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Abstract—Despite the traction gained by transformers on
time series forecasting tasks, partially based on their success in
natural language processing to learn contextual information, their
suitability in this domain has been questioned. Several works have
found significant performance problems when comparing these
models with simpler options leading some people to think trans-
formers are not as fit for time series forecasting as considered
before. However, it remains unclear if they can capture long-term
dependencies, similarly as they do with contextual information.
This study takes on that line of questioning using an explainable
artificial intelligence approach. By making use of Shapley additive
explanations, the attribution scores assigned to input features
are computed, showcasing that a transformer model optimized
for time series forecasting is unable to learn long-term time
dependencies, and mostly considers the last time steps from the
inputs. The analysis, based on interpretable knowledge based on
the computed Shapley values, is done in a multivariate forecasting
setting that resembles a complex real-world problem, proving that
the model is unsuited for the task.

Keywords-Transformers; Time Series; Deep Learning; XAI;
SHAP.

I. INTRODUCTION

Time series analysis and forecasting have a major role
in research [1] and real-world applications, such as climate
science [2], healthcare [3], biology [4], and economics [5].
As technology has progressed, new methods and algorithms
have been used to improve the models used. From statistical
and regression-based models such as autoregressive integrated
moving average (ARIMA) [6][7], the field has seen a transi-
tion to machine learning approaches, such as support vector
machines [8], nonparametric models like functional decompo-
sition [9], and nonparametric bayesian models [10].

More recently, deep learning has gained more traction over
other machine learning techniques thanks to their advantage of
being universal approximators [11][12] under the right condi-
tions. With their great versatility and representational power,
many neural network architectures have been used for time se-
ries forecasting, such as multi-layer perceptions (MLPs) [13],
convolutional neural networks (CNNs) [14], and networks
designed to solve sequential data problems like recurrent
neural networks (RNNs) [15][16] and long-short term memory
(LSTM) networks [17]. More recently, transformers [18] have
become one of the main technologies used for time series
forecasting [19]–[23] thanks to their outstanding capabilities in
modeling contextual information and handling sequence data,
particularly in natural language processes (NLP) tasks. Despite

their popularity, all deep learning models have the disadvan-
tage of being black boxes, a feature highly undesired in safety-
and business-critical applications. Even transformers, despite
the self-attention mechanism that allows them to weigh the
importance of different parts of their input sequential data to
make their forecasts, distinguishing them from other types of
neural networks, are virtually uninterpretable.

Due to the abrupt increase in the use of transformers for
time series forecasting, several works have questioned their
effectivity, with results that show how remarkably simple
linear models can, indeed, outperform them. To answer this
question, performance has been the main element examined
to the best of our knowledge, like in [24], using the metrics
mean square error (MSE) and mean absolute error (MAE) to
reason why transformers may have design flaws to tackle time
series forecasting, having been designed for natural language
processing (NPL) tasks. Although the inputs of transformers
are sequences, like in time series forecasting, one key part of
their success is their ability to extract contextual information
from the text sequences, which seems not to translate very
well to learning time dependencies.

Thanks to the revitalized interest in eXplainable AI (XAI)
motivated by the surge in using neural networks, many solu-
tions provide interpretable knowledge and explanations based
on many algorithms that exploit either external elements, with
primarily model agnostic techniques, or internal elements,
which primarily focus on the gradients that connect input
and output in these models or attention mechanism in case
of transformers. Similarly to other deep learning models,
interpretability in transformers can be tackled from those
perspectives, which may give insight into their efficacy in time
series forecasting by showing if they are learning long-term
time dependencies, or if they rather only focus on the last
instances from the inputs, leading to short-term dependencies
and discardment of the rest of the time series input.

In this work, an XAI-based methodology is proposed to
analyze what time dependencies have been learned by a
transformer-based model making use of Shapley additive ex-
planations (SHAP) [25] to compute attribution scores of the
inputs. By aggregating these scores and examining them with
respect to the time series input and output sequences, it is
possible to look into how these scores change as the model
predicts further into the future. By doing so, an analysis of
these changes offers a way to determine what kind of temporal
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patterns the models have learned, and how long back into the
past they are able to look for their predictions.

The paper is organized as follows. Section II presents a
brief overview of the state-of-the-art concerning XAI appli-
cable to transformer-based models both broadly and specific
to time series forecasting. Next, Section III introduces the
methodology used in this work. Details referring to the dataset
and the transformer model trained are provided, followed by
a description of SHAP, the implementation choice for the
computation of the Shapley values, and the framework used
to analyze them to assess the suitability of the model for the
task. Then, the results and analysis are presented in Section
IV, which conveys the findings of this work that the model
is unable to learn long-term time dependencies. Finally, V
presents the conclusions and suggests future lines of work
aimed to better examine this family of models and their
suitability for time series forecasting tasks through the lenses
of XAI.

II. STATE-OF-THE-ART ON EXPLAINABILITY OF
TRANSFORMERS

Transformers are a type of deep neural network (DNN)
characterized by using a self-attention mechanism and an
encoder-decoder architecture. Although one self-attention head
can learn which parts of the inputs are more important when
making predictions, hence holding interpretable knowledge,
they typically have many of such self-attention heads, in
addition to a very high number of parameters combined
with non-linear activation functions, and so they are initially
incomprehensible. To tackle them and attempt to explain
their inference, there are two main families of algorithms:
attribution score and attention-based methods.

In attribution-score methods, the algorithms assign a rele-
vance score to each of the inputs that were processed by the
model to reach a certain output. This provides interpretable
knowledge that exposes how high or low the contribution
of each input feature is for any output. These types of
methods rely mostly on input-output mappings, and as such are
considered "external", and in many cases are model agnostic,
meaning they can be applied to any machine learning model.

Some examples of attribution score-based methods are in-
tegrated gradients (IG) [26], layer-wise relevance propagation
(LRP) [27] or SHAP [25]. IG works by integrating the gradi-
ents of the model’s output with respect to the input features
along a path from a baseline input to the actual input. LRP
propagates the prediction backward in a neural network with
designed local propagation rules subjected to a conservation
property so that what is received by a neuron is redistributed
in equal amounts to the previous layer. SHAP calculates the
relevance scores by distributing the outcome of the model
among the input features to get the relevance scores, which
is done using Shapley values from coalitional game theory.
These methods can, usually, be applied to any deep learning
model, while others such as SHAP are model agnostic, hence
applicable to any machine learning model. Thanks to this

versatility, they have been successfully applied on numerous
occasions.

As one key aspect of the success of transformers comes
from their attention mechanism, this inbuilt attention mech-
anism can help to look into their behavior. Although still
not interpretable, analyzing where transformers focus their
attention may provide a better understanding of how they
infer. Along this line, several works take advantage of that to
build methods that throw some light on their interpretability to
provide, to a certain degree, XAI in the context of transformers
in the form of attention-based methods. These methods usually
provide visual information about which elements of the input
sequence the model has learned to pay attention to and rely
directly on the attention parameters, although the existence of
multiple attention heads complicates the process.

Attention mechanism-based methods require considering
the importance of how to properly take advantage of the
multi-head self-attention mechanism (MHSA) to get valuable
information. In [28], an updated version of LRP designed
to work with transformers and MHSA was developed. In-
stead of propagating scores backward through all layers, their
approach focuses on attention head relevance, and although
their technique has the initial goal of serving as a means to
prune unimportant attention heads, they successfully identify
different interpretable roles within the MHSA in the context
of automatic translation.

Attention rollout and attention flow are the solutions pro-
posed in [29] to quantify the information flow approximating
the attention to the inputs. First, attention rollout traces the
flow of information from input tokens to hidden embeddings
in the higher layers by propagating attention weights through
several network layers. This is done by recursively multiplying
the minimum, maximum, or mean of the attention heads of
each block with the attention of the previous blocks. Then,
attention flow treats the resultant graph as a flow network
using the attention weights as edge capacities. By doing this,
the maximum attention flow between any of the layers to
any of the input nodes can be computed with any maximum
flow algorithm, which can serve as an approximation of the
attention to input nodes. Nevertheless, the method’s speed is
prohibiting, hence rather unfeasible for evaluations at a large
scale.

Beyond attention [30], based on LRP, proposes assigning
attribution scores using the deep Taylor decomposition prin-
ciple to generate the initial scores and then propagate them
through the layers taking into consideration both attention
layers and skip connections, both integral parts of transformers
architectures. The initial scores are computed via LRP for all
attention heads and all layers by integrating the relevance score
of each attention head and its gradient with respect to the
input features. The weighted attention scores they propose to
adopt the notion of positive relevance, hence considering only
the positive values that result from the computation, and the
method was tested in the NLP model BERT [31] and a visual
transformer model.

Beyond intuition [32] is another proposal designed to ap-
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proximate the contribution of the input tokens. This solution
relies on the partial derivative of the loss function with respect
to each token in two steps. First, in the attention perception
phase, the relationships between input and output for each
attention block are unfolded, resulting in the development of
two recurrence formulas involving head-wise and token-wise
attention maps. The second step is reasoning feedback, which
applies the IG algorithm to the last attention map with a noise-
decreasing strategy to reduce the gradient self-induced noise.

Gradient self-attention maps (Grad-SAM) [33] uses a
gradient-based method applied to the attention matrices to
generate rankings for the tokens used in the layers of the
encoder and it was tested on the NLP model BERT. This
method offers another way to understand how the model
reaches an individual prediction by highlighting the inputs
that contribute to it the most, and it is based on computing
the partial derivatives of the model output with respect to the
self-attention blocks. This approach does not ignore negative
values resulting from this computation, but to avoid the accu-
mulation of negatives that may cancel the information carried
by positive values, they propose using the ReLU function to
zero out negatives.

In the context of visual transformers [34], the survey from
[35] paints a picture of the current state-of-the-art methods.
Understanding visual information has the technical advantage
of humans being able to identify patterns easily, and it is only
necessary to visualize what the models are paying attention
to, to make sense of their inference process. Traditional
attribution-score methods, such as layer-wise relevance prop-
agation [27], SHAP [25], local interpretable model-agnostic
(LIME) [36], or gradient-weighted class activation mapping
(Grad-CAM) [37] can suffice. On the other hand, since the
attention mechanism is designed to allow transformers to focus
on the relevant part of the input sequence, other methods focus
on this element, and in computer vision tasks attention can be
directly visualized just by looking into the raw attention of the
transformers, or through some function, such as Grad-SAM
[33] or beyond intuition [32].

In time series classification [38], attribution and attention
methods are the most popular strategies to assign relevance
scores to every time point in a time series. Another type
of explanation can be extracted based on subsequences by
identifying the parts of a sequence responsible for a cer-
tain classification outcome, such as PatchX [39] and data-
agnostic classification method via shapelets (DASH) [40]. The
third general type of explanation in this domain is based on
instances and relies on the complete time series to extract
reasons for the classification outcomes, such as multi-operator
temporal decision trees [41] and dual prototypical shapelet
networks [42].

In time series forecasting, [43] presents an experimental
comparison between XAI methods based on saliency maps
applied to several deep learning architectures including trans-
formers. The methods tested include IG [26], SmoothGrad
[44], DeepLIFT [45], gradient and deep SHAP [25], and
feature ablation [46], among others less up-to-date. The con-

clusions point out a general lack of high-quality interpretable
knowledge from these methods when applied to multivariate
time series data while succeeding when the time series is repre-
sented as images or univariate and propose a two-step temporal
saliency rescaling to improve the results. They hypothesize that
the main reason for this lack of quality is the combination of
temporal and feature domains. Previous studies [47] provided
comparisons between LIME, LRP, DeepLIFT, Saliency, and
SHAP for time series classification with DNNs, CNNs, and
ResNet, with SHAP performing more robustly than the rest on
ResNet. They showed a decrease in accuracy when perturbing
subsequences in univariate time series classification datasets,
which was assumed to be indicative of the alteration of parts
that were important for the models’ internal inference, and
SHAP seemed to perform better than the rest for the more
advance Resnet architecture.

III. METHODOLOGY

The methodology applied in this work is described in
this section, and it is based on the goal of analyzing if a
machine learning model, in this case a Transformer, is able
to learn time dependencies in a time series forecasting setup
using attribution scores computed with the Shapley additive
explanations method. Henceforth, it can be generalized to any
other model as long as the XAI method used to compute
the attribution scores is model agnostic, such as SHAP, or
is applicable to the model in question.

A. Data

In this work, the data comes from a collection of the
currency exchange rates of eight countries, including Australia,
British, Canada, Switzerland, China, Japan, New Zealand, and
Singapore, between 1990 and 2016, gathered daily. This data
has been used for time series analysis benchmarks of different
models, transformer-based architectures included, in works
such as [48] and [24]. The dataset has eight input features
and 7588 total time steps with a time resolution of one day.
Regarding the data splitting, a standard distribution was used,
forming subsets of 70%, 10%, and 20% of the total samples
for training, validation, and testing, respectively.

B. Transformer model

This work analyzes the transformer implementation used
in [20], [24]. The implementation details contain several
differences with respect to the actual vanilla transformer [18].
The importance of the differences becomes fundamental to
analyzing the models through XAI lenses because of a series
of technical issues and can be summarized as follows.

• Concerning the architecture, this transformer version con-
tains an additional temporal embedding that receives and
handles the information about the time marks of each
sequence element.

• For the inputs, the transformers take 3 elements in ad-
dition to the expected time series sequence. First, the
decoder takes the last Ldec pieces of the time series
input. This reduced time series acts as an enhanced "start
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sequence" token, supplying additional information for
the decoder. Then, the time marks of the time series
input on one hand, and the time marks of the enhanced
start sequence token followed by the time marks that
characterized each time step of the expected prediction
horizon on the other. These two time mark sequences
are used by the encoder and the decoder respectively,
and are treated as the other two inputs. The time mark
sequences encode information about the dates in a four-
values format. This format is a hyperparameter, and in
these experiments, the selected "hourly" encodes and
normalizes the hour of the day, the day of the week, the
day of the month, and the day of the year.

• In regards to the outputs and in connection to the training
and inference processes, the model performs a direct
multi-step prediction, hence providing the whole expected
sequence in a single step.

1) Training and performance: Regarding training, 10 mod-
els were optimized for a prediction horizon Zp = 96, chosen
from the set of values 96, 192, 336, 720 as it yielded the best
performance. Since it is a multivariate forecasting task and 10
models were trained, each model’s performance mean squared
error MSEexp is computed with (2), where y is the prediction
value, ŷ the true value, Nf the total number of features
predicted, Np the number of predictions, and the subscripts i,
j, and k are feature, prediction, and experiment, respectively
(also in (1)). Then, the aggregated MSE (MSEagg) is simply
an average of the MSEexp of the 10 models following (1).

MSEagg =

∑Nexp

k=1 MSEexpk

Nexp
(1)

MSEexp =

∑Np

j=1

∑Nf

i=1(yi,j − ŷi,j)
2

NfNp
(2)

As the loss function, the MSE is used as the standard
for regression tasks, which is averaged among the 8 output
features since the multivariate forecast of the model. The
models are trained with different seeds to get rid of possible
underperforming combinations of initialized parameters, using
the adaptive moment estimation (ADAM) optimizer with input
sequences of length Zi = 96, again yielding the best results
from the set 96, 192, 336, 720. The models were trained in an
NVIDIA RTX 3090 GPU. For the rest of the hyperparameters,
the default values from [24] were initially used, and for
this work, a random search for optimization purposes was
performed over batch size, learning rate, training epochs, and
early stopping hyperparameters, arriving at respective values
of 32, 0.0001, 10, and early stopping with patience 3.

Since the goal is to ascertain if transformers can learn time
dependencies, the best-performing model is the one chosen to
be analyzed by SHAP. Note that this work will not examine
model performance in depth as it falls out of the scope.

C. SHAP
The original kernel and deep implementations from [25],

referred to hereinafter as Kernel and Deep, were used to

examine the inner workings of transformers with the SHAP ap-
proach as computationally efficient algorithms to approximate
Shapley values, particularly so in higher dimensions. As shown
by [25], the Shapley values approximated with SHAP using
Kernel perform slightly better than those approximated with
Deep (DeepLift-based SHAP). Because of the substantially
high memory and computation requirements of Kernel, a base
test was made to compare both results and determine how
much Kernel suffers by leaving out part of the training data
as background data for the algorithm, to make an informed
decision about which algorithm to use for the analysis of the
transformers with SHAP. The L2 distance and symmetric mean
absolute percentage error (SMAPE) were used as distance
measurements. L2 serves as a standard distance measurement
between real value vectors to capture important deviations in
feature attribution, while SMAPE is a scale-independent and
commutative measurement that offers a better understanding
of the distance regardless of the small scale of the values.

With the larger amount of data manageable with the com-
putation resources used in this work for a single time step
of the prediction horizon (32 training sequences for Deep,
16 for Kernel), an L2 = 0.0036 and SMAPE = 175.48%
were reached between Deep and Kernel. With the minimum
reduction of the background data for the analysis of the whole
prediction horizon (32 training sequences for Deep, 4 for
Kernel), an L2 = 0.0046 and SMAPE = 184.38% were com-
puted instead. These are calculated for the feature attribution
of the first time step forecast. While the difference between
SMAPE error is only 4.95%, the percentage difference in
L2 ascends to 24.81%, suggesting the Kernel implementation
suffers when the background data to integrate out features
decreases. Henceforth, the choice was made to use the results
of the DeepLift-based Shapley values (DeepSHAP) for the
analysis.

For the use of the original DeepSHAP algorithm implemen-
tation [25], the critical adaptations of this algorithm to function
on the model and data used for this work were implemented
in the form of wrappers and data refactorization to meet the
requirements of the DeepExplainer interface. To achieve this,
the model is wrapped in a function that only needs the time
series input sequence so that SHAP focuses on extracting the
feature importance of this data instead of over every input
the model actually needs. This is done by making the rest
of the inputs independently accessible by the model outside
the DeepSHAP algorithm. Therefore, the time series input
sequence is used as input data for the model to calculate
the Shapley values. Regarding the rest of the inputs, the time
series sequence subset needed by the decoder is handled by
the wrapper, which already receives the whole time series
input sequence. The time marks, on the other hand, must
remain unchanged during the computation because it is not
desirable in this setting to alter the possible time dependencies
that the model might have learned and may be related to the
temporal embeddings. For this reason, this part of the inputs
is accessible by the model through external variables, but not
modified by SHAP.
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The data refactorization involves the input sequence and
the output but does not affect the process other than reshaping
the sequences so that DeepSHAP can process them. The time
series input sequences are reshaped to a format admissible by
SHAP before the algorithm is called and shaped back to the
format required by the model within the model wrapper sent
to the SHAP algorithm. Regarding the outputs, the wrapper is
configured to output a single time step within the prediction
horizon, which can be selected beforehand. Therefore, to ana-
lyze the whole prediction horizon SHAP needs to be computed
for each time step. These changes allow the extraction of the
attribution scores of the features examined in this work in a
compatible way with SHAP, while also reducing the compu-
tation requirements, which would otherwise be prohibited in
terms of memory due to the high memory use, which increases
exponentially with the dimensionality of the data. To analyze
the impact of each input feature of each time step of the
input sequence, each feature from each time step needs to be
considered as an individual input, hence the dimensionality of
the input features analyzed by SHAP is the number of input
features times the length of the input sequence. Note none
of these changes have any effect on the actual transformer
model architecture or parameters behind the wrapper, hence
the inference process performed by the transformer remains
unaltered.

D. Shapley values analysis

In the analysis, the features that significantly impact the
model outputs according to the attribution scores computed by
Shapley values are examined. These values are computed by
the SHAP algorithm using the full training set as background
data as described in [25]. The Shapley values are studied by
looking at the features with a higher accumulated impact on
the outputs from several individual time steps of the prediction
horizon. This is done by considering each feature from each
time step of the input sequence on its own and accumulating
their impact by adding the absolute values that each input
feature has for all the outputs in the chosen prediction horizon
slice. This way, it can be seen which input features and from
which input time steps have a higher impact on the model’s
outputs.

Secondly, the evolution of the attribution scores is investi-
gated throughout time steps from input and output sequences.
To look at the overall evolution of the impact of all the
input features and time steps, looking separately into specific
output features of the model allows to obtain more general
information about how the impact of input features from
different time steps varies depending on the prediction horizon.

Ultimately, the global distribution of the accumulated im-
pact from all features is studied. This is done by applying
a sum reduction over the absolute values of the impact of
all the input features over all the output features. Since the
impact from the features computed by attribution scores that
SHAP provides measures how much changes in the values
cause changes in the prediction, using sum reduction over
their absolute values will provide practical information about

the patterns learned by the model without mismanaging or
losing the SHAP values meaning. Hence, looking at the impact
that each time step of the input sequence has over each
time step of the prediction horizon yields the most global
vision. By analyzing this, it is possible to ascertain what
time dependencies the model has learned from a wider point
of view, as well as detect possible anomalies or interesting
behaviors.

IV. RESULTS AND ANALYSIS

The 10 instances of the transformer trained reached an
average performance of MSE = 0.748, with the best-
performing model chosen for the analysis with SHAP having
a performance of MSE = 0.601.

The input features with the highest impact on the model’s
output for several time steps located at the beginning and
ending parts of the prediction horizon can be seen in Figure 1.
In Figure 1a, it can be seen how the Shapley values reveal that
feature attribution is placed directly on the time steps from the
input sequence that are directly adjacent to the starting point of
the prediction horizon. This behavior of the attribution scores
replicates in the whole prediction horizon the model is trained
for (Zp = 96) except in the last time step. Note that the second
to last time step also behaves similarly, as displayed by Figure
1b, although with more evenly distributed attribution scores
across a wider range of input features from the last elements
of the input sequence. The only deviation from this pattern can
be seen in Figure 1c, which displays the attribution score for
the last time step of the prediction horizon, and where it can
be observed that 6 out of the 10 most impactful features come
from the intermediate input sequence elements instead of the
last. Nevertheless, as this does not replicate in any other time
step of Zp, it seems likely to be an outlier prediction situation.
Note that there is no evident anomaly in the input sequence
that explains this event either.

The distribution of the attribution scores across the entirety
of the input sequence is shown in Figure 2 for four time steps
across diverse lengths of the Zp. As can be seen, the model is
influenced mostly by the last elements of the input sequence
length, except in the last time step. These attribution scores,
however, present some changes after the first forecasted time
steps, especially observable in Figure 2b and Figure 2c, with
the attribution scores being slightly more evenly distributed.
For some output features, such as Feature 1 and 2, this
happens across the second half of the input sequence, while
for others, such as Feature 3 and 4, it is distributed between
the ending and the beginning of the input sequence. Despite
these changes, notice that most of the importance is still placed
in the last time steps of the input sequence, especially so if
the comparison is made between the initial, intermediate, and
ending parts of the input sequence. Moreover, as was displayed
by Figure 1c, Figure 2d shows that there is a notable anomaly
on the attribution score placement for the last forecasted time
step, where most of the impact, and across all output features,
is placed on an intermediate, single time step (48). Regardless
of the shifts in the feature importance distribution as the model
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0.0 0.2 0.4 0.6 0.8
mean(|SHAP value|) (average impact on model output magnitude)

Feature 0, seq pos 94 

Feature 1, seq pos 91 

Feature 3, seq pos 95 

Feature 2, seq pos 95 

Feature 1, seq pos 94 

Feature 1, seq pos 92 

Feature 1, seq pos 93 
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Feature 0, seq pos 95 
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(a) Predicted time step Zp = 0

0.00 0.05 0.10 0.15 0.20 0.25 0.30
mean(|SHAP value|) (average impact on model output magnitude)

Feature 3, seq pos 92 

Feature 3, seq pos 94 

Feature 0, seq pos 93 

Feature 0, seq pos 94 

Feature 3, seq pos 93 

Feature 1, seq pos 95 

Feature 1, seq pos 91 
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Feature 1, seq pos 93 
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(b) Predicted time step Zp = 94

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
mean(|SHAP value|) (average impact on model output magnitude)

Feature OT, seq pos 48 

Feature 1, seq pos 91 

Feature 0, seq pos 48 

Feature 6, seq pos 48 

Feature 1, seq pos 94 

Feature 1, seq pos 92 

Feature 1, seq pos 93 

Feature 2, seq pos 48 

Feature 3, seq pos 48 

Feature 1, seq pos 48 

1
0
2
3
OT
5
6
4

(c) Predicted time step Zp = 95

Figure 1. SHAP values of the 10 features with the highest impact for multiple
times steps of the prediction horizon. Seq. pos. indicates the time step of the
input feature, i.e. its location in the time series input sequence, while the name
of each feature is enumerated from 0 to 6 plus the OT feature. Note that OT is
one of the eight countries, named differently to be used as the default output
target for the univariate implementation.

predicts further into the future, the anomaly only happens in
the last forecasted time step, complicating the analysis of the
event unless it can be explained as an outlier in the prediction,
which is a known issue in certain domains as pointed out in
[49], [50].

The distribution of the impact from all the input features
over all the outputs, for all the time steps from both input
sequence and output prediction horizon can be seen in Figure
3. In the figure, it can be easily seen that the transformer
model is mostly only affected by the last five elements of
the input sequence. As most of the influence is placed upon
only a small fraction of the inputs, essentially the last time
steps from the input, and across the whole prediction horizon,
it can be verified that the model has not learned any long-
term time dependencies, which suggests transformers might
be fundamentally flawed in dealing with long time series
forecasting (LTSF) tasks from an XAI perspective. It can be
noted that two anomalies occur in two instances of time. One,
as previously spotted in Figure 2d, appears on the last time
step of the prediction horizon, while the other does so in the
very first, and can also be seen in more detail in Figure 2a. The
second anomaly is only in the accumulated value of the impact
of the features, which is significantly higher (about three times
bigger) with respect to its neighbors on the plot. Nevertheless,
it is not an anomaly in the general behavior. On the contrary,
the first anomaly of the predicted time steps is indeed of value
but also of behavior. Nevertheless, being the only behavioral
break of the pattern analyzed across 9216 data points of 3, it
is hardly significant enough, and seems most likely an outlier
in the prediction or the SHAP values computed.

V. CONCLUSION AND FUTURE WORK

In this work, a framework is proposed to look into the
suitability of transformers for time series forecasting using
SHAP to analyze the behavior of the model. It is found
that the transformer was not able to learn long-term time
dependencies from its training, and according to the attribution
scores computed all the impact is placed upon the last time
steps of the inputs. These findings suggest that transformers-
based models might be particularly prone to disregard most
of the time series data used for their training, hence making
them not good choices for this particular task. In consequence,
developers should be aware that transformers appear to fail
to capture the long-term dynamics of time series, and the
issue should be investigated when proposing transformer-based
models for this type of task, in addition to considering the
use of other types of models for LTSF tasks. Furthermore,
for applications where the performance of the transformer-
based model is the only feature looked for, a similar analysis
may be useful in optimizing the training, given that similar
conclusions are reached where most of the input sequence has
a very low impact on the forecasts, suggesting that decreasing
the length of the input sequence would not significantly impact
the performance.

Facing the lack of analysis of this particular issue from an
XAI perspective, experimenting further with these models in a
wider variety of time series datasets and types of models may
yield interesting findings. It can lead to better establishing
if the findings of this work are a symptom of a flaw in
transformer-based models’ design to address LTSF tasks, or if
it is just a case of a flawed model not being able to learn from a
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(a) Forecasted time step 0. Most of the input influence is placed
over the last elements of the input time series sequence.
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(b) Forecasted time step 48. The behavior is similar to Figure 1a,
but the influence is less concentrated on the last time steps.
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(c) Forecasted time step 94. The behavior is consistent with every
previous forecasted time step, and nearly identical to Figure 2b.
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(d) Forecasted time step 95. The behavior changes and most of the
influence is placed on the middle input features of the time series.
Note that it is the only time step where this behavior occurs.

Figure 2. Distribution of the attribution scores across all the elements of the input sequence for the forecasted time steps 0, 48, 94, and 95. Each subfigure
depicts the impact evolution across the input time steps for each of the 8 output features, which are divided into different plots, each one depicting 8 signals
representing each one of the 8 input features from the input time series
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Figure 3. Accumulated impact of all the input features aggregated by the aggregation of the absolute values of their attribution scores over all the output
features for each time step of the input sequence and of the output prediction horizon.

dataset. Furthermore, analyzing more recent transformer-based
models’ designs from this XAI perspective can lead to more
impactful and relevant findings regarding model performance
and suitability for the LTSF task. Additionally, looking more
deeply into these findings with different XAI methods might
yield a solution to exactly where the problem is with these
types of models, so they can be adapted and improved.
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