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Abstract— In this paper, we propose an explainable 

framework to assess biomarker significance in brain stroke 

data by combining Causal Artificial Intelligence (AI), which 

models cause–effect relationships beyond simple correlations, 

with a Tsetlin Machine, a symbolic rule-based learning 

algorithm that generates human-readable logic clauses. In a 

first step, Causal AI is used to uncover complex 

interdependencies among biomarkers and to identify the most 

impactful ones, while the interpretable clauses of the Tsetlin 

Machine enhance understanding and support improved 

diagnosis, prognosis, and prevention in stroke patients. This 

methodological strategy sets a novel foundation for better 

understanding of complex brain diseases. 

Keywords - Brain stroke; Causal AI;  Explainability; 

Interpretability; Tsetlin Machine.  

I.  INTRODUCTION 

Stroke, caused by an alteration of the blood supply to the 
brain, is a medical emergency that requires immediate 
attention in urgent care departments and specialized stroke 
units. It is a leading cause of long-term disability and the 
second leading cause of death globally. In Spain, about 1 in 5 
stroke patients are readmitted with a recurrent stroke [1][2]. 
These statistics highlight the importance of early and 
accurate diagnosis, as timely intervention can significantly 
reduce mortality and long-term disability. Despite notable 
advances in medical imaging and diagnostics, deciphering 
the intricate relationships among stroke-related biomarkers 
remains a significant challenge.  

In recent years, Machine Learning (ML) has shown 
promise for detecting subtle patterns in biomedical data [3]. 
However, many ML models lack transparency, offering 
limited insight into how predictions are made. This opacity 
poses a major barrier to their adoption in clinical settings, 
where trust, accountability, and explainability are essential 
for informed decision-making.   

In this paper, we propose a novel approach that integrates 
Causal AI [4] to model cause-effect relationships rather than 
simple correlations among stroke-related biomarkers with 
Tsetlin Machines [5][6][8][9], a symbolic, rule-based 

learning model that can uncover and help interpret how 
specific biomarkers influence stroke outcomes. Causal AI 
refers to machine learning methods that model cause–effect 
relationships, beyond mere correlations, whereas Tsetlin 
Machines are interpretable, rule-based learning models that 
construct human-readable logic clauses for classification 
tasks [6]. For example, a Tsetlin Machine might generate a 
rule such as: “If LDL cholesterol is high and age is above 
65, and prior use of antiplatelet drugs is absent, then the 
patient is more likely to suffer an ischemic stroke.” Such 
clauses are easily understandable by clinicians and can be 
directly compared with established medical knowledge. 
Together, these not only enhance predictive accuracy, but 
also provide a transparent, interpretable insight essential for 
clinical decision-making.  

The rest of the paper is organized as follows. In Section 
II, we describe the methodology, including an overview of 
the dataset, pre-processing steps, the application of Causal 
AI, and the use of Tsetlin Machines for interpretable 
classification. In Section III, we present and discuss the 
results obtained from both the causal inference analysis and 
the Tsetlin Machine model, highlighting their clinical 
relevance. In Section IV, we conclude the paper by 
summarizing the key findings and outlining directions for 
future research and model improvements. 

 

II. METHODOLOGY 

In this section, we describe the methodology, with 

subsections on an overview of the dataset, pre-processing 

steps, Causal AI, and the Tsetlin Machines. 

A. Overview 

As mentioned in the introduction, we employ a hybrid 

methodology that combines Causal AI, a set of techniques 

designed to model cause–effect relationships rather than 

mere correlations, with Tsetlin Machines, symbolic rule-

based learning algorithms capable of generating human-

readable logic clauses. This integrated approach allows us to 

both identify the underlying causal relationships among 
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biomarkers that drive clinical outcomes in stroke diagnosis 

and prognosis, and to extract interpretable rules that clarify 

how specific biomarker patterns contribute to different 

stroke subtypes. By linking causal discovery with 

transparent classification, our method not only improves 

predictive power but also enhances clinical trust and 

explainability. The study has received the ethical approval 

of the Santiago/Lugo clinical ethical committee (code: 

2025/221). 

B. Dataset and pre-processing  

 
The dataset consists of about 4000 data points with 62 
features, containing relevant clinical, demographic and 
biochemical biomarkers. Standard pre-processing steps were 
applied, as listed below: 

• Removal of non-relevant features using domain 
knowledge (e.g., multiple stroke determination tests 
at various times would dominate causal relations, 
suppressing the weight of other biomarkers). 

• Missing value imputation using binary and iterative 
imputers, which estimate missing values by 
iteratively predicting them based on other available 
features. This is particularly useful in this data set as 
the relationships between medical features can 
provide valuable information for filling in missing 
data. This is done for binary and non-binary features 
respectively. 

C. Causal AI 

 
To identify potential causal relationships among 

biomarkers, we applied the PC algorithm (after its authors, 
Peter and Clark), a constraint-based causal discovery 
method, to the pre-processed dataset [7]. At this stage, the 
dataset contains approximately 50 features including the 
target (type of stroke – ischemic or haemorrhagic). 

Since our objective is to isolate the most influential 
biomarkers, we employed two graph-theoretic measures to 
rank nodes (features) within the causal graph: 

• Degree Centrality: Measures the number of direct 
connections for a node. High degree centrality 
suggests that a feature has broad influence. 

• Betweenness Centrality: Quantifies how often a 
node appears on the shortest paths between other 
nodes. High betweenness centrality implies that a 
feature is a critical intermediary or bridge in the 
causal network. 

To minimize selection bias to ensure that both direct and 
indirect influences are taken into account, we first created 
two separate ranked lists of features: one based on degree 
centrality and the other based on betweenness centrality. 

From each ranking, we extracted the top 25 features, 
representing those with the strongest influence according to 
the respective measures. Next, we introduced a composite 
centrality score, which assigns weights to features depending 
on their positions in the two rankings, thereby balancing the 
contribution of both centrality measures. Finally, by 
comparing the two lists and focusing on the features with the 
highest combined scores, we identified the 10 most 
influential biomarkers that consistently appeared as 
important across both centrality perspectives. 

 
D. Tsetlin Machines  
 

Following the identification of the top 10 biomarkers 
through causal inference, we applied a rule-based 
convergence Tsetlin Machine (TM) [8][9][10] to model their 
relationship with stroke subtypes. This model is a logic-
based learning algorithm that constructs human-interpretable 
propositional logic clauses to perform classification. It 
operates by learning patterns expressed as conjunctive 
logical clauses, where each clause is essentially a 
combination of conditions that must be satisfied for a 
prediction to be made (for example, if biomarker A is present 
and biomarker B is absent, then the case belongs to class X). 
Rather than relying on a single clause, the Tsetlin Machine 
generates a large set of such clauses, each of which casts a 
“vote” for a particular class. These votes are then aggregated, 
and the overall prediction is determined by the balance of 
evidence provided by all the clauses together. This 
ensemble-like mechanism allows the model to capture 
subtle, complex patterns while still maintaining a form that 
remains human-interpretable. 

We used the MultiClassTsetlinMachine from 
pyTsetlinMachine Python module and utilised the in-built 
bit-per-feature binarization to binarize the data [11]. This 
method discretizes continuous variables into a fixed number 
of bins, encoding each bin as a separate binary feature. This 
transformation ensures compatibility with TM’s binary input 
format. The original bin values are stored separately to 
correctly identify the real values of the features 
corresponding to the clauses. 

After binarization, an 80-20 train-test split was applied 
and the model was trained with appropriate hyper-parameters 
(i.e., the number of clauses, threshold, and specificity).  

Our target variable represents stroke subtypes (a binary 
classification task) and the TM generated 50 clauses for each 
class. To identify the most influential clauses per class, we 
analysed their voting weights, which reflect how frequently a 
clause contributes to a particular class prediction. We 
selected the top clauses based on these weights to further 
enhance interpretability and explainability and to reduce 
redundancy, with two filters: 
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• Bias Check: We excluded clauses that were 
overwhelmingly positive or negative for a single 
class to avoid skewed interpretations. 

• Redundancy Check: Clauses that appeared 
identically in both classes of the outputs were 
removed, as they introduce ambiguity in the 
interpretation of feature impact. 

After filtering, we retained the distinct and unbiased 
clauses for each class with the highest voting weights. These 
clauses form the basis for interpreting how specific 
combinations of biomarker presence or absence influence the 
classification of stroke subtypes. 

III. RESULTS AND DISCUSSION 

Based on the process explained in the methodology 
section, our final goal is to obtain the top clauses for each of 
the output classes. To simplify further, we retrieve the most 
important features for each class as well as the information 
whether their absence or presence is important for either 
class.  

In this section, we discuss the results of both the causal 
AI and the Tsetlin Machine. 

A. Results of Causal inference 

 
We extract the list of top nodes/features using the 

composite centrality, as defined in the methodology section. 
The causal Directed Acyclic Graph (DAG) connections 
comparing original features and the extracted top 10 features 
using causal inferences are shown in Figure 1.  
The first graph (Figure 1a) presents the complete set of 
features and biomarkers included in the dataset. Because all 
variables and their interconnections are displayed at once, 
the result is a complex and visually dense network that 
makes it difficult to distinguish which biomarkers play the 
most critical roles. In contrast, the second graph (Figure 1b) 
focuses only on the top 10 most influential features, as 
identified through our causal inference procedure using the 
composite centrality score. This reduced network provides a 
much clearer picture of the variables that exert the strongest 
influence on stroke outcomes, allowing clinicians and 
researchers to focus on the most relevant biomarkers. To 

further illustrate how causal inference can assign importance 
to a feature, even when the connection to the target is 
indirect, the right-hand panel (Figure 1c) zooms in on a 
specific causal path. In this example, the feature age (ED) in 
Figure 1b does not connect directly to the target variable, 
GD-C, which represents the type of stroke. Instead, its 
influence is mediated through an intermediate biomarker, AG 
(prior use of antiplatelet drugs), which then affects TF 
(treatment to dissolve blood clots), and only at that point 
does the causal chain reach GD-C. This breakdown 
demonstrates how a variable can still be considered highly 
important when it contributes to the target outcome through a 
series of intermediate links, rather than through a direct 
relationship as well as to trace and understand how each 
node in the causal graph contributes to the target outcome, 
whether through direct or indirect pathways. 

The top features/biomarkers identified by the causal 
model and their significance in the context of stroke related 
literature is summarized in Table 1 below.  

TABLE I.  MOST IMPORTANT BIOMARKERS AS PER CAUSAL MODEL 

Feature Description Significance 

BNP Blood test to help 

diagnose heart failure 

A strong indicator for cardiac 

stress, important for stroke 

diagnosis/prognosis 

AG Prior use of antiplatelet 

drugs 

Aligns with existing clinical 

evidence that such medications 

reduce the risk of recurrent stroke 

ED Age of the patient A critical determinant of stroke 

severity and recovery potential 

HLP Abnormally high levels 

of lipids (fats) 

Associated with increased stroke 

risk; important for stroke 

prevention strategies 

LDL Bad cholesterol Linked to atherosclerosis and 

subsequent cerebrovascular 
events; a key modifiable risk 

factor 

R_A Degree of disability 

after a stroke at 

discharge 

Reflects the immediate functional 

outcome post-stroke; serves as a 
proxy for the effectiveness of 

acute care 

 

Figure 1.  Causal graphs: (a) with all the features, (b) top 10 features using composite score of degree and betweenness centralities and (c) 

deconstructed specfic causal path 
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mRS_0 Baseline disability in 

daily activities 

Predictive of post-stroke recovery 

trajectories 

SEX Gender of the patient Reflects gender effect in stroke 

prognosis and prevention 

TF Treatment to dissolve 

blood clots 

Highlights a critical role of 
emergency treatments in 

improving stroke outcomes 

GD_C Category of the stroke 

type (target) 

Classification of stroke types; 

target of this study 

 
 
As can be seen from the significance column in Table 1, 

the causal model validates known clinical associations. 
Additionally, it also captures nuanced interdependencies 
among biomarkers by providing the strength of connections 
between them (i.e., node connection strengths calculated 
using composite score as described in the methodology 
section).  

The model’s ability to prioritize features with both 
statistical and clinical relevance strongly supports its 
potential application in decision support systems for stroke 
management. 

B. Results of Tsetlin Machine 

 

As previously mentioned, a TM produces human-

readable clauses (e.g., if A and not B, then class X). After 

applying the model to the top features identified through 

causal inference, we derive such clauses for our target 

variable, the type of stroke. 

Figure 2 provides a visual depiction of the clauses. In this 

illustration, pink cells indicate the absence of a feature for 

the corresponding class shown at the bottom, while light 

green cells represent its presence. Each feature’s value range 

is displayed within its respective cell. The feature SEX is 

binarized, with 0 → female and 1 → male.  

 

The clause for Ischemic stroke would then be:  

 

If the modified Rankin Scale (mRS_0) score is 

greater than 2.67, and the LDL level is between 71 

and 117 mg/dL, and the patient’s age is not greater 

than 56 years, and the BNP level is not between 

550 and 1123 pg/mL, then the predicted outcome is 

Ischemic stroke. 

 

Which in logic notation is: 

 

 
 

 

Such human-readable clauses, with well-defined value 

ranges for each feature or biomarker influencing the output 

classes, could become particularly valuable in clinical 

settings.  

In terms of clinical research, they enhance model 

transparency, enabling researchers to validate findings 

against existing biomedical knowledge and uncover novel 

associations. This interpretability can help bridge the gap 

between data-driven models and domain expertise. 

Furthermore, such clauses can inform the design of 

prospective studies and contribute to the development of 

explainable clinical decision support tools.  

Finally, having transparency in clinical decision-making 

would benefit effective patient communication, helping 

individuals understand prevention strategies and treatment 

options.  

IV. CONCLUSION AND FUTURE WORK 

 
The findings presented here are preliminary and require 

further refinement. A key priority is to acquire additional 

data and repeat the analysis to ensure the robustness of the 
results. We are in the process of obtaining a more 
comprehensive dataset, which will include recent records of 
stroke patients. 

To further strengthen the robustness of the results, the 
next steps are broadly categorized into two areas: one 
focusing on Causal AI and the other on rule extraction using 
the Tsetlin Machine.   

 

A. Causal AI 

 

To ensure the accuracy of the causal graphs, it is 

essential to correctly capture the directionality of the 

relationships. Achieving this will require deeper domain 

expertise and a thorough analysis of how various 

biomarkers interact. 

Additionally, it is vital to conduct what-if scenario 

simulations based on the discovered causal relationships 

within the feature space. These in-silico experiments will 

 

Figure 2.  Visual representation of Tsetlin Machine clauses identified for 

the target with most important biomarkers. 
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enable us to explore how changes in feature values, whether 

hypothetical or novel, might influence stroke prognosis, 

without the need for new empirical data. 

B. Tsetlin machine 

 

While our current model achieves an overall accuracy of 

approximately 80%, a closer examination of its performance 

metrics reveals a notable imbalance. Specifically, the F1-

score for Class 0 (the majority class) reaches 0.88, whereas 

the F1-score for Class 1 (the minority class) drops sharply to 

just 0.15. This large disparity highlights that, although the 

model performs well in predicting the dominant class, it 

struggles to correctly identify cases that belong to the less 

frequent class. In practice, this means that the model fails to 

capture a substantial proportion of minority class instances, 

which may correspond to clinically critical or rare 

conditions. The root cause of this problem is the class 

imbalance present in the dataset, where examples of one 

stroke subtype greatly outnumber the other. We anticipate 

that the inclusion of additional patient records in our 

forthcoming dataset will help mitigate this imbalance by 

providing a more even distribution of classes. 

It is also important to emphasize that a Tsetlin Machine 

(TM) differs fundamentally from many classical machine 

learning models. Instead of optimizing a global error 

function, the TM relies on a frequency-driven clause 

learning mechanism in which the prevalence of certain 

patterns directly affects the clauses it learns. While this 

makes the model efficient and interpretable, it also means 

that it tends to favor patterns associated with the majority 

class, often at the expense of learning sufficient rules for the 

minority class. This characteristic can amplify the effects of 

class imbalance, as seen in our results. 

Nevertheless, in the context of biomedical datasets 

(where imbalanced class distributions are common) this bias 

does not necessarily negate the model’s clinical utility. 

Optimizing for the majority class can still yield valuable 

insights, as the most prevalent stroke subtype remains a 

major focus of clinical diagnosis and treatment. However, 

achieving reliable detection of minority cases is equally 

critical, as these often represent the most challenging and 

high-risk scenarios. Addressing this imbalance in future 

work will therefore be essential, ensuring that the TM 

captures meaningful patterns for both majority and minority 

classes without sacrificing interpretability. 

These facts also do not diminish the importance of 

accurately identifying minority class instances, which often 

represent critical or rare conditions. To address this, we are 

actively exploring various strategies (e.g., resampling, 

decision threshold tuning, etc.) to improve the model’s 

ability to generalize and perform equitably across both 

classes. These efforts are guided by domain expertise to 

ensure that learned patterns are meaningful and to prevent 

the model from learning artifacts of the data rather than true 

signals. 

Additionally, binarization must be approached with 

greater care. It is important to ensure that the binning of 

biomarkers identified as significant by the Tsetlin Machine 

aligns with domain knowledge and statistical distribution. 

For example, consider serum Vitamin D levels, which 

typically range from 0 to 100 ng/mL. Clinical guidelines 

define severe deficiency as levels below 10 ng/mL, 

deficiency as below 20 ng/mL, insufficiency between 20–30 

ng/mL, and sufficiency as levels above 30 ng/mL. If all 

values below 30 ng/mL were grouped into a single bin (e.g., 

bin 0), this would obscure critical clinical distinctions 

between mild insufficiency and severe deficiency. Such 

coarse binning could reduce the model’s ability to detect 

meaningful health risks associated with different deficiency 

levels. 
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