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Abstract—Deep Neural Networks (DNNs) deployed in 
high-risk domains, such as healthcare and autonomous 
driving, must be not only accurate but also understandable 
to ensure user trust. In real-world computer vision tasks, 
these models often operate on complex images containing 
background noise and are heavily annotated. To make such 
models explainable, Concept-based Explainable AI (CXAI) 
methods need to be assessed for their applicability and 
problem-solving capacity. In this work, we explore CXAI 
use cases in multi-label classification by training two DNNs, 
VGG16 and ResNet50, on the 20 most annotated labels 
in the MS-COCO dataset (Microsoft Common Objects in 
Context). We apply two CXAI methods, CRP (Concept 
Relevance Propagation) and CRAFT (Concept Recursive 
Activation FacTorization), to generate concept-level expla- 
nations and investigate the overall evaluations. Our analysis 
reveals three key findings: (1) CXAI highlights learning 
weaknesses in DNNs, (2) higher concept distinctiveness 
reduces label and concept confusion, and (3) environmental 
concepts expose dataset-induced biases. Our results demon- 
strate the potential of CXAI to enhance the understanding 
of model generalizability and to diagnose bias instigated 
by the dataset. 

Keywords-Concept-based XAI; Multi-Label Classification; 
Concept Distinctiveness. 

 

I. INTRODUCTION 

Deep Neural Network (DNN) [1] performance is 

crucial for their adoption in real-world applications. 

However, understanding their decisions is also impor- 

tant, especially in high-risk domains like autonomous 

driving and medical diagnosis. Real-world datasets often 

vary in resolution and object size, with complex scenes 
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including small, clustered, or overlapping objects. Multi- 

label datasets, where images have multiple annotations, 

frequently suffer from class imbalance. This can lead 

to confusion (i.e., errors made in predicting the correct 

class/data points) between labels and wrong associations. 

Even high-performing models that exhibit confusion 

need deeper analysis. Explainable AI (XAI) methods are 

useful in revealing these learning patterns [2]. 

XAI provides interpretability for black-box models 

[2]. Concept-based XAI (CXAI) identifies semantically 

meaningful features relevant to a class [3], unlike 

saliency maps, which are harder to interpret in complex 

scenes [4]. Concepts reflect how a DNN internally repre- 

sents a class [5]. However, DNNs may learn unintended 

associations, concept bias or spurious correlations, where 

background elements influence classification (e.g., as- 

sociating “fingers” with a pen) [6]. We refer to non- 

target concepts produced by such bias as “environmental 

concepts.” 

CXAI methods often visualize activation maps or 

focused image regions [7]. These show both target and 

environmental concepts. Determining whether an envi- 

ronmental concept is valid requires further analysis. Its 

presence may reflect dataset bias or mislearning. 

In this work, we train two state-of-the-art DNNs, 

ResNet50 and VGG-16, on the 20 most annotated MS- 

COCO labels [8]. Using two model checkpoints per 

architecture, one well-performing and one poor, we 

evaluate their predictions using CXAI methods: CRP [9] 

and CRAFT [10]. These methods produce focused region 
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visualizations and scores that determine a concept’s 

contribution to the overall learning (concept importance) 

or target label learning (concept relevance) of the DNN 

model. We compare results using concept error and 

distinctiveness (see Section III, D) to study confusion 

trends across models. 

The main contributions of this paper can be 

summarized as follows: 

• We demonstrate that CXAI methods can reveal 

learning weaknesses in deep neural networks. 

• We find that greater concept distinctiveness is asso- 

ciated with reduced confusion in label predictions 

and concept attributions. 

• We show that environmental concepts can expose 

dataset-induced biases in model learning and inter- 

pretation. 

The remainder of this paper is organized as follows: 

Section II reviews related studies. Section III describes 

the experimental setup, including the dataset, DNN mod- 

els, CXAI methods, and key terminology. Section IV 

presents the results structured around our three main 

contributions. Finally, Section V concludes the paper and 

discusses directions for future work. 

II. RELATED WORK 

Various CXAI methods are available for use today, 

and it is a growing research field. Lee et al. [11] 

detail the current state of CXAI methods. Their study 

identifies three main directions for future research: the 

choice of concepts to explain, the selection of concept 

representation, and methods to control concepts. 

Some studies focus on using concepts to detect poten- 

tial biases in DNN models. Their evaluation emphasizes 

the relationship between different concepts and classes 

and aims to expose potential biases in the learning of 

the DNN. Singh et al. [12] study model biases in both, 

the model learning process and the model’s semantic 

understanding (concept biases), by evaluating the DNN 

model’s ability to recognize a class in the presence and 

absence of the established context (via learning) for a 

multi-label classification task. 

With newer emerging methods in the realm of CXAI, 

the desire to fully understand how they can be effec- 

tively used with AI systems increases. The dataset, for 

example, is an important factor contributing to the mean- 

ingfulness of the explainability method. The evaluation 

of CXAI by Ramaswamy et al. [13] addresses important 

considerations for CXAI methods that influence their 

effective usage. They emphasize that the impact of the 

choice of the dataset, even with slight variations in the 

dataset options, changes the model decision and the 

explanation provided by a CXAI method. 

To study the relationship between confusion and 

concept-based explanations, we select two CXAI meth- 

ods to answer the “where” (..the important information 

is) and “what” (..is the important information) questions. 

CRP, proposed by Achtibat et al. [9], is based on the 

Layer-wise Relevance Propagation (LRP) method [14]. 

CRP addresses “what” and “where” explanations by 

exploiting concepts in hidden layers of a DNN model 

and locating them in the input data. It assesses the 

contribution of each concept for a target class; in other 

words, it introduces concept relevance. CRP utilizes 

relevance maximization to tune its visualization, which 

depicts a series of focused concepts. CRAFT is another 

“what” and “where” method proposed by Fel et al. [10] 

based on the Grad-CAM method [15]. They utilize Sobol 

indices to estimate the importance of concepts that have 

been identified using Non-Negative Matrix Factorization 

(NMF) recursively, generating sub-concepts (concepts of 

smaller, more focused areas in the image). 

Existing research has advanced CXAI by defining 

concepts and applying them to detect biases and assess 

dataset effects. Building on this foundation, our work 

investigates how confusion interacts with concept-based 

explanations through the lens of CRP and CRAFT. 

 

III. EXPERIMENTAL SETUP 

Just as with any other explainable AI pipeline, our 

experimentation contains the training of DNNs model 

and its evaluations and the usage of an XAI method 

and its evaluation, illustrated in Figure 1. This section 

contains details of our workflow. 

 

Figure 1. Schematic diagram of our experimental setup. 
 

 

 

A. Dataset 

MS-COCO [8] is a large-scale dataset widely used 

for computer vision tasks such as object detection, cap- 

tioning, segmentation and classification. The 2017 object 

detection subset includes 80 “things” classes, objects 

with clear boundaries, across 118,000 images. As test 

labels are unavailable, we split the training set 90/10, 

resulting in 106,200 training and 11,800 test images. For 

our experiments, we focus on the 20 most frequently 

annotated labels in the training set to ensure sufficient 

data per class and meaningful inter label relationships. 
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B. DNN Models 

ResNet50 [16] is a popular image classification model 

due to its residual learning feature, which mitigates 

information loss. It balances accuracy and efficiency 

well, and its ImageNet-pretrained weights are widely 

used [17]. 

VGG-16 [17], known for its simple and uniform struc- 

ture of stacked convolutional and fully connected layers, 

is often used as a baseline for deep learning applications. 

Despite its larger parameter count, it performs well on 

classification tasks and is easy to implement. 

These two models are chosen as they are widely used, 

and many XAI methods have been proven to work with 

them. Some of the latest models require large adaptations 

of XAI methods to be made [18]. Our study focuses 

on base-level use cases, to be adaptable across different 

domains; hence, we train ResNet50 and VGG-16 models, 

pretrained on ImageNetV2 [19], using PyTorch for 350 

epochs, saving all checkpoints. For each model, we select 

two “scenarios” from the saved checkpoints: 

• Scenario 1 (well-performing model): 

While both methods offer different perspectives, we 

do not compare them directly or suggest one is superior. 

Instead, we use their outputs to explore how label 

confusion is reflected in learned concepts. 

We compute concept distinctiveness [21] and concept 

error [22] for both methods. Concept error is evaluated 

against a subjective ground truth (detailed in the next 

section). Additionally, we adapt mutual information to 

measure shared information between concepts and com- 

pare these findings to our DNN evaluations to support 

our hypotheses. 

 

D. Explanation of terms (in brief) 

This sub-section briefly explains some terminologies 

in CXAI and our adaptations. 

1) Concept Distinctiveness: Concept distinctiveness, 

defined in Eq. (1), measures how unique a concept is 

compared to others, with values ranging from 0 to 1. 

Low distinctiveness suggests overlapping or redundant 

concepts, which may indicate learning errors [21]. 

– ResNet50: Accuracy: 82.85%, Recall: 85.50, 

Precision: 58.84, F1 Score: 60.84 

 vCi · vCj  

D(Ci, Cj) = 1 − 
|v  ||v  | 

(1) 

– VGG-16: Accuracy: 84.26%, Recall: 86.91, Pre- 

cision: 59.74, F1 Score: 58.84 

• Scenario 2 (poor-performing model): 

– ResNet50: Accuracy: 58.24%, Recall: 77.04, 

Precision: 53.82, F1 Score: 42.92 

– VGG-16: Accuracy: 52.85%, Recall: 74.50, Pre- 

cision: 53.62, F1 Score: 46.12 

These scenarios are created to have two different 

sets of performance metrics against which to evaluate 

explainability. We evaluate models using accuracy, re- 

call, precision, F1 score, and confusion matrices tailored 

for multi-label tasks. Specifically, we use the multi- 

label confusion tensor by Krstinic´ et al. [20], which 

accounts for label imbalance—well-suited for the MS- 

COCO dataset. 

We also compute Mutual Information (MI) and Jac- 

card Similarity Coefficient (JSC) between labels. We use 

these metrics to understand which target labels are more 

likely to share information or similarities with which 

predicted labels. 

C. CXAI Methods 

We investigate the effect of confusion on two CXAI 

methods, CRAFT and CRP, across all four model sce- 

narios. 

• CRAFT outputs concept importance, representing 

the overall contribution of each concept to the 

model’s learning process. 

• CRP provides concept relevance, indicating the 

contribution of a concept to specific target classes. 

Here, vCi and vCj are the concept vectors for concepts 

Ci and Cj, respectively. Concept vectors are directions 
in activation space that capture distinct features [23]. 

2) Concept Error: Concept error captures incorrect or 

irrelevant concept usage during prediction [22]. To ap- 

proximate accuracy (in binary classification), we define 

a rough “ground truth” by selecting only those concepts 

that belong to the target class, excluding environmental 

concepts. This approach offers an estimate of model con- 

fusion, though a structured human study is recommended 

for practical validation. 

3) Mutual Information: Mutual information (MI) 

quantifies the dependency between two variables. In 

multi-label classification, it measures how much infor- 

mation one label provides about another. Applied to 

concepts, MI reflects how much information is shared 

between two concept vectors, revealing potential depen- 

dencies or redundancies in learned features [24]. 

 

IV. RESULTS 

In this section, we present our findings based on case 

studies of different label evaluations. These case studies 

comprise comparisons of the evaluations described in the 

previous section. 

 

A. Confusion in Labels Can Be Understood by Their 

Explanations

j 
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TABLE I. TOP CONFUSION AND MUTUAL INFORMATION SCORES IN SCENARIO 1 OF RESNET50 
 

Class 

Name 

Top Confusion 

Class 

Top MI 

Class 

Jaccard 

Similarity 

1st Score 2nd Score 1st MI Score 2nd MI Score 

person car 1148.00 chair 1081.70 handbag 0.0221 backpack 0.0176 0.6008 

car truck 207.17 bench 173.16 truck 0.0400 traffic light 0.0280 0.1894 

motorcycle truck 86.33 handbag 85.70 car 0.0094 person 0.0037 0.1474 

truck airplane 118.35 car 117.22 car 0.0399 boat 0.0020 0.0077 

boat Parking meter 89.70 car 76.30 chair 0.0682 fork 0.0017 0.0068 

 

TABLE II. TOP CONFUSION AND MUTUAL INFORMATION SCORES IN SCENARIO 2 OF RESNET50 
 

Class 

Name 

Top Confusion 

Class 

Top MI 

Class 

Jaccard 

Similarity 

1st Score 2nd Score 1st MI Score 2nd MI Score 

person backpack 1995.20 bench 1922.50 tie 0.0221 umbrella 0.0176 0.5470 

car backpack 340.70 bench 334.80 boat 0.0399 stop sign 0.0280 0.1159 

motorcycle backpack 277.60 handbag 273.41 bicycle 0.0372 car 0.0199 0.1289 

truck backpack 209.07 bench 200.09 motorcycle 0.0399 Fire hydrant 0.0077 0.0755 

boat car 134.04 bird 133.66 fork 0.0017 refrigerator 0.0010 0.0440 

 
 

 

 

 

TABLE III. PERCENTAGE OF CO-OCCURRENCE OF TARGET LABEL 

WITH OTHER LABELS (TOP 20 FREQUENTLY ANNOTATED LABELS) 
 

Class 

Name 

1st 

Class 
% 

2nd 

Class 
% 

person car 13.29 backpack 7.85 

car person 69.54 backpack 8.43 

motorcy 

-cle 
person 79.55 car 39.32 

truck person 65.15 car 59.80 

boat person 65.69 car 8.66 

traffic 

light 
car 61.22 person 59.19 

bench person 73.75 car 14.63 

bird person 24.56 boat 7.29 

sheep person 24.07 dog 7.59 

backpack person 91.06 car 18.69 

umbrella person 86.87 handbag 28.81 

handbag person 90.95 backpack 24.62 

kite person 92.84 car 11.54 

bottle person 53.65 cup 34.65 

cup person 52.76 
dining 

table 
50.92 

bowl 
dining 

table 
47.76 person 40.73 

banana person 41.37 bowl 23.05 

potted 

plant 
person 44.07 chair 38.61 

dining 

table 
person 49.58 chair 43.29 

book 
dining 

table 
75.61 cup 52.97 

TABLE IV. CXAI METHOD EVALUATION COMPARED WITH 
CONFUSION SCORE FOR ’PERSON’ LABEL 

 

Label Model 
CXAI 

Method 

Concept 

Error 

Concept 

Distinct 

-iveness 

Confus 

-ion 

Score 

Person 
ResNet 

Scenario 1 
Craft 0.20 0.76 0.09 

Person 
ResNet 

Scenario 2 
Craft 0.38 0.48 0.26 

Person 
VGG-16 

Scenario 1 
Craft 0.24 0.71 0.12 

Person 
VGG-16 

Scenario 2 
Craft 0.41 0.43 0.28 

 

 

 

Label confusion occurs when models struggle to dis- 

tinguish between classes with overlapping features or co- 

occurring contexts, often due to ambiguous data, mis- 

labeling, or internal misinterpretation. We hypothesize 

that CXAI methods, particularly through MI and concept 

distinctiveness, can reveal whether confusion stems from 

visual similarity, dataset bias, or how the model encodes 

relationships between labels. 

Tables I and II present confusion and MI scores 

for three highly confused classes across both ResNet50 

scenarios. In scenario 1, person is confused with car 

and chair, while car overlaps with truck and bench. 

MI analysis shows that person shares high information 

content with handbag and backpack, and car with truck 

and traffic light. These associations indicate that the 

model is not learning isolated class-specific features, 

but instead forming dependencies based on recurring 

visual or contextual co-occurrence. Table III supports 

this, showing frequent joint appearance of labels such 

as person and accessories, or car and truck, which 

reinforces these spurious links. 

Table IV further highlights the role of CXAI metrics 
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in understanding confusion. In scenario 1, where models 

perform better, person has lower concept error and 

higher distinctiveness, aligning with reduced confusion. 

In scenario 2, we observe the opposite: increased concept 

error, lower distinctiveness, and significantly higher con- 

fusion scores. These patterns suggest that when a model 

lacks distinct conceptual boundaries between classes, it 

tends to rely more heavily on misleading contextual 

aspects. 

Together, these findings show how CXAI methods 

help expose the roots of confusion. By combining ex- 

planations with performance metrics and co-occurrence 

statistics, we gain a clearer view of when confusion 

reflects real-world visual similarity versus when it results 

from dataset bias or poor internal representations. 

B. Distinctiveness Reduces Conceptual Confusion 

When a concept is distinct, its features are unique and 

specific, allowing it to be more accurately defined and 

recognized. In contrast, concepts derived from confused 

or overlapping labels tend to be “confused” themselves, 

as they learn features that are shared across multiple 

classes rather than those unique to their true class. This 

issue arises from concept bias, where the model may 

associate a class with irrelevant features that co-occur 

with other classes, as shown in Figure 2. 
 

Figure 2. Concepts of class “tennis racket” in scenario 1 of VGG-16. 
We can see that “person” is heavily present in these explanations. 

 
TABLE V. MUTUAL INFORMATION, CONCEPT DISTINCTIVENESS, 

AND CONCEPT ERROR IN SCENARIO 1 OF RESNET50 
 

Class 

Name 

Top MI 

(Concept) 

Lowest 

Distinctive 

(CRP) 

Lowest 

Distinctive 

(CRAFT) 

Concept 

Error 

1st 2nd 1st 2nd 1st 2nd Value 

person car backpack car backpack car 
tennis 

racket 
0.7291 

car truck bus truck 
traffic 

light 
handbag truck 0.5385 

dining 

table 
chair cup chair fork person chair 0.0166 

 

From the information given in Table VI, it is evident 

that a poor-performing model is not ideal for concept- 

based explanations due to the lack of clear distinctions 

between classes. This can be seen in scenario 2 of 

ResNet50, where classes like person show less dis- 

tinctiveness with other unrelated classes. In scenario 1, 

shown in Table V, we see a more effective distinction be- 

tween highly confused classes like car and person, which 

TABLE VI. MUTUAL INFORMATION, CONCEPT DISTINCTIVENESS, 
AND CONCEPT ERROR IN SCENARIO 2 OF RESNET50 

 

Class 

Name 

Top MI 

(Concept) 

Lowest 

Distinctive 

(CRP) 

Lowest 

Distinctive 

(CRAFT) 

Concept 

Error 

1st 2nd 1st 2nd 1st 2nd Value 

person car 
tennis 

racket 
backpack bottle backpack umbrella 0.8136 

car truck 
traffic 

light 
bench 

fire 

hydrant 
backpack boat 0.6388 

dining 

table 
cup bottle chair fork person 

potted 

plant 
0.0753 

 

 

indicates that a well-performing model actively tries to 

separate these difficult-to-distinguish classes (previously 

established based on confusion scores, see Table I, V, 

VI and III). 

By focusing on distinctiveness metrics and correlat- 

ing them with confusion patterns in Table I and co- 

occurrence in Table III, we see that increasing concept 

distinctiveness can significantly aid in or point to im- 

proved model performance. This insight not only helps in 

diagnosing where models are struggling but also guides 

how to curate datasets and improve feature learning 

to reduce confusion and improve overall classification 

accuracy. 

C. Environmental Concepts Reveal Dataset Biases 

 

Figure 3. Environmental concepts generated from CRP for class 
“car” in scenario 1 and 2 of ResNet50. 

 

 
TABLE VII. MUTUAL INFORMATION (CONCEPT), MUTUAL 

INFORMATION AND CONFUSION SCORES IN SCENARIO 1 OF 

VGG-16 
 

Class Name Top MI (Concept) Top MI (Class) Top Con fusion 

1st 2nd 1st 2nd 1st 2nd 

umbrella person handbag backpack handbag person car 

dining table chair fork chair cup apple person 

traffic light person car car fire hydrant person car 

 

Environmental concepts emerge from concept bias and 

often reflect patterns in the training dataset. We ob- 

serve that classes within the same “supercategory” (e.g., 

sports: baseball glove, tennis racket) tend to produce 

biased explanations, frequently including environmen- 

tal concepts from related classes, illustrated in Figure 

3. This suggests that, beyond model performance, the 

diversity and distinctiveness of training samples play a 

key role in learning meaningful class representations. 
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Figure 4. Concepts generated by CRP on OSDaR23 dataset for class 
"person". 

 

 

 

 

Table VII illustrates the top mutual information and 

confusion scores for selected classes. For instance, din- 

ing table in scenario 1 is frequently associated with 

chair, person, apple, and cup, which are labels that share 

semantic but not structural similarity. Such associations, 

while intuitive to humans, suggest that the model is 

not generalizing but instead relying on frequent co- 

occurrences, which is problematic in deployed systems. 

High concept error rates for classes like umbrella, per- 

son, handbag, and car, paired with low distinctiveness 

scores between semantically unrelated objects (e.g., um- 

brella and traffic light), reinforce this concern, especially 

when models perform poorly. 

To further support this, we evaluate OSDaR23 [25], 

a multi-sensor dataset for autonomous train driving. 

Despite strong accuracy (95.92%) and F1 (79.93) on 

a ResNet50 model trained on its RGB subset, CXAI 

explanations reveal low generalizability. Since person 

consistently appears near platforms or staircases, CRP 

visualizations heavily rely on these backgrounds, none of 

which are labeled in the dataset, as illustrated in Figure 

4. As a result, person has the lowest distinctiveness 

score with track, and a high concept error, indicating 

dangerous misattribution. 

These findings highlight how environmental concepts 

reveal dataset-induced biases that compromise gener- 

alization. In real-world or high-risk applications, such 

as autonomous systems, these misleading correlations 

can reduce model reliability. Diverse and well-annotated 

datasets are essential to prevent concept bias and ensure 

models learn robust, semantically accurate representa- 

tions. 

V. CONCLUSION AND FUTURE WORK 

Our study demonstrates that confusion in multi-label 

classification is directly reflected in concept-based ex- 

planations. By comparing model evaluations with CXAI 

properties, we observe that label confusion often results 

from overlapping or spurious environmental concepts, 

emphasizing the role of CXAI in uncovering learning 

biases and assessing model generalizability. We further 

show that concept distinctiveness is inversely related to 

conceptual confusion, models with higher distinctive- 

ness show clearer feature boundaries and reduced bias, 

while lower distinctiveness leads to shared or incorrect 

associations across classes. CRP and CRAFT help iden- 

tify such conceptual ambiguities, making them useful 

tools for model diagnosis. Finally, our results highlight 

that environmental concepts can reveal dataset-induced 

biases, especially in cases where co-occurring objects 

affect model learning. In datasets with label imbalance or 

strong contextual patterns, models may form misleading 

correlations, reducing their ability to generalize. This is 

particularly problematic in high-risk applications, rein- 

forcing the need for diverse, well-annotated datasets to 

ensure robust and reliable AI models. For future work, 

this case study can be extended to more complex models 

and datasets. 
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