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Abstract—Uncontrolled diabetes can lead to severe 

complications and Intensive Care Unit (ICU) admissions. This 

study presents an explainable machine learning model using 

electronic health records to predict ICU admissions and 

estimate hospital stay duration for diabetic patients. AdaBoost 

model outperformed other models on ICU admission prediction, 

while CatBoost exhibited superior performance in estimating 

ICU length of stays among diabetic patients admitted to the 

emergency departments. The results demonstrate the potential 

of explainable machine learning in ICU risk assessment and can 

aid healthcare providers in early intervention and resource 

utilization. The clinician and the proposed model agree on the 

top 25 features identified by Shapley Additive exPlanations 

(SHAP) methods for predicting ICU admission, but they differ 

in the ranking of the top five most significant predictors. 

Keywords-Explainable Machine Learning; Intensive Care Unit; 

Diabetes; Length of Stay; SHAP. 

I. INTRODUCTION  

Diabetes is a chronic disease affecting millions globally 

and is a major contributor to morbidity and mortality. There 

are three kinds of diabetes: Type 1 Diabetes Mellitus 

(T1DM), which results from the pancreas's inability to 

produce insulin; Type 2 Diabetes Mellitus (T2DM), 

characterized by the body's ineffective use of insulin [1][2]; 

and gestational diabetes, which occurs during pregnancy and 

may later be resolved or progress to T1DM or T2DM. Despite 

medical advancements, diabetes prevalence continues to rise, 

with cases estimated at 536 million in 2021 and projected to 

reach 783 million by 2045 [3]. Managing diabetes remains 

challenging due to complications, such as cardiovascular 

diseases, neuropathy, nephropathy, retinopathy, and 

glycemic complications, often leading to frequent 

Emergency Department (ED) visits and Intensive Care Unit 

(ICU) admissions [4]. This study focuses on T1DM and 

T2DM.  

Emergency departments play a crucial role in managing 

critically ill diabetic patients and serve as valuable data 

sources for predicting ICU admissions and estimating 

hospital stays. Machine Learning (ML) models trained on ED 

data can assist clinicians in identifying high-risk patients in 

real-time, allowing for timely interventions. In the medical 

domain, Explainable Artificial Intelligence (XAI) 

techniques, such as SHAP, are essential to ensure the 

reliability and clinical applicability of AI-enabled tools. XAI 

fosters trust among ED healthcare providers by ensuring that 

ML models use relevant and medically validated features. 

Additionally, XAI provides valuable insights into critical risk 

factors, improving decision-making in emergency care 

settings. 

Machine learning has been widely applied during the 

COVID-19 pandemic to predict ICU admissions [5], as well 

as to estimate ICU length of stay [6] and readmission risk 

among diabetic patients [7]. However, the application of 

explainable ML in emergency settings for diabetes 

management remains underexplored. The contribution of this 

study is in three folds: (1) Develop boosted tree-based 

ensemble machine learning models using ED data to predict 

ICU admission risk for T1DM and T2DM patients, (2) Build 

a machine learning model to estimate the length of hospital 

stays for diabetes patients upon ED admission, (3) Apply 

SHAP methods to provide interpretable explanations for the 

classification and regression models predicting ICU 

admissions and length of stay.  

This study aims to develop explainable ML models using 

boosted tree ensemble algorithms and SHAP to predict ICU 

admission risk and estimate ICU length of stay for diabetic 

patients in the ED. The dataset for this study includes 

historical patient data, including demographics, vital signs, 

and lab results from electronic health records stored in the 

Medical Information Mart for Intensive Care (MIMIC)-IV 

database [19]. Performance evaluation metrics used for ICU 
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admission prediction (classification task) are accuracy, 

precision, recall, F1-score, and Area Under the Curve score 

(AUC), while hospital stay estimation (regression task) was 

evaluated using Root Mean Squared Error (RMSE) and Mean 

Absolute Error (MAE) metrics. 

The remainder of this paper is structured as follows: In 

Section 2, we outline the methodology guiding our study, 

Section 3 presents the experimental results, Section 4 

provides a discussion of the findings, and Section 5 concludes 

the study while outlining directions for future research. 

II. METHODOLOGY 

This study has developed ML models to predict diabetes 

ICU admissions and length of stay using MIMIC-IV data and 

five machine learning models, including Decision Tree, 

AdaBoost, CatBoost, XGBoost, and LightGBM. These 

boosted tree ensemble models were chosen for their superior 

performance on ICU and Length Of Stays (LOS) prediction, 

as reported in the literature [16][17][18]. Additionally, they 

effectively address class imbalance, making them well-suited 

for this study. Performance was evaluated using classification 

and regression metrics. SHAP was applied to ensure 

interpretability and clinical relevance. This study was 

conducted in six steps: data acquisition, dataset building, data 

preprocessing, model building, performance evaluation, and 

generating explanations of the best model, as shown in Figure 

1. 

 
Figure 1. Design of the research processes.   

A. Data acquisition 

We used MIMIC-IV (version 2) [19], focusing on 

MIMICIV-ED, MIMICIV-ICU, and MIMICIV-Hospital 

datasets, extracted via BigQuery SQL. Diabetic patients were 

identified using the International Classification of Diseases 

(ICD)-10 codes: E10.XXX for T1DM and E11.XXX for 

T2DM [20]. MIMIC-IV extends MIMIC-III, providing 

electronic health records for Beth Israel Medical Center ICU 

patients from 2008 to 2019. The publicly available database 

contains deidentified patient data in compliance with the 

Health Insurance Portability and Accountability Act 

(HIPAA). Figure 2 highlights the tables and the type of data 

extracted from the MIMIC-IV database. 

 
Figure 2. MIMIC-IV tables used dataset building. 

Data was extracted using ICD-10 codes. Subject ID 

represents individual patients, while item ID corresponds to 

lab tests during hospitalization. More data was extracted from 

the Labevents table (20 features). 

B. Dataset building 

Between 2008 and 2019, 9339 diabetic patients were 

hospitalized, including 1090 with T1DM and 7097 with 

T2DM. Focusing on first-time emergency admissions, 4365 

patients were selected after removing duplicates (863 T1DM, 

3502 T2DM). The study includes demographic data, vital 

signs, diagnoses, and lab results for critically ill diabetic 

patients. We extracted 34 numerical features (detailed in 

Table I) and 6 categorical features, resulting in 20 features 

after label and one-hot encoding, as illustrated in Figure 3. 

C. Data preprocessing  

Data preprocessing is a crucial step in machine learning, 

involving missing data handling, feature correlation analysis, 

deduplication, outlier removal, and data scaling to enhance 

model performance. Categorical variables were encoded 

using label encoding for binary features and one-hot 

encoding for multi-value features. To maintain a focus on 

T1DM and T2DM, cases related to pregnancy, malnutrition, 

and unspecified causes were excluded, reducing the dataset 

to 4,317 patients.  Outlier detection was performed by 

analyzing each feature individually for anomalies due to 

human error or lack of relevance to the study. Extreme 

deviations from expected distributions, such as a Body Mass 

Index (BMI) of 3,658.50, systolic blood pressure of 1.00, or 

a temperature of 9°F (as shown in Table I), were considered 

outliers and removed. Features with more than 50% missing 

values, including Protein C (PC), Protein Creatinine Ratio 

(PCR), and Hemato, were removed to prevent bias to the ML 

model. Finally, two datasets were created: one for ICU 

admission prediction (4,055 samples, 49 features) and 

another for ICU length of stay prediction, patients with a 

zero-day ICU stay were excluded from ICU LOS dataset, as 

they were not admitted leading to a dataset of 1,432 samples, 

and 49 features. 
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TABLE I.  DESCRIPTIVE STATISTICS 

Feature 

Name 
Count Min Max Mean Missin

g 

Values 

(%) 
Temp 3721.00 9.00 106.30 97.89 13.81 
Hrate 3776.00 20.00 220.00 84.97 12.53 
Resprate 3758.00 8.00 40.00 17.74 12.95 
O2sat 3737.00 60.00 109.00 98.23 13.44 
SBP 3687.00 1.00 249.00 143.64 14.59 
DBP 3633.00 14.00 474.00 78.15 15.84 
Age 4317.00 18.00 91.00 58.53 0.00 
BMI 3964.00 0.67 3658.5 54.83 8.18 
Alb 3765.00 1.20 5.85 3.81 12.79 
Hemog 4148.00 3.20 19.60 11.64 3.91 
Cr 4287.00 0.10 16.30 1.66 0.69 
BG 4295.00 28.00 1083.00 200.01 0.51 
Trig 3061.00 10.00 7140.00 189.43 29.09 
HbA1C 3495.00 4.00 19.40 8.24 19.04 
RBC 4285.00 1.77 6.65 4.08 0.74 
WBC 4216.00 0.20 181.70 10.83 2.34 
Sod 4275.00 82.00 177.00 136.72 0.97 
Pot 4252.00 1.80 10.00 4.78 1.51 
pH 2465.00 6.64 7.86 7.34 42.90 
pO2 2395.00 12.00 536.00 120.34 44.52 
pCO2 2387.00 8.00 199.00 40.25 44.71 
LDL 2938.00 10.00 407.00 96.13 31.94 
HDL 3017.00 2.10 214.00 48.35 30.11 
EdLOS 4317.00 0.00 4.73 0.55 0.00 
ICUStays 1553.00 0.00 50.33 2.76 64.03 
BUN 4286.00 1.00 260.00 23.60 0.72 
Bilir 3456.00 0.10 29.20 0.82 19.94 
PC 1999.00 6.00 1697.00 250.28 53.69 
CholR 3027.00 1.30 36.00 3.97 29.88 
CK 3049.00 8.00 68510.00 332.95 29.37 
VB12 2337.00 88.00 1976.00 671.05 45.87 
Iron 2494.00 8.00 396.00 61.08 42.23 
Hemato 1286.00 10.00 60.00 32.76 70.21 
PCR 1065.00 0.10 355.50 1.86 75.33 

Abbreviations: Temp: Temperature, Hrate: Heart rate, Resprate: Respiration 

rate, O2sat: Oxygen saturation, SBP: Systolic blood pressure, DBP: 

Diastolic blood pressure, Alb: Albumin, Hemog: Hemoglobin, Cr: 
Creatinine, BG: Blood glucose, Trig: Triglycerides, HbA1C: Glycated 

Hemoglobin, RBC: Red Blood Cells, WBC: White Blood Cells, Sod: 

Sodium, Pot: Potassium, pO2: Partial pressure of oxygen, pCO2: Partial 
pressure of Carbon Dioxide, LDL: Low-Density Lipoprotein sometimes 

called bad cholesterol, HDL: High-Density Lipoprotein known as good 

cholesterol, BUN: Blood Urea Nitrogen, Bilir: Bilirubin (Total), CholR: 

Cholesterol ratio, CK: Creatinine kinase, VB12: Vitamin B12. 

 

Our experiment shows the distribution of categorical 

features (Figure 3) in the dataset, which includes 2293 

females and 2024 males, with 3464 type 2 diabetes and 853 

type 1 diabetes patients. A total of 4317 T1DM and T2DM 

patients were admitted to the emergency department, with 

1560 admitted to the ICU, indicating not a fully balanced 

dataset. The "Admit" feature has four categories for 

admission status, while the "CompType" feature includes 

nine diabetes-related complications. The "Marital Status" 

feature has four categories: married, widowed, single, and 

divorced. Widowed, single, and divorced are often grouped 

as single, but they are treated separately here due to 

psychological differences that may affect diabetes 

differently. 

 

 
Figure 3. Visualizing the distribution of categorical data. 

We used the Robust scaler method to minimize the effect 

of features with very low or very high values to put all 

numerical data on the same scale. The formula of a robust 

scaler is:      

𝑋 =
𝑋−𝑋𝑚𝑒𝑑𝑖𝑎𝑛

𝐼𝑄𝑅
        (1)                               

A robust scaler is less affected by outliers. IQR means the 

InterQuartile Range between the first quartile (25%) and the 

third quartile (75%).    

D. Machine Learning Algorithms 

This study uses supervised machine learning with five 

models: Decision Tree [8], CatBoost [9], AdaBoost [10], 

XGBoost [12], and LightGBM [13] for ICU admission 

prediction and length of stay estimation. Initial experiments 

involve training these models with default parameters on 

cleaned datasets. The best model was selected and fine-tuned 

through hyperparameter optimization to improve predictive 

performance. 

(1) Decision Tree Algorithm 

A decision tree model is a simple predictive modeling 

tool that can be used for classification and regression tasks. It 

works by building a tree where the nodes are the decision 

rules, and the leaf nodes give the output of the prediction [8]. 

This type of model is known as the “white model” since it is 

easier to understand and interpret its prediction process. The 

decision tree model is affected by the curse of dimensionality, 

where a large number of features will increase the splitting 

process, which results in poor performance of the model. 
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Tree-based ensemble models were introduced to solve the 

limitations of decision tree models operating on large 

datasets.  

(2) CatBoost Algorithm 

CatBoost is an open-source gradient-boosted tree library 

that excels in handling categorical data without the need for 

transformation. Developed by Yandex, CatBoost is well-

suited for machine learning tasks involving heterogeneous 

data, particularly when categorical features are present. It 

builds a model iteratively through gradient boosting, 

improving its performance step by step using weak learners, 

typically decision trees [9]. One of CatBoost's key 

advantages is its ability to handle categorical data efficiently, 

reducing the need for pre-processing transformations often 

required by other machine learning models. 

(3) AdaBoost Algorithm 

AdaBoost is a boosted tree ensemble algorithm that 

improves the weights of weak learners over multiple 

iterations to make predictions. It builds a strong classifier by 

training weak classifiers sequentially, with more emphasis on 

misclassified instances in each iteration. AdaBoost is 

particularly effective for binary classification and regression 

tasks [10]. Its drawback is that training weak learners 

sequentially leads to longer training time when the dataset is 

large.  

(4) XGBoost Algorithm 

XGBoost (Extreme Gradient Boosting) builds trees 

sequentially, with each tree correcting the errors of the 

previous ones through gradient optimization. It is an open-

source library that uses distributed gradient-boosted trees for 

predictions. XGBoost combines regularization and 

optimization techniques to increase predictive performance 

and reduce the training time. Known for its high prediction 

accuracy and fast training speed, XGBoost is widely used in 

classification and regression tasks with structured data [11] 

[12]. The base model used in XGBoost is the Classification 

And Regression Tree (CART).  

(5) LightGBM Algorithm 

LightGBM is a gradient-boosting library developed by 

Microsoft for classification and regression tasks. It builds 

decision trees using a leaf-wise approach, enabling faster 

training. Its strong performance is driven by two key 

innovations: Gradient-Based One-Side Sampling (GOSS), 

which prioritizes informative data points by removing small-

gradient samples, and Exclusive Feature Bundling (EFB), 

which reduces dimensionality by combining mutually 

exclusive features. Additionally, LightGBM addresses class 

imbalance by assigning higher weights to the minority class 

[13]. 

E. Experiment Setup 

We used Python and its libraries, such as Pandas, 

NumPy, Matplotlib, Seaborn, and Scikit-learn, and the SHAP 

library for explainability and other libraries required for this 

study. The experiment began with exploratory data analysis, 

followed by feature engineering to prepare the final datasets. 

In collaboration with a clinician, we selected relevant features 

for use in the chosen machine learning models. Significant 

effort was dedicated to data preprocessing to ensure the 

creation of a high-quality dataset suitable for both ICU 

admission prediction and ICU length of stay estimation. 

F. Training and Evaluating Models 

We assessed the performance of the proposed model 

using standard evaluation metrics and analyzed the 

interpretability of its predictions through SHAP-based 

explanations  

(1) Performance metrics 

The selected machine learning models support both 

classification and regression tasks. In both cases, models 

were trained on 80% of the data and validated on the 

remaining 20%. For the classification task (ICU admission 

prediction), performance was evaluated using accuracy, 

precision, recall, F1-score, and AUC according to equations 

(2–5). The Receiver Operating Characteristics (ROC)-AUC 

curve was used for model comparison, and the best-

performing model underwent hyperparameter tuning with 

GridSearchCV and internal validation via K-Fold cross-

validation with K equals to 10. The optimized model was then 

used for final predictions, with its learning curve analyzed 

and feature importance compared to SHAP’s global 

explanations. For the regression task (ICU length-of-stay 

estimation), models were evaluated using RMSE and MAE. 

The best model’s hyperparameters were tuned before 

predicting ICU stays for diabetic patients. SHAP was applied 

to provide local explanations, illustrating why specific 

predictions were made. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 + 𝐹𝑃 +  𝐹𝑁
        (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
                        (3)  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
                             (4)  

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑇𝑃

2∗𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
         (5)                                                                                                                      

AUC and ROC-AUC curves are calculated using the 

probability distribution of True Positive Rate (TPR) and 

False Positive Rate (FPR), as indicated in Figure 5. The 

regression models used to estimate the LOS, were assessed 

using RMSE and MAE calculated using the below formula: 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑

𝑛

𝑖=1

(𝑦𝑖 − 𝑦𝑝)2            (6) 

𝑀𝐴𝐸 =
1

𝑛
∑𝑛

𝑖=1 |𝑦𝑖 − 𝑦𝑝|                         (7)                                                                                                                                   

where 𝑛 is the total number of samples (rows), 𝑦𝑖  is the true 

value and 𝑦𝑝 is the predicted value.   
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(2) Model Explanations using SHAP Methods 

SHAP is a widely used post-model explanation method 

in XAI, using cooperative game theory to compute Shapley 

values that quantify each feature's contribution to model 

predictions. It is characterized by four key properties: 

Efficiency, Symmetry, Dummy, and Additivity, as outlined 

by Lundberg and Lee [14]. Shapley values are calculated 

using the following formula: 

𝜙
𝑖
(𝑓) = ∑𝑠⊆𝑁\𝑖

|𝑠|!(|𝑁|−|𝑆|−1)!

𝑁!
[𝑓(𝑆 ∪ 𝑖) − 𝑓(𝑠)]       

(8)                                                  

Here, 𝑆 is a subset of features excluding feature 𝑖, and 𝑁 is 

the total number of features. 𝜙
𝑖
(𝑓) represents the 

contribution of feature 𝑖, calculated as the difference between 

the total prediction and the prediction without feature 𝑖.   
Due to their computational complexity, Shapley values 

can be expensive to compute. To address this, we used 

TreeSHAP [15], an optimized version of SHAP for tree-

based ensemble models. TreeSHAP employs path-dependent 

feature perturbation, reducing computational complexity to 

𝑂(𝑇𝐿𝐷2) in the worst case, compared to the original SHAP’s 

complexity of 𝑂(2𝑛), where 𝑛 is the number of features, 𝑇 is 

the number of decision trees, 𝐿 is the number of leaves, and 

𝐷 is the depth. 

 III. EXPERIMENTAL RESULTS 

This section presents findings on ICU admission 

prediction and length-of-stay estimation for diabetic patients 

visiting the emergency department. 

 

A. ICU Admission Prediction 

We illustrate feature correlations with ICU admission on 

Figure 4, highlighting the top ten predictors: Albumin (Alb), 

Hemoglobin (Hemog), Creatinine (Cr), Red Blood Cell count 

(RBC), White Blood Cell count (WBC), Blood Urea 

Nitrogen (BUN), Total Bilirubin (Bilir), pH, Emergency 

(Emerg), and Observation (Observ).  

 

 
Figure 4. Features correlation to the ICU admission.  

The five machine-learning models were trained on 80% 

of the data and tested on the remaining 20%. The 

experimental results demonstrate that the selected ensemble 

models effectively identify diabetic patients at risk of ICU 

admission, with all boosted tree models achieving an AUC 

above 0.85 (Figure. 5). CatBoost outperformed other models 

on the AUC metric. The dashed yellow line indicates the 

random guess, and its AUC is 0.5. All selected models 

performed well on ICU admission prediction as indicated in 

Table II. AdaBoost excels in most evaluation metrics.  

 
 TABLE II. MODEL PERFORMANCE ON ICU ADMISSION 

PREDICTION  

Classifier Accuracy Precision Recall F1-

score 

AUC 

 

Decision 
Tree 

74.60 66.33 64.57 65.44 0.726 

XGBoost 80.76 77.24 68.54 72.63 0.861 

CatBoost 82.24 79.04 71.19 74.91 0.882 

 

LightGBM 81.75 78.73 69.87 74.04 0.869 

AdaBoost 82.74 80.92 70.20 75.18 0.876 

 
 

Figure 5. ROC Curve of ML models used to predict ICU admission 

with AUC between 0 and 1.  

The learning curve shows that training and validation 

accuracy stabilize after 3,500 samples (Figure 6), indicating 

good generalization. This suggests the model reliably 

predicts ICU admissions. 

 

 
Figure 6. Accuracy of AdaBoost learning curve.        

Using the internal architecture of AdaBoost and SHAP 

methods, we identified 25 most influential features for 
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patients at risk of ICU admission, as shown in Figure 7.  

 
 Figure 7. (a) Top 25 predictors by AdaBoost. 

 
Figure 7. (b) Top 25 predictors by SHAP.       

 

AdaBoost and SHAP identified the same four out of top 

five predictors of ICU admission in diabetic patients: pCO2, 

pH, pO₂, and Alb. The top 25 features in both AdaBoost and 

SHAP differed on five features: AdaBoost included O2sat 

and Temp, while SHAP added CholR, VB12, and 

MARRIED. pCO2 was further assessed as it is the top 

predictor of ICU admission (normal range is 35 – 45 mmHg). 

We found that most patients admitted to the ICU have pCO2 

beyond the normal range.    

We further trained the AdaBoost model using the top 25 

predictors identified by SHAP. As shown in Table III, the 

model achieved performance comparable to that trained on 

the full feature set, demonstrating the effectiveness of SHAP 

in identifying key risk factors for ICU admission. 
 

TABLE III. ADABOOST PREDICTIVE PERFORMANCE 

USING FEATURES IDENTIFIED BY THE SHAP METHOD.  

Classifier Accuracy Precisio

n 

Recall F1-score AUC 

AdaBoost 82.74 77.01 73.26 75.09 0.881 

 

The clinician and SHAP agree on 25 key features 

associated with ICU admission, though they differ in their 

relevance rankings. A comparison of their rankings of top 

five features is summarized in Table V. Importantly, both 

agree on three of the top five features identified by SHAP.  

TABLE IV. ANALYSIS OF SHAP EXPLANATIONS BY CLINICIAN 

No. Model’s top five Clinician’s top 5 Agreement 

1 pCO2 BG No 

2 pO2 pO2 Yes 

3 BMI BMI Yes 

4 pH Cr No 

5 Alb Alb Yes 

B. Length Of Stays (LOS) Prediction 

We have used five regression ML models to estimate the 

length of stays among diabetic patients admitted to the 

hospital with the status of emergency. Table V shows the 

performance of the selected models on RMSE and MAE 

evaluation metrics. CatBoost model outperformed the other 

models with 2.454 and 1.695 days in ICU for RMSE and 

MAE on prediction of ICU LOS for diabetic patients 

admitted in the emergency department.  

TABLE V. RSME AND MAE FOR FIVE REGRESSION 

MODELS WHILE ESTIMATING ICU LOS. 

Regression Model RMSE MAE 

CatBoost 2.454  1.695  

LightGBM 2.739 1.937 

XGBoost 2.863 1.951 

Decision Tree 4.547 2.521 

AdaBoost 4.864 4.537 

 

     Using SHAP, we visualized the explanations of predicted 

LOS of 2.62 days in ICU for a diabetic patient, as indicated 

by 𝑓(𝑥) on Figure 8. The ground truth is that this patient was 

previously hospitalized for 3.10 days in ICU. 

 

  
 

Figure 8. The SHAP force plot explaining ICU LOS for the patient 

on row number 51 in the test set.  

      SHAP was used to give details as to why this patient was 

predicted to stay in the ICU for 3.79 days in Figure 9. With 

the help of the highlighted features, we can see that features 

with Shapley values in red color will increase the number of 

days in the ICU, and features in blue will lower ICU stays. 
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This patient has a blood glucose of 264 and an HbA1C of 

13.6, indicating poor control of blood sugar levels. In 

addition, the patient has pCO2 of 22 (very low) and 

Ketoacidosis complication, which is a major cause of 

prolonged stays in ICU among diabetic patients.   

   
Figure 9. SHAP waterfall plot for estimating ICU stays for a 

patient with row 241 in the test set.  

 IV. DISCUSSION 

In this retrospective study, we employed supervised 

machine learning to predict ICU admission among diabetic 

patients in the emergency department and estimate their ICU 

Length Of Stays (LOS). We evaluated four boosted tree 

ensembles and one decision tree model for classification and 

regression tasks. Despite the class imbalance, the models 

performed well, with AdaBoost achieving superior 

performance for ICU admission prediction (Table II) and 

CatBoost outperforming other models in estimating ICU 

LOS (Table V). 

AdaBoost was selected for further optimization in ICU 

admission prediction and fine-tuned using GridSearchCV 

with 10-fold cross-validation. The best hyperparameters for 

classification were base_estimator = DecisionTreeClassifier 

(max_depth=5), learning_rate = 0.005, and n_estimators = 

300. For regression, CatBoost was optimized with 

learning_rate = 0.05, n_estimators = 100, and max_depth = 

8. Model predictions were interpreted using SHAP to 

enhance explainability. 

To validate the effectiveness of SHAP explanations, we 

retrained AdaBoost using only the top 25 SHAP-selected 

features and achieved similar performance (Table III). For 

LOS estimation, CatBoostRegressor outperformed other 

models. SHAP explanations demonstrated clinical relevance, 

helping interpret model decisions. Figure 9 illustrates a case 

where a female patient with WBC = 18.2 (above the normal 

range: 4.5-11), Sod = 155 (above the normal 135–145 range), 

Age = 45, and VB12 = 338 (150-399 pg/mL indicates low 

levels of VB12) had a predicted ICU stay of over 3.5 days. 

These predictors, alongside abnormal values for BG and 

HbA1C, are clinically significant, as they are associated with 

uncontrolled blood glucose, which is a primary cause of 

diabetic emergency admissions at the hospital. To ensure the 

relevancy of our study, a medical practitioner specializing in 

diabetes management confirmed that our model is fair and 

accurately identifies key risk factors associated with ICU 

admission and extended length of stay for diabetic patients 

and suggested its implementation in the clinical workflow. 

 V. CONCLUSION AND FUTURE WORK 

This study explored an explainable machine learning 

approach for diabetes management in emergency 

departments, focusing on early ICU admission prediction and 

length-of-stay estimation. Among five classifiers, the 

AdaBoost model demonstrated superior performance on 

three out of five metrics, as shown in Table II. CatBoost 

outperformed other tree-based models in regression tasks in 

predicting ICU stay duration as shown in Table V. SHAP 

analysis provided interpretability for both tasks, reinforcing 

the model’s reliability. Our findings highlight the potential of 

ML integration in clinical workflows, most importantly in the 

emergency department since all critically ill patients start in 

this hospital unit, improving early ICU risk identification, 

optimizing hospital resource utilization, and enhancing 

emergency care for diabetic patients.  

The experimental results successfully addressed the 

study’s objectives: developing predictive models for ICU 

admission and length of stay among diabetic patients and 

generating interpretable explanations using SHAP. AdaBoost 

achieved the best performance for ICU admission prediction, 

while CatBoost excelled in estimating ICU length of stay. 

SHAP methods revealed the top 25 influential features for 

ICU admission prediction. A clinician with over 15 years of 

experience confirmed agreement with the features identified 

by SHAP, with minor differences in top feature rankings. 

Notably, the clinician appreciated that marital status was 

ranked lowest, aligning with its minimal clinical relevance in 

emergency diabetes care. 

Considering the agreement and disagreement between 

the proposed model and clinical judgment in the Table IV, we 

recommend that emergency departments prioritize laboratory 

examinations of pCO₂, pO₂, BMI, Blood Glucose (BG), 

Creatinine (Cr), Albumin (Alb), and pH levels for diabetic 

patients presenting in emergency situations. This 

prioritization may enhance the accurate identification of 

patients at risk of ICU admission. 

In future work, we aim to integrate the pretrained models 

into a Web application for real-world deployment in 

emergency departments. This will enable assessment of the 

model's effectiveness in identifying diabetic patients at risk 

of ICU admission. We also plan to evaluate the correlation 

between predicted and actual ICU length of stay. Finally, we 

will assess the impact on diabetes emergency care and the 

level of trust among diabetes care providers.  
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