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Abstract— In this paper, we propose an explainable
framework to assess biomarker significance in brain stroke
data by combining Causal Artificial Intelligence (AI), which
models cause—effect relationships beyond simple correlations,
with a Tsetlin Machine, a symbolic rule-based learning
algorithm that generates human-readable logic clauses. In a
first step, Causal Al is used to wuncover complex
interdependencies among biomarkers and to identify the most
impactful ones, while the interpretable clauses of the Tsetlin
Machine enhance understanding and support improved
diagnosis, prognosis, and prevention in stroke patients. This
methodological strategy sets a novel foundation for better
understanding of complex brain diseases.
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I. INTRODUCTION

Stroke, caused by an alteration of the blood supply to the
brain, is a medical emergency that requires immediate
attention in urgent care departments and specialized stroke
units. It is a leading cause of long-term disability and the
second leading cause of death globally. In Spain, about 1 in 5
stroke patients are readmitted with a recurrent stroke [1][2].
These statistics highlight the importance of early and
accurate diagnosis, as timely intervention can significantly
reduce mortality and long-term disability. Despite notable
advances in medical imaging and diagnostics, deciphering
the intricate relationships among stroke-related biomarkers
remains a significant challenge.

In recent years, Machine Learning (ML) has shown
promise for detecting subtle patterns in biomedical data [3].
However, many ML models lack transparency, offering
limited insight into how predictions are made. This opacity
poses a major barrier to their adoption in clinical settings,
where trust, accountability, and explainability are essential
for informed decision-making.

In this paper, we propose a novel approach that integrates
Causal Al [4] to model cause-effect relationships rather than
simple correlations among stroke-related biomarkers with
Tsetlin Machines [5][6][8][9], a symbolic, rule-based

learning model that can uncover and help interpret how
specific biomarkers influence stroke outcomes. Causal Al
refers to machine learning methods that model cause—effect
relationships, beyond mere correlations, whereas Tsetlin
Machines are interpretable, rule-based learning models that
construct human-readable logic clauses for classification
tasks [6]. For example, a Tsetlin Machine might generate a
rule such as: “If LDL cholesterol is high and age is above
65, and prior use of antiplatelet drugs is absent, then the
patient is more likely to suffer an ischemic stroke.” Such
clauses are easily understandable by clinicians and can be
directly compared with established medical knowledge.
Together, these not only enhance predictive accuracy, but
also provide a transparent, interpretable insight essential for
clinical decision-making.

The rest of the paper is organized as follows. In Section
I1, we describe the methodology, including an overview of
the dataset, pre-processing steps, the application of Causal
Al, and the use of Tsetlin Machines for interpretable
classification. In Section III, we present and discuss the
results obtained from both the causal inference analysis and
the Tsetlin Machine model, highlighting their clinical
relevance. In Section IV, we conclude the paper by
summarizing the key findings and outlining directions for
future research and model improvements.

II.  METHODOLOGY

In this section, we describe the methodology, with
subsections on an overview of the dataset, pre-processing
steps, Causal Al, and the Tsetlin Machines.

A. Overview

As mentioned in the introduction, we employ a hybrid
methodology that combines Causal Al, a set of techniques
designed to model cause—effect relationships rather than
mere correlations, with Tsetlin Machines, symbolic rule-
based learning algorithms capable of generating human-
readable logic clauses. This integrated approach allows us to
both identify the underlying causal relationships among
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biomarkers that drive clinical outcomes in stroke diagnosis
and prognosis, and to extract interpretable rules that clarify
how specific biomarker patterns contribute to different
stroke subtypes. By linking causal discovery with
transparent classification, our method not only improves
predictive power but also enhances clinical trust and
explainability. The study has received the ethical approval
of the Santiago/Lugo clinical ethical committee (code:
2025/221).

B. Dataset and pre-processing

The dataset consists of about 4000 data points with 62
features, containing relevant clinical, demographic and
biochemical biomarkers. Standard pre-processing steps were
applied, as listed below:

e Removal of non-relevant features using domain
knowledge (e.g., multiple stroke determination tests
at various times would dominate causal relations,
suppressing the weight of other biomarkers).

e Missing value imputation using binary and iterative
imputers, which estimate missing values by
iteratively predicting them based on other available
features. This is particularly useful in this data set as
the relationships between medical features can
provide valuable information for filling in missing
data. This is done for binary and non-binary features
respectively.

C. Causal Al

To identify potential causal relationships among
biomarkers, we applied the PC algorithm (after its authors,
Peter and Clark), a constraint-based causal discovery
method, to the pre-processed dataset [7]. At this stage, the
dataset contains approximately 50 features including the
target (type of stroke — ischemic or haemorrhagic).

Since our objective is to isolate the most influential
biomarkers, we employed two graph-theoretic measures to
rank nodes (features) within the causal graph:

e Degree Centrality: Measures the number of direct
connections for a node. High degree centrality
suggests that a feature has broad influence.

o Betweenness Centrality: Quantifies how often a
node appears on the shortest paths between other
nodes. High betweenness centrality implies that a
feature is a critical intermediary or bridge in the
causal network.

To minimize selection bias to ensure that both direct and
indirect influences are taken into account, we first created
two separate ranked lists of features: one based on degree
centrality and the other based on betweenness centrality.

From each ranking, we extracted the top 25 features,
representing those with the strongest influence according to
the respective measures. Next, we introduced a composite
centrality score, which assigns weights to features depending
on their positions in the two rankings, thereby balancing the
contribution of both centrality measures. Finally, by
comparing the two lists and focusing on the features with the
highest combined scores, we identified the 10 most
influential biomarkers that consistently appeared as
important across both centrality perspectives.

D. Tsetlin Machines

Following the identification of the top 10 biomarkers
through causal inference, we applied a rule-based
convergence Tsetlin Machine (TM) [8][9][10] to model their
relationship with stroke subtypes. This model is a logic-
based learning algorithm that constructs human-interpretable
propositional logic clauses to perform classification. It
operates by learning patterns expressed as conjunctive
logical clauses, where each clause is essentially a
combination of conditions that must be satisfied for a
prediction to be made (for example, if biomarker A is present
and biomarker B is absent, then the case belongs to class X).
Rather than relying on a single clause, the Tsetlin Machine
generates a large set of such clauses, each of which casts a
“vote” for a particular class. These votes are then aggregated,
and the overall prediction is determined by the balance of
evidence provided by all the clauses together. This
ensemble-like mechanism allows the model to capture
subtle, complex patterns while still maintaining a form that
remains human-interpretable.

We used the MultiClassTsetlinMachine  from
pyTsetlinMachine Python module and utilised the in-built
bit-per-feature binarization to binarize the data [11]. This
method discretizes continuous variables into a fixed number
of bins, encoding each bin as a separate binary feature. This
transformation ensures compatibility with TM’s binary input
format. The original bin values are stored separately to
correctly identify the real values of the features
corresponding to the clauses.

After binarization, an 80-20 train-test split was applied
and the model was trained with appropriate hyper-parameters
(i.e., the number of clauses, threshold, and specificity).

Our target variable represents stroke subtypes (a binary
classification task) and the TM generated 50 clauses for each
class. To identify the most influential clauses per class, we
analysed their voting weights, which reflect how frequently a
clause contributes to a particular class prediction. We
selected the top clauses based on these weights to further
enhance interpretability and explainability and to reduce
redundancy, with two filters:
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Causal graphs: (a) with all the features, (b) top 10 features using composite score of degree and betweenness centralities and (c)

deconstructed specfic causal path

e Bias Check: We excluded clauses that were
overwhelmingly positive or negative for a single
class to avoid skewed interpretations.

e  Redundancy Check: Clauses that appeared
identically in both classes of the outputs were
removed, as they introduce ambiguity in the
interpretation of feature impact.

After filtering, we retained the distinct and unbiased
clauses for each class with the highest voting weights. These
clauses form the basis for interpreting how specific
combinations of biomarker presence or absence influence the
classification of stroke subtypes.

III. RESULTS AND DISCUSSION

Based on the process explained in the methodology
section, our final goal is to obtain the top clauses for each of
the output classes. To simplify further, we retrieve the most
important features for each class as well as the information
whether their absence or presence is important for either
class.

In this section, we discuss the results of both the causal
Al and the Tsetlin Machine.

A. Results of Causal inference

We extract the list of top nodes/features using the
composite centrality, as defined in the methodology section.
The causal Directed Acyclic Graph (DAG) connections
comparing original features and the extracted top 10 features
using causal inferences are shown in Figure 1.

The first graph (Figure la) presents the complete set of
features and biomarkers included in the dataset. Because all
variables and their interconnections are displayed at once,
the result is a complex and visually dense network that
makes it difficult to distinguish which biomarkers play the
most critical roles. In contrast, the second graph (Figure 1b)
focuses only on the top 10 most influential features, as
identified through our causal inference procedure using the
composite centrality score. This reduced network provides a
much clearer picture of the variables that exert the strongest
influence on stroke outcomes, allowing clinicians and
researchers to focus on the most relevant biomarkers. To

further illustrate how causal inference can assign importance
to a feature, even when the connection to the target is
indirect, the right-hand panel (Figure 1c) zooms in on a
specific causal path. In this example, the feature age (ED) in
Figure 1b does not connect directly to the target variable,
GD-C, which represents the type of stroke. Instead, its
influence is mediated through an intermediate biomarker, AG
(prior use of antiplatelet drugs), which then affects TF
(treatment to dissolve blood clots), and only at that point
does the causal chain reach GD-C. This breakdown
demonstrates how a variable can still be considered highly
important when it contributes to the target outcome through a
series of intermediate links, rather than through a direct
relationship as well as to trace and understand how each
node in the causal graph contributes to the target outcome,
whether through direct or indirect pathways.

The top features/biomarkers identified by the causal
model and their significance in the context of stroke related
literature is summarized in Table 1 below.

TABLE L MOST IMPORTANT BIOMARKERS AS PER CAUSAL MODEL
Feature Description Significance
BNP Blood test to help A strong indicator for cardiac
diagnose heart failure stress, important for stroke
diagnosis/prognosis
AG Prior use of antiplatelet Aligns with existing clinical
drugs evidence that such medications
reduce the risk of recurrent stroke
ED Age of the patient A critical determinant of stroke
severity and recovery potential
HLP Abnormally high levels | Associated with increased stroke
of lipids (fats) risk; important for stroke
prevention strategies
LDL Bad cholesterol Linked to atherosclerosis and
subsequent cerebrovascular
events; a key modifiable risk
factor
R A Degree of disability Reflects the immediate functional
after a stroke at outcome post-stroke; serves as a
discharge proxy for the effectiveness of
acute care
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mRS 0 Baseline disability in Predictive of post-stroke recovery
daily activities trajectories
SEX Gender of the patient Reflects gender effect in stroke
prognosis and prevention
TF Treatment to dissolve Highlights a critical role of
blood clots emergency treatments in
improving stroke outcomes
GD C Category of the stroke Classification of stroke types;
type (target) target of this study

As can be seen from the significance column in Table 1,
the causal model validates known clinical associations.
Additionally, it also captures nuanced interdependencies
among biomarkers by providing the strength of connections
between them (i.e., node connection strengths calculated
using composite score as described in the methodology
section).

The model’s ability to prioritize features with both
statistical and clinical relevance strongly supports its
potential application in decision support systems for stroke
management.

B.  Results of Tsetlin Machine

As previously mentioned, a TM produces human-

readable clauses (e.g., if A and not B, then class X). After
applying the model to the top features identified through
causal inference, we derive such clauses for our target
variable, the type of stroke.
Figure 2 provides a visual depiction of the clauses. In this
illustration, pink cells indicate the absence of a feature for
the corresponding class shown at the bottom, while light
green cells represent its presence. Each feature’s value range
is displayed within its respective cell. The feature SEX is
binarized, with 0 = female and 1 - male.

The clause for Ischemic stroke would then be:

If the modified Rankin Scale (mRS 0) score is
greater than 2.67, and the LDL level is between 71
and 117 mg/dL, and the patient’s age is not greater
than 56 years, and the BNP level is not between
550 and 1123 pg/mL, then the predicted outcome is
Ischemic stroke.

Which in logic notation is:

IF (MRS, > 2.67) A (71 < LDL > 117) A (Age < 56)
A—=(550 < BNP < 1123) —» ISCHEMIC

Such human-readable clauses, with well-defined value
ranges for each feature or biomarker influencing the output
classes, could become particularly valuable in clinical
settings.

In terms of clinical research, they enhance model
transparency, enabling researchers to validate findings
against existing biomedical knowledge and uncover novel
associations. This interpretability can help bridge the gap
between data-driven models and domain expertise.
Furthermore, such clauses can inform the design of
prospective studies and contribute to the development of
explainable clinical decision support tools.

Finally, having transparency in clinical decision-making
would benefit effective patient communication, helping
individuals understand prevention strategies and treatment
options.

IV. CONCLUSION AND FUTURE WORK

The findings presented here are preliminary and require
further refinement. A key priority is to acquire additional

AG 1

BNP > 112377 550.01 to 1123.77

ED >56.0
oL 7167 to 117.67
RA >233
SEX 1

TF 1

mRS_0 > 2.67

Haemorrhagic Ischemic

Figure 2. Visual representation of Tsetlin Machine clauses identified for

the target with most important biomarkers.

data and repeat the analysis to ensure the robustness of the
results. We are in the process of obtaining a more
comprehensive dataset, which will include recent records of
stroke patients.

To further strengthen the robustness of the results, the
next steps are broadly categorized into two areas: one
focusing on Causal Al and the other on rule extraction using
the Tsetlin Machine.

A. Causal Al

To ensure the accuracy of the causal graphs, it is
essential to correctly capture the directionality of the
relationships. Achieving this will require deeper domain
expertise and a thorough analysis of how various
biomarkers interact.

Additionally, it is vital to conduct what-if scenario
simulations based on the discovered causal relationships
within the feature space. These in-silico experiments will
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enable us to explore how changes in feature values, whether
hypothetical or novel, might influence stroke prognosis,
without the need for new empirical data.

B. Tsetlin machine

While our current model achieves an overall accuracy of
approximately 80%, a closer examination of its performance
metrics reveals a notable imbalance. Specifically, the F1-
score for Class 0 (the majority class) reaches 0.88, whereas
the F1-score for Class 1 (the minority class) drops sharply to
just 0.15. This large disparity highlights that, although the
model performs well in predicting the dominant class, it
struggles to correctly identify cases that belong to the less
frequent class. In practice, this means that the model fails to
capture a substantial proportion of minority class instances,
which may correspond to clinically critical or rare
conditions. The root cause of this problem is the class
imbalance present in the dataset, where examples of one
stroke subtype greatly outnumber the other. We anticipate
that the inclusion of additional patient records in our
forthcoming dataset will help mitigate this imbalance by
providing a more even distribution of classes.

It is also important to emphasize that a Tsetlin Machine
(TM) differs fundamentally from many classical machine
learning models. Instead of optimizing a global error
function, the TM relies on a frequency-driven clause
learning mechanism in which the prevalence of certain
patterns directly affects the clauses it learns. While this
makes the model efficient and interpretable, it also means
that it tends to favor patterns associated with the majority
class, often at the expense of learning sufficient rules for the
minority class. This characteristic can amplify the effects of
class imbalance, as seen in our results.

Nevertheless, in the context of biomedical datasets
(where imbalanced class distributions are common) this bias
does not necessarily negate the model’s clinical utility.
Optimizing for the majority class can still yield valuable
insights, as the most prevalent stroke subtype remains a
major focus of clinical diagnosis and treatment. However,
achieving reliable detection of minority cases is equally
critical, as these often represent the most challenging and
high-risk scenarios. Addressing this imbalance in future
work will therefore be essential, ensuring that the TM
captures meaningful patterns for both majority and minority
classes without sacrificing interpretability.

These facts also do not diminish the importance of
accurately identifying minority class instances, which often
represent critical or rare conditions. To address this, we are
actively exploring various strategies (e.g., resampling,
decision threshold tuning, etc.) to improve the model’s
ability to generalize and perform equitably across both
classes. These efforts are guided by domain expertise to
ensure that learned patterns are meaningful and to prevent
the model from learning artifacts of the data rather than true
signals.

Additionally, binarization must be approached with
greater care. It is important to ensure that the binning of
biomarkers identified as significant by the Tsetlin Machine
aligns with domain knowledge and statistical distribution.
For example, consider serum Vitamin D levels, which
typically range from 0 to 100 ng/mL. Clinical guidelines
define severe deficiency as levels below 10 ng/mL,
deficiency as below 20 ng/mL, insufficiency between 20-30
ng/mL, and sufficiency as levels above 30 ng/mL. If all
values below 30 ng/mL were grouped into a single bin (e.g.,
bin 0), this would obscure critical clinical distinctions
between mild insufficiency and severe deficiency. Such
coarse binning could reduce the model’s ability to detect
meaningful health risks associated with different deficiency
levels.
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