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Abstract—Explainability holds significant importance for 

autonomous robots deployed in human-centered situations, 

particularly when errors occur during execution. In the context 

of robot action, it is important to consider various levels and 

types of explainability. The social dimension of Artificial 

Intelligence (AI) and robotic explanations, which highlights how 

they affect social interaction, values, and decision-making, has 

received little to no attention in prior research. With a 

particular emphasis on item handover, we hypothesize that 

users prefer systems with explanations and that explanations in 

natural language are more appealing than heatmaps. A user 

study, involving participants from diverse backgrounds and 

levels of expertise, is conducted to evaluate different levels and 

preferred types of explainability. The study results support our 

hypotheses and offer additional valuable information for future 

system development. 

Keywords-Explainable Artificial Intelligence; Natural 

Language Processing; Heatmaps; Human-Robot Interaction. 

I.  INTRODUCTION 

There have been notable developments in the disciplines 
of Artificial Intelligence (AI) and robotics in recent decades, 
which are both largely affiliated. Future robotics systems are 
anticipated to be far more advanced and adaptable as AI and 
robotics continue to grow. Rule-based systems, also referred 
to as white-box artificial intelligence, place an emphasis on 
transparency, making their logic processes clear and 
accessible to users. On the other hand, black-box AI, such as 
neural networks, often does not specify its decision-making 
process. Therefore, researchers are actively refining the 
interpretability of black-box AI, which can be used to improve 
transparency in robot actions, especially when failures occur 
[1-5]. 

Some challenges in Human-Robot Interaction (HRI) 
necessitate transparent communication. Varying user 
knowledge and expectations pose challenges in maintaining 
the right level of detail in the explanations. Another challenge 
is to determine the most effective explanation format for each 
user [6][7]. Explainability can be classified as local (usually 
focused on a single input dataset), global (describing how a 
model behaves generally), model-specific [8] (limited to 
particular model classes), model-agnostic [9] (may be local or 
global and independent of machine learning models), and 
counterfactual [10] (offering an alternate input scenario that 
would have produced a different model prediction). 

Meanwhile, there are three common levels of explainability 
[8]: low-level (which includes techniques like linear model 
coefficients or feature importance scores), medium-level 
(which delves deeper into how specific features impact the 
model's predictions), and high-level (which highlights 
intricate decision-making processes within the model). 

This paper is focusing on robot object handover tasks, with 
the intention to enhance user understanding and trust in robot 
actions. A user study was conducted to evaluate the 
effectiveness of multiple levels of explainability in such tasks. 
This study aims to encourage innovation in autonomous 
robotics by providing access to more adaptable, flexible, and 
user-centered systems. 

The remainder of this paper is organized as follows. 
Section II offers an overview of literature related to the 
challenging topic this study addresses. Section III describes 
the general approaches used in our methodology. Section IV 
outlines our experimental results, both qualitative and 
quantitative, as well as hypothesis testing. Section V 
summarizes our findings and includes possible future work. 

II. RELATED WORK 

Transparent or white-box models refer to algorithms that 
provide users with both the end decision and a summary of the 
steps used to get there. One of the most common methods used 
for this is Bayesian network [11][12]. However, this method 
often requires substantial manual effort from users to explore 
the robot's behavior [13]. It lacks scalability and 
generalizability because it involves hand-annotating every 
domain-specific context up front, which hinders application to 
new circumstances.  

On the other hand, opaque or black-box models are 
machine learning models that are difficult to explain and 
understand by experts in practical domains [14][15]. These 
models include random forest, support vector machine, 
multilayer neural network, etc. One of the ways to obtain 
information from such models are to use post-hoc 
interpretability. Although this approach provides useful 
information for end users, it often does not clarify precisely 
how a model works. Therefore, a more thorough analysis of a 
better strategy for building trust, reliance, and performance for 
human-AI teams needs to be conducted.  

The need for user-centered design practices when creating 
explanations for AI systems was emphasized by [16]. They 
suggest involving users in the AI system design process 
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through user studies, interviews, and feedback sessions to 
understand their needs, mental models, and expectations. 
Even so, they primarily focused on design practices and 
guidelines for creating user experiences in explainable AI 
systems and did not delve deeply into technical solutions or 
algorithms to achieve explainability. As a result, the technical 
aspects of implementing the proposed guidelines may require 
further exploration. 

In Human-Robot Collaboration (HRC), human workers 
should have the ability to naturally converse with robots, since 
they are the most crucial members of any HRC team. 
According to [17], while there are currently few means of 
communication between human workers and robots, gesture 
recognition has long been used as an efficient human-
computer interaction. In conclusion, they believe that HRC 
will operate in a safer environment if a depth sensor and body-
model technique are combined to track human movements. 

As part of the machine learning adaptation in the robot's 
motion planning, our approach proposes the utilization of a 
neural network. This is an alternative approach to the genetic 
algorithm utilized by [14]. The adjustment in methodology 
highlights our dedication to investigating different and 
practical approaches that may result in improved 
responsiveness and flexibility of robotic systems in dynamic 
settings. In addition, inspired by [16] user-centric principles, 
we conducted a user study to uncover user preferences 
regarding different approaches in robot motion planning. Our 
questionnaire aims to uncover user preferences regarding the 
different approaches employed in robot motion planning, 
shedding light on which method resonates more effectively 
with particular users. 

III. APPROACH 

The scope of our study concentrates on the usage of 
autonomous robots for object handover tasks from robot to 
human, an important use case that requires an effective 
explanation strategy. Giving our Toyota Human Support 
Robot (HSR) a skill set that corresponds to different levels of 
explainability—or, in some cases, no explainability at all—is 
the current challenge at hand. Our explainability analysis for 
skill execution takes into account a number of important 
factors, one of which is the recognition that explainability in 
our case is inherently local.  

A. Proposed Approach 

The current approach used in our robot to determine the 

handover position is done by factoring in context-dependent 

(based on the posture of the detected person) and context-

independent (static; based on the context-dependent 

outcome). However, the handover position in a context-

independent approach does not consider any surrounding 

environment variables; thus, we propose to train a neural 

network to dynamically set the end-effector position based on 

the values obtained from the 3D bounding box. By allowing 

the neural network to generate random handover positions, 

we can collect input-output pairs dataset that can be used to 

fine-tune the model until it can automatically generate 

optimal handover positions based on the user's needs. This 

strategy would increase the effectiveness and usability of the 

robotic system. Regrettably, a prolonged mechanical issue in 

our Toyota HSR has forced us to delay the implementation of 

our neural network interpretation. Upon its resumption of 

operations, we shall resume our work and implement our 

planned approach. 

B. Explainability Setup 

One of the primary concerns that drives our research is 
how to determine the robot's reasoning behind certain 
decisions, especially why it stops at a specific point in relation 
to the detected human position during object handover. To 
carry out this research, an advanced built-in program created 
by [18] is used, which generates a 3D bounding box to locate 
the detected person in front of the robot. It follows the right-
handed coordinate system, which includes the depth (𝑥-axis), 
horizontal (𝑦-axis), and vertical (𝑧-axis). Once the person is 
detected, their position will be determined; in our case, there 
are three possible positions: standing, sitting, and lying down. 

Within our research framework, several notations play an 
important role in influencing how we perceive the spatial 
connection between humans and the robot during the 
handover task. Figure 1 illustrates the configuration in which 
Wp represents the robot's end-effector location where the 
object is held, W is the robot's base frame, B denotes the 
bounding box, and p is the relative position between the end 
effector and the center point of the bounding box. 

Figure 1.  Illustration of the parameters on handover skill. 

Logical predicates describing the requirements for a 
successful handover interaction are adopted from [19] to 
define the success preconditions. The predicates include 
𝑖𝑛_𝑓𝑟𝑜𝑛𝑡_𝑜𝑓𝑥,𝑦 (𝑝, 𝐵) , 𝑓𝑎𝑟_𝑖𝑛_𝑓𝑟𝑜𝑛𝑡_𝑜𝑓𝑥,𝑦(𝑝, 𝐵) , 

𝑏𝑒ℎ𝑖𝑛𝑑𝑥,𝑦(𝑝, 𝐵) , 𝑓𝑎𝑟_𝑏𝑒ℎ𝑖𝑛𝑑𝑥,𝑦(𝑝, 𝐵) , 𝑎𝑏𝑜𝑣𝑒𝑥,𝑦(𝑝, 𝐵) , 

𝑏𝑒𝑙𝑜𝑤𝑥,𝑦(𝑝, 𝐵), and 𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑥,𝑦(𝑝, 𝐵) . Using the success 

preconditions, the natural language explanation for each 
position is generated manually, as shown in Tables I-III. 

In addition to manual natural language translation, 
ChatGPT 3.5 [20] is employed to generate automated 
translation and evaluate the results using the Bilingual 
Evaluation Understudy (BLEU) score [21]. The first few 
initial tests did not produce close translations to the manual 
translation. Therefore, more detailed definitions of each 
logical expression were provided, as well as separating each 
predicate that consists of two or more coordinates; for 
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example, 𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑥,𝑦(𝑝, 𝐵)  becomes 𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑥(𝑝, 𝐵)  ∧ 

𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑥(𝑝, 𝐵). The outcome of the last iteration was then 
used for assessment. 

TABLE I.  PRECONDITIONS FOR STANDING POSITION 

Types Success Preconditions 

Logical 

Predicates 

𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑦,𝑧(𝑝, 𝐵)  ∧  𝑖𝑛_𝑓𝑟𝑜𝑛𝑡_𝑜𝑓𝑥(𝑝, 𝐵) ∧

 ¬𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑥(𝑝, 𝐵)  ∧  ¬𝑏𝑒𝑙𝑜𝑤𝑥,𝑦(𝑝, 𝐵)  ∧  ¬𝑏𝑒ℎ𝑖𝑛𝑑𝑥,𝑦(𝑝, 𝐵)  ∧

 ¬𝑓𝑎𝑟_𝑏𝑒ℎ𝑖𝑛𝑑𝑥,𝑦(𝑝, 𝐵)  ∧  ¬𝑎𝑏𝑜𝑣𝑒𝑥,𝑦(𝑝, 𝐵)  ∧

 ¬ 𝑖𝑛_𝑓𝑟𝑜𝑛𝑡_𝑜𝑓𝑦(𝑝, 𝐵)  ∧  ¬𝑓𝑎𝑟_𝑖𝑛_𝑓𝑟𝑜𝑛𝑡_𝑜𝑓𝑦(𝑝, 𝐵)  

Natural 

Language 

The robot's arm should be in front of and centered around 

a person (corresponding to the person's height and width). 
It should not be behind, above, beneath, or to the right/left 

of a human. 

TABLE II.  PRECONDITIONS FOR SITTING POSITION 

Types Success Preconditions 

Logical 

Predicates 

𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑦,𝑧(𝑝, 𝐵)  ∧  𝑖𝑛_𝑓𝑟𝑜𝑛𝑡_𝑜𝑓𝑥(𝑝, 𝐵) ∧

 ¬𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑥(𝑝, 𝐵)  ∧  ¬𝑏𝑒𝑙𝑜𝑤𝑥,𝑦(𝑝, 𝐵)  ∧  ¬𝑏𝑒ℎ𝑖𝑛𝑑𝑥,𝑦(𝑝, 𝐵)  ∧

 ¬𝑓𝑎𝑟_𝑏𝑒ℎ𝑖𝑛𝑑𝑥,𝑦(𝑝, 𝐵)  ∧  ¬𝑎𝑏𝑜𝑣𝑒𝑥,𝑦(𝑝, 𝐵)  ∧

 ¬ 𝑖𝑛_𝑓𝑟𝑜𝑛𝑡_𝑜𝑓𝑦(𝑝, 𝐵)  ∧  ¬𝑓𝑎𝑟_𝑖𝑛_𝑓𝑟𝑜𝑛𝑡_𝑜𝑓𝑥,𝑦(𝑝, 𝐵)  

Natural 

Language 

The robot’s arm is positioned in front of and around the 
middle of a sitting person (according to the person’s 

height and width). It is not behind, above, beneath, and to 

the right or left of the person. 

TABLE III.  PRECONDITIONS FOR LYING DOWN POSITION 

Types Success Preconditions 

Logical 

Predicates 

𝑎𝑏𝑜𝑣𝑒𝑥,𝑦(𝑝, 𝐵)  ∧  𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑦(𝑝, 𝐵)  ∧  ¬𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑧(𝑝, 𝐵)  ∧

 ¬𝑏𝑒𝑙𝑜𝑤𝑥,𝑦(𝑝, 𝐵)  ∧  ¬𝑏𝑒ℎ𝑖𝑛𝑑𝑥,𝑦(𝑝, 𝐵)  ∧

 ¬𝑓𝑎𝑟_𝑏𝑒ℎ𝑖𝑛𝑑𝑥,𝑦(𝑝, 𝐵)  ∧  ¬𝑖𝑛_𝑓𝑟𝑜𝑛𝑡_𝑜𝑓𝑦(𝑝, 𝐵)  ∧

 ¬𝑓𝑎𝑟_𝑖𝑛_𝑓𝑟𝑜𝑛𝑡_𝑜𝑓𝑥,𝑦(𝑝, 𝐵)  

Natural 

Language 

The robot’s arm is positioned above and centered around 
the person’s width. It is not below or around their head or 

feet. It should not extend all the way to the opposite side 
from where a robot is standing next to. 

 
BLEU provides a quantitative measure by comparing the 

output of machine translation systems (candidate translation) 
against reference translations, offering insights into the degree 
of overlap in n-gram or word sequences with human-
generated counterparts [21]. The length of candidate 
sentences that are shorter than the reference phrases is 
penalized in the BLEU metric (Brevity Penalty), which is 
based on the modified 𝑛 -gram precision measure. The 
following formula determines the BLEU score: 

 𝐵𝐿𝐸𝑈 = 𝐵𝑃 ⋅ exp (∑
1

𝑁
⋅ 𝑙𝑜𝑔𝑃𝑛)𝑁

𝑛=1 , () 

where 𝐵𝑃  = Brevity Penalty and 𝑃𝑛 = Precision for 𝑛 -
gram. 

The Natural Language Toolkit (NLTK) [22] and spaCy 
[23] are used in our BLEU score computation to provide an 
unbiased evaluation of machine-generated translations. The 
translation produced by ChatGPT 3.5 (as a candidate 
translation) is compared with our original translation (as a 
reference). The results of the BLEU score for each translation 
performed by ChatGPT in comparison to the manual 
translation are presented in Table IV. 

TABLE IV.  BLEU SCORE OF CHATGPT 3.5 TRANSLATION 

No. Position BLEU Score 

1 Standing 0.85 

2 Sitting 0.81 

3 Lying Down 0.88 

 
The final translation output from ChatGPT 3.5 provides a 

good starting point for future developments. Despite the fact 
that the translations produced by the first few iterations were 
not satisfactory, adding further specific information made it 
generate a translation that was similar to the one that was done 
manually. The key realization is that it is possible to train 
models, like ChatGPT, to translate technical terminology into 
natural languages effectively. 

When it comes to interpreting the neural network’s 
decisions about handover position, Grad-weighted Class 
Activation Mapping (Grad-CAM) [24] integration shows 
itself to be an effective tool for insight. It offers a transparent 
and insightful lens into the decision-making processes of 
complex models. Grad-CAM fills this gap by giving an 
illustration of the areas in the input data that have a major 
impact on a certain outcome. Unfortunately, the problem with 
our Toyota HSR prevented us from implementing this 
method. Despite this obstacle, a previously collected dataset 
from our research team [25] was leveraged, and the video 
content was edited to achieve the same heatmap effect (as seen 
in Figure 2). This decision allowed us to simulate and observe 
the intended outcomes, ensuring the continuity of the research 
despite the technical constraints. 

 

  

Figure 2.  Additional heatmaps on one of the handover scenarios. 

The dataset, which includes relevant information but lacks 
explanations, was then extended by adding explanations in 
both heatmap and natural language formats. This improvised 
solution allows us to proceed with our user study within the 
designated timeframe, preserve the research objectives, and 
ensure the timely execution of the study. 

C. Experimental Design 

In our comprehensive user study aimed at investigating 
user preferences in interacting with AI-based or robotic 
systems, two distinct hypotheses were formulated to guide our 
research. The first hypothesis is that users have a preference 
for systems that offer explanations while they are using them. 
The second hypothesis is about the preferred explanation 
format among users; in particular, we hypothesize that people 
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prefer explanations in natural language over alternative 
visualization techniques like heatmaps. 

Our user study adopts a mixed-methods strategy to gather 
quantitative data and qualitative insights through surveys in 
order to experimentally validate our hypotheses. After being 
presented with simulated robotic interfaces that include 
heatmaps and natural language explanations, participants’ 
preferences, satisfaction, and understanding were carefully 
examined. 

Through selectively crafted survey questions, user 
experiences, preferences, and challenges are explored, 
allowing us to obtain insights into the factors that contribute 
to a positive or negative interaction. Additionally, scenarios 
that are meant to replicate real-world interactions were chosen 
by giving users experiences that were contextually appropriate 
and reflected the difficulties and complexities of real-world 
circumstances. Ten videos and three different explanation 
varieties were presented to help construct a more 
comprehensive understanding of user preferences: no 
explanation, partial explanation using heatmaps, and detailed 
explanation using natural language. In order to prevent any 
potential biases, 8 out of 10 videos were purposefully 
presented in a random order. Following every video, 
participants were asked to rate how confident they were in 
their understanding of the robot decision-making process. 

IV. EXPERIMENTAL RESULTS 

Our user study involved a total of 33 participants, ages 
ranging from 18 to 40 years old, education ranging from high 
school to Ph.D., and different academic and professional 
backgrounds. Our participants’ demographic profiles show a 
variety of age groups, gender identities, levels of education, 
and fields of study. This diversity attempts to determine 
whether there is any relationship between the preferred 
explanation technique and the educational background. 

A. Quantitative Analysis 

In terms of the participants' experiences and expectations 
in the realms of robotic systems and Artificial Intelligence 
(AI), 75.8% of them have prior hands-on experience with 
robotic systems, while an overwhelming 84.8% are familiar 
with AI or machine learning in their practical lives. In a survey 
on comfort levels, 72.7% of the respondents said they felt 
uneasy when AI systems made decisions without providing an 
explanation, highlighting the significance of transparency. 

In our scenario-based questions, two identical videos 
served as starting points. The first was without explanation, 
whereas the second included a natural language explanation. 
The majority indicated that they were unclear about the 
robot’s action in the first video, though it was a successful 
object handover scenario. However, the participant’s 
confidence level improved after watching the second video, 
which revealed a positive beginning. Table V summarizes 
participants' confidence levels after eight more videos were 
shown in a random order. It reveals that individuals feel more 
confident when they are given an explanation of how the robot 
makes decisions. Less than 40% of the participants felt 
confident about their understanding of the robot decision-
making process in the three videos without an explanation, in 

both successful and unsuccessful handover scenarios. More 
than 50% of the participants in the two videos where heatmaps 
were used as an explanation type expressed confidence in the 
successful handover scenario. However, in the case of an 
unsuccessful handover, only 34.6% of participants reported 
feeling confident. With natural language explanations, on the 
other hand, 48.4% of those surveyed expressed confidence in 
the unsuccessful scenarios. In the successful scenario, over 
80% of the participants expressed confidence and none of 
them indicated lack of confidence. 

TABLE V.  AN OVERVIEW OF PARTICIPANTS’ CONFIDENCE LEVEL 

Video Outcome 
Explanation 

Type 

Confidence Level (%) 

5 4 3 2 1 

3 Succeed None 9.1 24.2 48.5 18.2 0.0 

4 Succeed Heatmap 24.2 27.3 36.4 12.1 0.0 

5 Failed None 12.1 15.2 30.3 24.2 18.2 

6 Failed 
Natural 

Language 
24.2 24.2 15.2 15.2 21.2 

7 Succeed None 3.0 18.2 15.2 36.4 27.3 

8 Succeed 
Natural 

Language 
27.3 57.6 15.2 0.0 0.0 

9 Failed 
Natural 

Language 
24.2 24.2 18.2 27.3 6.1 

10 Failed Heatmap 18.2 21.2 30.3 27.3 3.0 

 
To conclude, compared to visual explanation (using a 

heatmap), natural language explanation improves their 
confidence by over 30% (shown in Figure 3). 

Figure 3.  Participants’ overall confidence in understanding the robot 

decision-making process. 

B. Hypotheses Testing 

We conducted the first hypothesis test to investigate 

users’ preferences regarding the type of videos when seeking 

information. The hypothesis aimed to determine whether 

users prefer videos with explanations over videos without 

explanations. The participants were presented with the 

question “Which type of video do you prefer when seeking 

information?” and the response options: videos with 

explanation, without explanation, and depending on the 

context. 

A chi-square test [26] for independence is employed to 

analyze the association between the type of video and user 

preference, where 𝐻0  = no preference difference and 𝐻1 = 

there is a preference for videos with an explanation. If the 𝑝-
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value of a given dataset is less than 5%, the null hypothesis 

is rejected because it is assumed that there is a preference 

difference among the options. To calculate the 𝑝-value using 

chi-square formula (2), the observed value (𝑂) needs to be 

identified first, which represents the actual counts derived 

from the sample, and the expected value (𝐸) , which 

represents the values of each category in the event that there 

was no preference difference between all categories. 𝐸  is 

obtained by dividing the total number of observed values by 

the number of categories. The following calculation can then 

be used to get its chi-square statistic (𝜒2)  based on the 

observed and expected values: 

 𝑋2 = ∑
(𝑂−𝐸)2

𝐸
  () 

The result, along with the degrees of freedom (𝑑𝑓), which 

is a number representing how much variation is involved in 

the research (𝑛) minus 1,  

 𝑑𝑓 =  𝑛 –  1 () 

is used to calculate the 𝑝-value from the chi table.  

Our observed and expected values based on the survey 

results are displayed in Table VI. The total observed values—

33 in this case—and the number of categories—3 in this 

case—are then used to compute the expected values, yielding 

the value 𝐸 = 11. 

TABLE VI.  THE OBSERVED AND EXPECTED VALUES 

User Preference 𝑶 𝑬 𝑶 − 𝑬 (𝑶 − 𝑬)𝟐 

With Explanation 22 11 11 121 

Without 
Explanation 

2 11 -9 81 

Depend on the 

Context 
9 11 -2 4 

 

These observed and expected values were used to 

calculate the chi-square statistic, which was then used to test 

the hypothesis. The result yielded 𝜒2= 28.1; with 𝑑𝑓 = 2, the 

resulting 𝑝-value was 0.0000008. Since the 𝑝-value is less 

than 𝛼 = 5% or 0.05, it is determined that the null hypothesis 

is rejected.  

The second hypothesis is tested based on two identical 

videos with two distinct explanations—one using a heatmap 

(video 4) and the other using natural language (video 8). 

Participants were asked to choose which of the two videos 

gave them a better understanding of the robot decision-

making process. Participants who selected video 8 are 

considered to prefer the natural language explanation. A one-

sample proportion test (𝑍)  [27] is employed to analyze 

whether the proportion of users who prefer video 8 differs 

significantly from 50% (no preference). The null hypothesis 

(𝐻0) assumed no preference difference, while the alternative 

hypothesis (𝐻1) assumed a preference for videos with natural 

language explanation. 

To conduct the test, we need to estimate the proportion  ̂𝑝 

as: 

 𝑝̂ =
𝑥

𝑛
  () 

where 𝑥 is the number of participants who have chosen video 

8 and 𝑛 is the total number of participants. After that, the test 

statistic can be calculated with the following formula: 

 𝑍 =
𝑝−𝑝0

√
𝑝0(1−𝑝0)

𝑛

  () 

where 𝑝0 is the pre-specified value; in this case, it is 50% to 

indicate that if half of the total participants chose video 8, 

there is no significant preference for that particular video. 

From there, the calculated 𝑍-value is compared with critical 

values, which can be obtained from the 𝑍  table, from the 

standard normal distribution. Given that the sampling 

distribution of our data is a normal distribution with a 

significant value of 0.05, the critical values are in a range of 

-1.96 to 1.96. Based on the result of our survey, a one-sample 

proportion test was calculated with 𝑥 = 23 and 𝑛 = 33, which 

yielded a 𝑍-value of 2.46. Because the 𝑍-value is larger than 

the maximum critical value, the null hypothesis is rejected. 

A post hoc sensitivity analysis [28] was conducted to 

evaluate the statistical power of our study. Cohen’s 𝑤, 

 𝑤 =  √∑
(𝑝𝑖−𝑝0𝑖)2

𝑝0𝑖
 () 

where 𝑝𝑖  is the observed value in category 𝑖  and 𝑝0𝑖  is the 

expected value under the null hypothesis in category 𝑖 , is 

used to measure the effect size for the chi-square test of the 

first hypothesis. The thresholds are 0.10 for a small effect, 

0.30 for a medium effect, and 0.50 for a large effect. The 

result yielded 𝑤 = 0.75, which represents a large effect. 

Furthermore, we assess the effect size for the one-sample 

proportion test of the second hypothesis with Cohen’s ℎ, 

 ℎ =  2 𝑥 (arcsin(√𝑝1) − arcsin(√𝑝2)) () 

where 𝑝1  and 𝑝2  are the two proportions being compared. 

The thresholds are 0.20 for a small effect, 0.50 for a medium 

effect, and 0.80 for a large effect. From our user study result, 

23 out of 30 participants preferred video with natural 

language explanation; thus, 𝑝1 = 69.7%. Then we compare it 

with 𝑝2 = 50% for the proportion that shows no preference 

difference. The result yielded ℎ  = 0.40, which indicates a 

moderate effect size. 

C. Qualitative Analysis 

As proven in our hypothesis 2, natural language 
explanations are preferable to heatmaps. In order to evaluate 
it on a qualitative level, the participants were asked why they 
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preferred one type of explanation over the other, and the 
majority of them responded that they preferred natural 
language because it is easier to understand and more elaborate. 
In addition, they believe that natural language explanations 
can be enhanced by an audio or speech component. 

They were then asked to imagine a situation in which they 
would favor a different kind of explanation than the one they 
had previously selected. Those who have chosen natural 
language say that they prefer heatmaps when a robot performs 
a simple task, interacts with static objects, or is in a simulation. 
On the other hand, those who have chosen heatmaps say that 
they prefer natural language when failure occurs, when the 
robot is in a dynamic environment, or when the user has no 
background knowledge about the system. 

When asked to imagine a situation in which they would 
prefer to have no explanation at all, the majority of 
respondents believe that in a straightforward or routine task 
that is repeated, there is no need for an explanation because 
the rationale is obvious. While some claim that they cannot 
think of any situation in which it is preferable not to have an 
explanation, others highlight this point by stating that, even in 
tasks that appear straightforward, having an explanation is 
desirable since it provides a clear reasoning behind the robot’s 
chosen action. 

V. CONCLUSION AND FUTURE WORK 

Our user study results supported our hypotheses, offering 
statistical evidence that users do, in fact, prefer explanations 
when interacting with robotic systems. These findings 
highlight that providing explanations improves users’ trust 
and understanding of robot systems. Although the study 
demonstrates a clear preference for explanations in natural 
language as opposed to heatmap visualizations, respondents 
express a preference for heatmaps or no explanations at all 
when the robot is performing regular or routine tasks. This 
tendency implies that, in situations they are familiar with, 
participants think that the visual representations of the 
heatmaps are sufficient or that perhaps they prefer them more 
when the tasks are simple and require no extra information. 
Due to the wide range of participant preferences, flexible 
communication strategies that take into account varying user 
expectations and levels of experience with certain robotic 
tasks are necessary. 

Even though the results suggest that users prefer systems 
that provide explanations over those that do not, it is important 
to acknowledge a potential bias in how this hypothesis was 
tested. The question itself highlights the presence or absence 
of an explanation, which might have led participants to 
gravitate toward the condition with explanations, independent 
of their actual utility in decision making. Future studies should 
aim to mitigate this bias by embedding explanations in more 
naturalistic tasks where the usefulness of the explanation 
emerges organically rather than being made explicit to 
participants. 

While our findings indicate that participants preferred 
natural language explanations, it is important to recognize that 
this result may partly reflect differences in interpretability 
between formats. Natural language requires little effort to 
process, whereas heatmaps demand additional interpretation 

and prior familiarity. This asymmetry may have 
disadvantaged the heatmap condition. To address this 
imbalance, future studies should explore providing training or 
familiarization with visual explanations, refining visualization 
design to reduce cognitive effort, or presenting hybrid formats 
that combine textual and visual elements for complementary 
strengths. 

Further studies could explore automating the translation of 
scientific terms into natural language to provide explanations 
for nonexpert users. To implement audio explanations 
effectively, future work may explore the integration of speech 
synthesis technologies or Natural Language Processing (NLP) 
models specialized in generating spoken content. 
Additionally, exploring the potential of machine learning 
techniques, such as reinforcement learning, could contribute 
to optimizing explanation selection. This way, the system 
could learn over time which combination of explanation 
modalities yields the most positive user responses or 
facilitates optimal task performance. 
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