potential biases, 8 out of 10 videos were purposefully
presented in a random order. Following every video,
participants were asked to rate how confident they were in
their understanding of the robot decision-making process.

Iv.

Our user study involved a total of 33 participants, ages
ranging from 18 to 40 years old, education ranging from high
school to Ph.D., and different academic and professional
backgrounds. Our participants’ demographic profiles show a
variety of age groups, gender identities, levels of education,
and fields of study. This diversity attempts to determine
whether there is any relationship between the preferred
explanation technique and the educational background.

EXPERIMENTAL RESULTS

A. Quantitative Analysis

In terms of the participants' experiences and expectations
in the realms of robotic systems and Artificial Intelligence
(AI), 75.8% of them have prior hands-on experience with
robotic systems, while an overwhelming 84.8% are familiar
with Al or machine learning in their practical lives. In a survey
on comfort levels, 72.7% of the respondents said they felt
uneasy when Al systems made decisions without providing an
explanation, highlighting the significance of transparency.

In our scenario-based questions, two identical videos
served as starting points. The first was without explanation,
whereas the second included a natural language explanation.
The majority indicated that they were unclear about the
robot’s action in the first video, though it was a successful
object handover scenario. However, the participant’s
confidence level improved after watching the second video,
which revealed a positive beginning. Table V summarizes
participants' confidence levels after eight more videos were
shown in a random order. It reveals that individuals feel more
confident when they are given an explanation of how the robot
makes decisions. Less than 40% of the participants felt
confident about their understanding of the robot decision-
making process in the three videos without an explanation, in

both successful and unsuccessful handover scenarios. More
than 50% of the participants in the two videos where heatmaps
were used as an explanation type expressed confidence in the
successful handover scenario. However, in the case of an
unsuccessful handover, only 34.6% of participants reported
feeling confident. With natural language explanations, on the
other hand, 48.4% of those surveyed expressed confidence in
the unsuccessful scenarios. In the successful scenario, over
80% of the participants expressed confidence and none of
them indicated lack of confidence.

TABLE V. AN OVERVIEW OF PARTICIPANTS’ CONFIDENCE LEVEL
. Explanati Confidence Level (%)
Video Outcome r
Type 5 4 3 2 1
3 Succeed None 9.1 | 242 | 485 | 182 | 00
4 Succeed Heatmap 242 | 273 | 364 | 121 | 00
5 Failed None 121 | 152 | 303 | 242 | 182
6 Failed Natural 242 | 242 | 152 | 152 | 212
Language
7 Succeed None 30 | 182 | 152 | 364 | 273
8 Succeed Natural 273 | 57.6 | 152 | 0.0 0.0
Language
9 Failed Natural 242 | 242 | 182 | 273 | 6.1
Language
10 Failed Heatmap 182 | 212 | 303 | 273 | 3.0

To conclude, compared to visual explanation (using a
heatmap), natural language explanation improves their
confidence by over 30% (shown in Figure 3).

90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%

10.00%

0.00%

No Explanation

Heatmap Natural Language

Figure 3. Participants’ overall confidence in understanding the robot

decision-making process.

B. Hypotheses Testing

We conducted the first hypothesis test to investigate
users’ preferences regarding the type of videos when seeking
information. The hypothesis aimed to determine whether
users prefer videos with explanations over videos without
explanations. The participants were presented with the
question “Which type of video do you prefer when seeking
information?” and the response options: videos with
explanation, without explanation, and depending on the
context.

A chi-square test [26] for independence is employed to
analyze the association between the type of video and user
preference, where H, = no preference difference and H,=
there is a preference for videos with an explanation. If the p-
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value of a given dataset is less than 5%, the null hypothesis
is rejected because it is assumed that there is a preference
difference among the options. To calculate the p-value using
chi-square formula (2), the observed value (0) needs to be
identified first, which represents the actual counts derived
from the sample, and the expected value (E), which
represents the values of each category in the event that there
was no preference difference between all categories. E is
obtained by dividing the total number of observed values by
the number of categories. The following calculation can then
be used to get its chi-square statistic (¥2) based on the
observed and expected values:

2
XZ :Z(OEE) '

()
The result, along with the degrees of freedom (df'), which
is a number representing how much variation is involved in
the research (n) minus 1,
df = n-1, 3)
is used to calculate the p-value from the chi table.

Our observed and expected values based on the survey
results are displayed in Table VI. The total observed values—
33 in this case—and the number of categories—3 in this
case—are then used to compute the expected values, yielding
the value E = 11.

TABLE VI THE OBSERVED AND EXPECTED VALUES
User Preference 0 E 0-E (0 — E)?
With Explanation 22 11 11 121
Explanaton 2 | 1| 81
Dmimic |y | 2|

These observed and expected values were used to
calculate the chi-square statistic, which was then used to test
the hypothesis. The result yielded y?= 28.1; with df = 2, the
resulting p-value was 0.0000008. Since the p-value is less
than a = 5% or 0.05, it is determined that the null hypothesis
is rejected.

The second hypothesis is tested based on two identical
videos with two distinct explanations—one using a heatmap
(video 4) and the other using natural language (video 8).
Participants were asked to choose which of the two videos
gave them a better understanding of the robot decision-
making process. Participants who selected video 8 are
considered to prefer the natural language explanation. A one-
sample proportion test (Z) [27] is employed to analyze
whether the proportion of users who prefer video 8 differs
significantly from 50% (no preference). The null hypothesis
(H,) assumed no preference difference, while the alternative
hypothesis (H,) assumed a preference for videos with natural
language explanation.

To conduct the test, we need to estimate the proportion p
as:

X

p=1, 4)
where x is the number of participants who have chosen video
8 and n is the total number of participants. After that, the test

statistic can be calculated with the following formula:

P-Do
Po(1-pg)’
n

where p, is the pre-specified value; in this case, it is 50% to
indicate that if half of the total participants chose video 8,
there is no significant preference for that particular video.
From there, the calculated Z-value is compared with critical
values, which can be obtained from the Z table, from the
standard normal distribution. Given that the sampling
distribution of our data is a normal distribution with a
significant value of 0.05, the critical values are in a range of
-1.96 to 1.96. Based on the result of our survey, a one-sample
proportion test was calculated with x = 23 and n = 33, which
yielded a Z-value of 2.46. Because the Z-value is larger than
the maximum critical value, the null hypothesis is rejected.
A post hoc sensitivity analysis [28] was conducted to
evaluate the statistical power of our study. Cohen’s w,

7 = (5)

3 (Pi—poi)?
Poi

w =

A (6)

where p; is the observed value in category i and py; is the
expected value under the null hypothesis in category i, is
used to measure the effect size for the chi-square test of the
first hypothesis. The thresholds are 0.10 for a small effect,
0.30 for a medium effect, and 0.50 for a large effect. The
result yielded w = 0.75, which represents a large effect.
Furthermore, we assess the effect size for the one-sample
proportion test of the second hypothesis with Cohen’s h,

h = 2x (arcsin(y/p,) — arcsin(/p,)),

where p; and p, are the two proportions being compared.
The thresholds are 0.20 for a small effect, 0.50 for a medium
effect, and 0.80 for a large effect. From our user study result,
23 out of 30 participants preferred video with natural
language explanation; thus, p; = 69.7%. Then we compare it
with p, = 50% for the proportion that shows no preference
difference. The result yielded h = 0.40, which indicates a
moderate effect size.

(7

C. Qualitative Analysis

As proven in our hypothesis 2, natural language
explanations are preferable to heatmaps. In order to evaluate
it on a qualitative level, the participants were asked why they
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preferred one type of explanation over the other, and the
majority of them responded that they preferred natural
language because it is easier to understand and more elaborate.
In addition, they believe that natural language explanations
can be enhanced by an audio or speech component.

They were then asked to imagine a situation in which they
would favor a different kind of explanation than the one they
had previously selected. Those who have chosen natural
language say that they prefer heatmaps when a robot performs
a simple task, interacts with static objects, or is in a simulation.
On the other hand, those who have chosen heatmaps say that
they prefer natural language when failure occurs, when the
robot is in a dynamic environment, or when the user has no
background knowledge about the system.

When asked to imagine a situation in which they would
prefer to have no explanation at all, the majority of
respondents believe that in a straightforward or routine task
that is repeated, there is no need for an explanation because
the rationale is obvious. While some claim that they cannot
think of any situation in which it is preferable not to have an
explanation, others highlight this point by stating that, even in
tasks that appear straightforward, having an explanation is
desirable since it provides a clear reasoning behind the robot’s
chosen action.

V. CONCLUSION AND FUTURE WORK

Our user study results supported our hypotheses, offering
statistical evidence that users do, in fact, prefer explanations
when interacting with robotic systems. These findings
highlight that providing explanations improves users’ trust
and understanding of robot systems. Although the study
demonstrates a clear preference for explanations in natural
language as opposed to heatmap visualizations, respondents
express a preference for heatmaps or no explanations at all
when the robot is performing regular or routine tasks. This
tendency implies that, in situations they are familiar with,
participants think that the visual representations of the
heatmaps are sufficient or that perhaps they prefer them more
when the tasks are simple and require no extra information.
Due to the wide range of participant preferences, flexible
communication strategies that take into account varying user
expectations and levels of experience with certain robotic
tasks are necessary.

Even though the results suggest that users prefer systems
that provide explanations over those that do not, it is important
to acknowledge a potential bias in how this hypothesis was
tested. The question itself highlights the presence or absence
of an explanation, which might have led participants to
gravitate toward the condition with explanations, independent
of their actual utility in decision making. Future studies should
aim to mitigate this bias by embedding explanations in more
naturalistic tasks where the usefulness of the explanation
emerges organically rather than being made explicit to
participants.

While our findings indicate that participants preferred
natural language explanations, it is important to recognize that
this result may partly reflect differences in interpretability
between formats. Natural language requires little effort to
process, whereas heatmaps demand additional interpretation

and prior familiarity. This asymmetry may have
disadvantaged the heatmap condition. To address this
imbalance, future studies should explore providing training or
familiarization with visual explanations, refining visualization
design to reduce cognitive effort, or presenting hybrid formats
that combine textual and visual elements for complementary
strengths.

Further studies could explore automating the translation of
scientific terms into natural language to provide explanations
for nonexpert users. To implement audio explanations
effectively, future work may explore the integration of speech
synthesis technologies or Natural Language Processing (NLP)
models specialized 1in generating spoken content.
Additionally, exploring the potential of machine learning
techniques, such as reinforcement learning, could contribute
to optimizing explanation selection. This way, the system
could learn over time which combination of explanation
modalities yields the most positive user responses or
facilitates optimal task performance.
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