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Abstract—Deep Neural Networks (DNNs) deployed in
high-risk domains, such as healthcare and autonomous
driving, must be not only accurate but also understandable
to ensure user trust. In real-world computer vision tasks,
these models often operate on complex images containing
background noise and are heavily annotated. To make such
models explainable, Concept-based Explainable Al (CXALI)
methods need to be assessed for their applicability and
problem-solving capacity. In this work, we explore CXAlI
use cases in multi-label classification by training two DNNS,
VGG16 and ResNet50, on the 20 most annotated labels
in the MS-COCO dataset (Microsoft Common Objects in
Context). We apply two CXAI methods, CRP (Concept
Relevance Propagation) and CRAFT (Concept Recursive
Activation FacTorization), to generate concept-level expla-
nations and investigate the overall evaluations. Our analysis
reveals three key findings: (1) CXAI highlights learning
weaknesses in DNNs, (2) higher concept distinctiveness
reduces label and concept confusion, and (3) environmental
concepts expose dataset-induced biases. Our results demon-
strate the potential of CXAI to enhance the understanding
of model generalizability and to diagnose bias instigated
by the dataset.

Keywords-Concept-based XAl; Multi-Label Classification;
Concept Distinctiveness.

. INTRODUCTION

Deep Neural Network (DNN) [1] performance is
crucial for their adoption in real-world applications.
However, understanding their decisions is also impor-
tant, especially in high-risk domains like autonomous
driving and medical diagnosis. Real-world datasets often
vary in resolution and object size, with complex scenes
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including small, clustered, or overlapping objects. Multi-
label datasets, where images have multiple annotations,
frequently suffer from class imbalance. This can lead
to confusion (i.e., errors made in predicting the correct
class/data points) between labels and wrong associations.
Even high-performing models that exhibit confusion
need deeper analysis. Explainable Al (XAl) methods are
useful in revealing these learning patterns [2].

XAl provides interpretability for black-box models
[2]. Concept-based XAl (CXAI) identifies semantically
meaningful features relevant to a class [3], unlike
saliency maps, which are harder to interpret in complex
scenes [4]. Concepts reflect how a DNN internally repre-
sents a class [5]. However, DNNs may learn unintended
associations, concept bias or spurious correlations, where
background elements influence classification (e.g., as-
sociating “fingers” with a pen) [6]. We refer to non-
target concepts produced by such bias as “environmental
concepts.”

CXAIl methods often visualize activation maps or
focused image regions [7]. These show both target and
environmental concepts. Determining whether an envi-
ronmental concept is valid requires further analysis. Its
presence may reflect dataset bias or mislearning.

In this work, we train two state-of-the-art DNNS,
ResNet50 and VGG-16, on the 20 most annotated MS-
COCO labels [8]. Using two model checkpoints per
architecture, one well-performing and one poor, we
evaluate their predictions using CXAI methods: CRP [9]
and CRAFT [10]. These methods produce focused region
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visualizations and scores that determine a concept’s
contribution to the overall learning (concept importance)
or target label learning (concept relevance) of the DNN
model. We compare results using concept error and
distinctiveness (see Section Ill, D) to study confusion
trends across models.

The main contributions of this paper can be
summarized as follows:

- We demonstrate that CXAI methods can reveal
learning weaknesses in deep neural networks.

- We find that greater concept distinctiveness is asso-
ciated with reduced confusion in label predictions
and concept attributions.

- We show that environmental concepts can expose
dataset-induced biases in model learning and inter-
pretation.

The remainder of this paper is organized as follows:
Section 11 reviews related studies. Section Ill describes
the experimental setup, including the dataset, DNN mod-
els, CXAI methods, and key terminology. Section 1V
presents the results structured around our three main
contributions. Finally, Section V concludes the paper and
discusses directions for future work.

Il. RELATED WORK

Various CXAI methods are available for use today,
and it is a growing research field. Lee et al. [11]
detail the current state of CXAI methods. Their study
identifies three main directions for future research: the
choice of concepts to explain, the selection of concept
representation, and methods to control concepts.

Some studies focus on using concepts to detect poten-
tial biases in DNN models. Their evaluation emphasizes
the relationship between different concepts and classes
and aims to expose potential biases in the learning of
the DNN. Singh et al. [12] study model biases in both,
the model learning process and the model’s semantic
understanding (concept biases), by evaluating the DNN
model’s ability to recognize a class in the presence and
absence of the established context (via learning) for a
multi-label classification task.

With newer emerging methods in the realm of CXAI,
the desire to fully understand how they can be effec-
tively used with Al systems increases. The dataset, for
example, is an important factor contributing to the mean-
ingfulness of the explainability method. The evaluation
of CXAI by Ramaswamy et al. [13] addresses important
considerations for CXAIl methods that influence their
effective usage. They emphasize that the impact of the
choice of the dataset, even with slight variations in the
dataset options, changes the model decision and the
explanation provided by a CXAI method.

To study the relationship between confusion and
concept-based explanations, we select two CXAI meth-
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ods to answer the “where” (..the important information
is) and “what” (..is the important information) questions.
CRP, proposed by Achtibat et al. [9], is based on the
Layer-wise Relevance Propagation (LRP) method [14].
CRP addresses “what” and “where” explanations by
exploiting concepts in hidden layers of a DNN model
and locating them in the input data. It assesses the
contribution of each concept for a target class; in other
words, it introduces concept relevance. CRP utilizes
relevance maximization to tune its visualization, which
depicts a series of focused concepts. CRAFT is another
“what” and “where” method proposed by Fel et al. [10]
based on the Grad-CAM method [15]. They utilize Sobol
indices to estimate the importance of concepts that have
been identified using Non-Negative Matrix Factorization
(NMF) recursively, generating sub-concepts (concepts of
smaller, more focused areas in the image).

Existing research has advanced CXAIl by defining
concepts and applying them to detect biases and assess
dataset effects. Building on this foundation, our work
investigates how confusion interacts with concept-based
explanations through the lens of CRP and CRAFT.

I1l. EXPERIMENTAL SETUP

Just as with any other explainable Al pipeline, our
experimentation contains the training of DNNs model
and its evaluations and the usage of an XAl method
and its evaluation, illustrated in Figure 1. This section
contains details of our workflow.

Confusions

ResNet50
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Concept Relevance

Pretrained Relationship
Weights Analysis

Concept

CRESI > Evaluation

Concept
Evaluation

Concept Importance

Figure 1. Schematic diagram of our experimental setup.

A. Dataset

MS-COCO [8] is a large-scale dataset widely used
for computer vision tasks such as object detection, cap-
tioning, segmentation and classification. The 2017 object
detection subset includes 80 “things” classes, objects
with clear boundaries, across 118,000 images. As test
labels are unavailable, we split the training set 90/10,
resulting in 106,200 training and 11,800 test images. For
our experiments, we focus on the 20 most frequently
annotated labels in the training set to ensure sufficient
data per class and meaningful inter label relationships.
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B. DNN Models

ResNet50 [16] is a popular image classification model
due to its residual learning feature, which mitigates
information loss. It balances accuracy and efficiency
well, and its ImageNet-pretrained weights are widely
used [17].

VGG-16 [17], known for its simple and uniform struc-
ture of stacked convolutional and fully connected layers,
is often used as a baseline for deep learning applications.
Despite its larger parameter count, it performs well on
classification tasks and is easy to implement.

These two models are chosen as they are widely used,
and many XAl methods have been proven to work with
them. Some of the latest models require large adaptations
of XAl methods to be made [18]. Our study focuses
on base-level use cases, to be adaptable across different
domains; hence, we train ResNet50 and VGG-16 models,
pretrained on ImageNetV2 [19], using PyTorch for 350
epochs, saving all checkpoints. For each model, we select
two “scenarios” from the saved checkpoints:

- Scenario 1 (well-performing model):

— ResNet50: Accuracy: 82.85%, Recall: 85.50,
Precision: 58.84, F1 Score: 60.84

— VGG-16: Accuracy: 84.26%, Recall: 86.91, Pre-
cision: 59.74, F1 Score: 58.84

- Scenario 2 (poor-performing model):

— ResNet50: Accuracy: 58.24%, Recall: 77.04,
Precision: 53.82, F1 Score: 42.92

— VGG-16: Accuracy: 52.85%, Recall: 74.50, Pre-
cision: 53.62, F1 Score: 46.12

These scenarios are created to have two different
sets of performance metrics against which to evaluate
explainability. We evaluate models using accuracy, re-
call, precision, F1 score, and confusion matrices tailored
for multi-label tasks. Specifically, we use the multi-
label confusion tensor by Krstinic” et al. [20], which
accounts for label imbalance—well-suited for the MS-
COCO dataset.

We also compute Mutual Information (MI) and Jac-
card Similarity Coefficient (JSC) between labels. We use
these metrics to understand which target labels are more
likely to share information or similarities with which
predicted labels.

C. CXAIl Methods

We investigate the effect of confusion on two CXAI
methods, CRAFT and CRP, across all four model sce-
narios.

- CRAFT outputs concept importance, representing
the overall contribution of each concept to the
model’s learning process.

- CRP provides concept relevance, indicating the
contribution of a concept to specific target classes.
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While both methods offer different perspectives, we
do not compare them directly or suggest one is superior.
Instead, we use their outputs to explore how label
confusion is reflected in learned concepts.

We compute concept distinctiveness [21] and concept
error [22] for both methods. Concept error is evaluated
against a subjective ground truth (detailed in the next
section). Additionally, we adapt mutual information to
measure shared information between concepts and com-
pare these findings to our DNN evaluations to support
our hypotheses.

D. Explanation of terms (in brief)

This sub-section briefly explains some terminologies
in CXAI and our adaptations.

1) Concept Distinctiveness: Concept distinctiveness,
defined in Eq. (1), measures how unique a concept is
compared to others, with values ranging from 0 to 1.
Low distinctiveness suggests overlapping or redundant
concepts, which may indicate learning errors [21].

V¢, : Vg

D(C, ) =1 @)

lvedlvel

Here, v, and vc; are the concept vectors for concepts
Ci and G, respectively. Concept vectors are directions
in activation space that capture distinct features [23].

2) Concept Error: Concept error captures incorrect or
irrelevant concept usage during prediction [22]. To ap-
proximate accuracy (in binary classification), we define
a rough “ground truth” by selecting only those concepts
that belong to the target class, excluding environmental
concepts. This approach offers an estimate of model con-
fusion, though a structured human study is recommended
for practical validation.

3) Mutual Information: Mutual information (MI)
quantifies the dependency between two variables. In
multi-label classification, it measures how much infor-
mation one label provides about another. Applied to
concepts, Ml reflects how much information is shared
between two concept vectors, revealing potential depen-
dencies or redundancies in learned features [24].

IV. RESULTS

In this section, we present our findings based on case
studies of different label evaluations. These case studies
comprise comparisons of the evaluations described in the
previous section.

A. Confusion in Labels Can Be Understood by Their
Explanations
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TABLE 1. Tor CONFUSION AND MUTUAL INFORMATION SCORES IN SCENARIO 1 OF RESNET50

Class Top Confusion Top MI Jaccard
Name Class Class Similarity
1st Score 2nd Score 1st MI Score 2nd MI Score
person car 1148.00 chair 1081.70 | handbag 0.0221 backpack 0.0176 0.6008
car truck 207.17 bench 173.16 truck 0.0400 traffic light 0.0280 0.1894
motorcycle truck 86.33 handbag 85.70 car 0.0094 person 0.0037 0.1474
truck airplane 118.35 car 117.22 car 0.0399 boat 0.0020 0.0077
boat Parking meter 89.70 car 76.30 chair 0.0682 fork 0.0017 0.0068

TABLE Il. Tor CONFUSION AND MUTUAL INFORMATION SCORES IN SCENARIO 2 OF RESNET50

Class Top Confusion Top Ml Jaccard
Name Class Class Similarity
1st Score 2nd Score 1st MI Score 2nd MI Score
person backpack | 1995.20 | bench 1922.50 tie 0.0221 umbrella 0.0176 0.5470
car backpack | 340.70 bench 334.80 boat 0.0399 stop sign 0.0280 0.1159
motorcycle | backpack | 277.60 | handbag | 273.41 bicycle 0.0372 car 0.0199 0.1289
truck backpack | 209.07 bench 200.09 | motorcycle 0.0399 Fire hydrant 0.0077 0.0755
boat car 134.04 bird 133.66 fork 0.0017 refrigerator 0.0010 0.0440

TABLE IV. CXAl METHOD EVALUATION COMPARED WITH
CONFUSION SCORE FOR ’PERSON’ LABEL

TABLE Ill. PERCENTAGE OF CO-OCCURRENCE OF TARGET LABEL cxal | ¢ t Concept | Confus
WITH OTHER LABELS (ToP 20 FREQUENTLY ANNOTATED LABELS) Label Model Method éncep Distinct -ion
Class Ist >nd etho rror -iveness | Score
0 0, ResNet
Name Class | Class %o Person | (" | Cratt 0.20 0.76 0.09
person car 13.29 | backpack 7.85 person | ResNet Craft 0.38 0.48 0.26
car person | 69.54 | backpack | 8.43 S\C/e(’;‘g”fez
mo'gl)gcy person | 79.55 | car 39.32 Person | coonario 1 | Craft 0.24 0.71 0.12
- VGG-16
truck person | 65.15 | car 59.80 Person | scenario 2 | C1aft 041 043 028
boat person | 65.69 | car 8.66
trgfflc car 61.22 | person 59.19 . .
light Label confusion occurs when models struggle to dis-
bench person | 73.75 | car 14.63 tinguish between classes with overlapping features or co-
bird person | 24.56 | boat 7.29 occurring contexts, often due to ambiguous data, mis-
sheep person | 24.07 | dog 7.59 labeling, or internal misinterpretation. We hypothesize
backpack | person | 91.06 | car 18.69 that CXAI methods, particularly through M1 and concept
umbrella | person | 86.87 | handbag | 28.81 distinctiveness, can reveal whether confusion stems from
handbag | person | 90.95 | backpack | 24.62 visual similarity, dataset bias, or how the model encodes
kite person | 92.84 | car 11.54 relationships between labels.
bottle person | 53.65 | cup 34.65 Tables | and 1l present confusion and MI scores
cup person | 52.76 dining 50.92 for thr_ee highly confused classes across both Re§Net50
o table scenarios. In scenario 1, person is confused with car
bowl dining 47.76 | person 40.73 and chair,_ while car overlaps with trL_jck _and ben_ch.
table MI analysis shows that person shares high information
banana | person | 41.37 | bowl 23.05 content with handbag and backpack, and car with truck
potted person | 44.07 | chair 38.61 and tra_ffic light. T_hese_ associations indit_:a_te that the
plant model is not learning isolated class-specific features,
dining person | 49.58 | chair 43.29 byt instead forming dependencies based on recurring
table o visual or contextual co-occurrence. Table IIl supports
book dining 75.61 | cup 5297 this, showing frequent jqint appearance of labels sqch
table as person and accessories, or car and truck, which

reinforces these spurious links.
Table IV further highlights the role of CXAI metrics
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in understanding confusion. In scenario 1, where models
perform better, person has lower concept error and
higher distinctiveness, aligning with reduced confusion.
In scenario 2, we observe the opposite: increased concept
error, lower distinctiveness, and significantly higher con-
fusion scores. These patterns suggest that when a model
lacks distinct conceptual boundaries between classes, it
tends to rely more heavily on misleading contextual
aspects.

Together, these findings show how CXAI methods
help expose the roots of confusion. By combining ex-
planations with performance metrics and co-occurrence
statistics, we gain a clearer view of when confusion
reflects real-world visual similarity versus when it results
from dataset bias or poor internal representations.

B. Distinctiveness Reduces Conceptual Confusion

When a concept is distinct, its features are unique and
specific, allowing it to be more accurately defined and
recognized. In contrast, concepts derived from confused
or overlapping labels tend to be “confused” themselves,
as they learn features that are shared across multiple
classes rather than those unique to their true class. This
issue arises from concept bias, where the model may
associate a class with irrelevant features that co-occur
with other classes, as shown in Figure 2.

CRAFT

Image from MS-COCO

S

Figure 2. Concepts of class “tennis racket” in scenario 1 of VGG-16.
We can see that “person” is heavily present in these explanations.

TABLE V. MUTUAL INFORMATION, CONCEPT DISTINCTIVENESS,
AND CONCEPT ERROR IN SCENARIO 1 OF RESNET50

Lowest Lowest

Class Top MI Distinctive Distinctive Concept

Name (Concept) (CRP) (CRAFT) Error
1st 2nd 1st 2nd st 2nd Value

person car | backpack car | backpack car tennis 0.7291

racket

car truck bus truck tlriZth handbag | truck 0.5385

dining . . .

table chair cup chair fork person chair 0.0166

From the information given in Table VI, it is evident
that a poor-performing model is not ideal for concept-
based explanations due to the lack of clear distinctions
between classes. This can be seen in scenario 2 of
ResNet50, where classes like person show less dis-
tinctiveness with other unrelated classes. In scenario 1,
shown in Table V, we see a more effective distinction be-
tween highly confused classes like car and person, which
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TABLE VI. MUTUAL INFORMATION, CONCEPT DISTINCTIVENESS,
AND CONCEPT ERROR IN SCENARIO 2 OF RESNET50

Lowest Lowest
ﬁ;ﬁz (-Crgr?czﬂi) Distinctive Distinctive CE::sft
P (CRP) (CRAFT)
1st 2nd Ist 2nd 1st 2nd Value
tennis
person car backpack | bottle backpack | umbrella 0.8136
racket
traffic fire
car truck light bench hydrant backpack boat 0.6388
dining . potted
table cup bottle chair fork person plant 0.0753

indicates that a well-performing model actively tries to
separate these difficult-to-distinguish classes (previously
established based on confusion scores, see Table I, V,
VI and I11).

By focusing on distinctiveness metrics and correlat-
ing them with confusion patterns in Table | and co-
occurrence in Table I11, we see that increasing concept
distinctiveness can significantly aid in or point to im-
proved model performance. This insight not only helps in
diagnosing where models are struggling but also guides
how to curate datasets and improve feature learning
to reduce confusion and improve overall classification
accuracy.

C. Environmental Concepts Reveal Dataset Biases

Environment Concepts

(from Concept Bias)
I
TP N = |

CRP CRP
(ResNet50 Scenario 1) ResNet50 Scenario 2

n
)
3
a
s

2
@
2
g
]

sepy sidasuo)
sepy s1dasuo)

Figure 3. Environmental concepts generated from CRP for class
“car” in scenario 1 and 2 of ResNet50.

TABLE VII. MUTUAL INFORMATION (CONCEPT), MUTUAL
INFORMATION AND CONFUSION SCORES IN SCENARIO 1 OF

VGG-16
Class Name | Top MI (Concept) Top v (Class) Top Cc fusion
st 2nd Ist 2nd 1st 2nd
umbrella person | handbag | backpack handbag person car
dining table chair fork chair cup apple | person
traffic light person car car fire hydrant | person car

Environmental concepts emerge from concept bias and
often reflect patterns in the training dataset. We ob-
serve that classes within the same “supercategory” (e.g.,
sports: baseball glove, tennis racket) tend to produce
biased explanations, frequently including environmen-
tal concepts from related classes, illustrated in Figure
3. This suggests that, beyond model performance, the
diversity and distinctiveness of training samples play a
key role in learning meaningful class representations.
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OSDaR RGB Image
\ Target Class: Per‘s;Jn

CRP Concepts

Figure 4. Concepts generated by CRP on OSDaR23 dataset for class
"person".

Table VII illustrates the top mutual information and
confusion scores for selected classes. For instance, din-
ing table in scenario 1 is frequently associated with
chair, person, apple, and cup, which are labels that share
semantic but not structural similarity. Such associations,
while intuitive to humans, suggest that the model is
not generalizing but instead relying on frequent co-
occurrences, which is problematic in deployed systems.
High concept error rates for classes like umbrella, per-
son, handbag, and car, paired with low distinctiveness
scores between semantically unrelated objects (e.g., um-
brella and traffic light), reinforce this concern, especially
when models perform poorly.

To further support this, we evaluate OSDaR23 [25],
a multi-sensor dataset for autonomous train driving.
Despite strong accuracy (95.92%) and F1 (79.93) on
a ResNet50 model trained on its RGB subset, CXAI
explanations reveal low generalizability. Since person
consistently appears near platforms or staircases, CRP
visualizations heavily rely on these backgrounds, none of
which are labeled in the dataset, as illustrated in Figure
4. As a result, person has the lowest distinctiveness
score with track, and a high concept error, indicating
dangerous misattribution.

These findings highlight how environmental concepts
reveal dataset-induced biases that compromise gener-
alization. In real-world or high-risk applications, such
as autonomous systems, these misleading correlations
can reduce model reliability. Diverse and well-annotated
datasets are essential to prevent concept bias and ensure
models learn robust, semantically accurate representa-
tions.
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V. CONCLUSION AND FUTURE WORK

Our study demonstrates that confusion in multi-label
classification is directly reflected in concept-based ex-
planations. By comparing model evaluations with CXAI
properties, we observe that label confusion often results
from overlapping or spurious environmental concepts,
emphasizing the role of CXAI in uncovering learning
biases and assessing model generalizability. We further
show that concept distinctiveness is inversely related to
conceptual confusion, models with higher distinctive-
ness show clearer feature boundaries and reduced bias,
while lower distinctiveness leads to shared or incorrect
associations across classes. CRP and CRAFT help iden-
tify such conceptual ambiguities, making them useful
tools for model diagnosis. Finally, our results highlight
that environmental concepts can reveal dataset-induced
biases, especially in cases where co-occurring objects
affect model learning. In datasets with label imbalance or
strong contextual patterns, models may form misleading
correlations, reducing their ability to generalize. This is
particularly problematic in high-risk applications, rein-
forcing the need for diverse, well-annotated datasets to
ensure robust and reliable Al models. For future work,
this case study can be extended to more complex models
and datasets.
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