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Abstract—Automated Fundus image segmentation is tradition-
ally done in the image acquisition instrument and, thus, in this
case it only needs to be able to segment data from this acquisition
source. Cloud providers support multi GPU and TPU virtual
machines making attractive the idea of cloud-based segmentation
an interesting possibility. To implement this idea we need to make
correct predictions for fundus coming from different sources.
In this paper we study the possibility of building a web base
segmentation service using incremental training, i.e, we initially
train the system using data from a single data set and, afterwards,
perform retraining with data from other acquisition sources. We
are able to show that this type of training is efficient and can
provide good results suitable for web-based segmentation.
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I. INTRODUCTION

Segmentation is the process of detection of limits within an
image. Deep Learning methods for segmentation are limited
by the number and the variety of the training images. For cloud
services it is necessary to train with new data set samples from
different acquisition sources periodically. The objective of this
paper is to study the effects of incremental training where we
initially train with single dataset and later refine the training
process by adding data from additional datasets.

A. Cloud based Image Segmentation

There are two scenarios for image segmentation in a clinical
set up. In the first case the segmentation tool is marketed
together with the acquisition instrument. Thus, we can train
using images provided by the instrument linked to the segmen-
tation software. In a second case segmentation is implemented
as a web-based service. In this case we need to segment images
coming from different sources.

Some works on combined dataset training in [1] are avail-
able but they are not related to image segmentation. In [2],
[3] different data sets are use to train and test with each data
set independently. [4] Uses several datasets but training is
performed only with a combined dataset.

In this paper we will first train the system using a single
data set and perform predictions over that dataset and also
on images acquired with other instruments. Later we will
perform a small (5 epoch) retraining using images from the
other dataset and study the influence in the results. We apply
these techniques to the detection of optical disc in eye fundus
images.

B. U-Net Networks

For this study we will a generalized U-Net. U-Net [5] has
been used for many medical segmentation problems including
glaucoma [2] and diabetic macular edema [6].U-Net can be
considered as a type of deconvolutional network [7]. In these
networks a set of convolutional layers outputs a deep small
representation of the original image. This highly encoded
representation is decoded to the original image size using a set
of upsampling layers. This network is shown in Figure 1. Its
structure is describe in the original paper but has been widely
modified by many researchers (e.g. [2], [3]

Fig. 1: U-Net Architecture

C. Fundus image glaucoma indicators

Glaucoma is a set of diseases that provoke damage to the
optic nerve at the back of the eye causing loss of vision over
time. [8]. Intraocular Hypertension (IH) is the most significant
risk factor associated to glaucoma.

IH causes damage to the beginning of the the optic disc
(OD) which is the beginning of the optic nerve. Optic disc can
be visualized using many techniques including fundus color
photography. The OD is made up by two subregions (Figure
2) a peripheral area (neuroretinal border) and a white central
region (optic cup - OC).

As glaucoma develops, the OC increases occupying a large
part of the OD. The ratio of the OC radium to that of the OD is
known as CDR (Cup to Disc ratio) and is a glaucoma indicator
[9]. The measurement of the OC and OD radii is needed
to calculate the CDR. OD and OC human segmentation is
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difficult and leads to many errors. Machine based segmentation
is, thus, attractive.Many machine learning (ML) alternatives
are available for fundus image OD segmentation. [10], [2],
[3], [11], [12].

Fig. 2: Optic Disc and Cup

We do not introduce a new technique but studies the
influence of retraining on the results. Thus we will only study
the segmentation of the OD, although our technique is equally
applicable to the OC case. The used approach based on [3] but
with many major changes introduced in [4] to make it more
adequate for a cloud implementation.

II. MATERIALS AND METHODS

In this paper we use a generalized 6 layer U-Net. It has
only 40 channels in the first layer and the layer increment
ratio, i.e. the ratio of the number of channels in a layer to
that of the following one [13] is 1.1 instead of 2. Considerig
that we resize the dataset images to 128x128 this reduces the
number of trainable parameters to less than 1 million.

In this paper we test the feasibility of incremental training
using the web resources and networks that we would deploy
in a web service. This is ndifferent from other papers (e.g. [2],
[3], [11], [12] where the data from a single source is used for
training and testing.

We use Google Collaboratory python notebook environment
for our implementation and apply a recursive flexible U-
net model. We perform aggressive static and dynamic data
augmentation modifying the approach proposed in [14].

For training and testing we use 96 image batches as this
is suitable for GPU implementation. We use is 25 epochs,
256 training steps and 6 validation steps for each epoch. The
employed optimizer is Adam with a 0.0007 learning rate. This
values have proven adequate for training our U-Net and give

excellent results with reasonable training times. We perform
random sub-sampling based cross validation. Our loss function
is the negative log of the Sørensen-Dice coefficient [15] (Dice).

We use the RIM-ONE v3 and DRISHTI data sets. RIM
ONE [16] comes from the Spanish University of La Laguna
and includes 159 images. DRISTI [17] comes from Aravind
Eye Hospital, Madurai, India and includes 101 images. Both
data sets have been tagged by expert ophtalmologists.

Fig. 3: Images from RIM ONE and DRISHTI datasets

Figure 3 shows that images in each dataset, which clearly
have been captured using different devices and have, thus, dif-
ferent characteristics.Our processing approach is very similar
to [4] but, in our case we don’t crate a mixed dataset but train
with a single dataset (DRISHTI) and then perform a small
number of retrain steps using the RIM ONE dataset.

The ratio between OD and OC diameters (CDR), is one of
the most popular glaucoma indicators. We define a clinically
significant parameter (RRP -Radii Ratio parameter) based on
the ratio between the radius of the machine segmented and that
of the ground truth segmented discs. The RPP is defined as
the percent of test images for which the radius error is below
10%.

We compare our work with the results from papers that
use Deep Learning for optic disc segmentation and uses
DRISHTI dataset. Zilly et. al. [12] use a light three layer
CNN with sophisticatd pre and post-processing and apply it
independently to both datsets. Sevastopolsky [3] uses a very
light U-Net architecture and provides results for the RIM ONE
data set. Al-Bander [2] uses a widely modified dense U-Net
and provides results for both datasets. Shankaranarayana [11]
uses a modified residual U-Net and provides results for the
RIM ONE dataset.

III. RESULTS

We want to find out how our system behaves when it is
trained with a dataset and then lightly retrained with the other
and compare our results with those obtained when a single
dataset (i.e. RIM ONE or DRISHTI) is applied to train the
system. We will compare our results to those by other authors
who use a single data set for training and validation. The
Dice coefficient is used to estimate the similarity between the
correct and predicted disc. This figure of merit, also known as
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F1 score, is widely used and allows us to compare our results
with those from other work. Dice coefficient is defined as:

DC =
2TP

2TP + FP + FN
(1)

In this equation TP indicates true positives, FP false positives,
and FN false negatives.

In Table I results for Disc segmentation for our two study
cases are shown. In the first one train using just the DRISHTI
data set and validate using the part of that dataset not used
for training and the other dataset. In the second scenario we
so a short (5 epoch) retrain using the RIM ONE and data set.
Thus our scenarios are the following:

• 75% of the DRISHTI dataset is used for training and after
validation is carried out first with the rest of DRISHTI
data set and then with the full RIM ONE data set.

• 75% of the RIM ONE data set is used to retrain the
network and then we validate with the rest of the test
part of both data sets.

TABLE I. OD segmentation Dice (Mean/Best/Worst) and RRP

Dice-DRI Dice-RIM

DRI-Trained 0.98 0.64
RIM-retrained 0.89 0.80

We can see in table I that when we train with the DRISHTI
dataset results when testing with images from that dataset
get good Dice coefficient values. Specifically we get a mean
dice value of 0.98 (DRISHTI) but only 0.64 (RIM1) for OD
segmentation. The situation is worst than it looks as in the
worst case for RIM the segmentation thus not produce any
pixel. When we retrain the network with the other data set
results are 0.89 (DRISHTI) and 0.80 (RIM). For the worst
segmentation case we get a Dice value of 0.69. Thus, we can
see that with a very light retraining the network can quickly
learn the specific characteristics of the second dataset.

TABLE II. OD segmentation RRP

RRP-DRI RRP-RIM

DRI-Trained 100% 23%
RIM-retrained 89% 80%

In Table II we show the the percentage of predictions that
estimate the OD radius with an error smaller than 10% as a
percentage. This data is clinically relevant as the CDR (ratio
between the cup and disc radii) is a widely used glaucoma
indicator. We can see that without retraining only 23% of the
predicted disk segmentations have radium error bellow 10%.
After the quick retrainning this value increases to 80%.

In table III we include results from other papers that have
performed OD segmentation using Deep Learning methods
and have trained with one of the datasets used in our study.
These papers have, in every case, trained and tested with each
data set independently.

Although we use networks with a small number of trainable
parameters, when training with a single dataset we get results
for that dataset that are similar to those obtained by other
research papers. When training with the DRISHTI dataset we
obtained a Dice value of 0.98 for OD segmentation. This value
is slightly above 0.97 [12].

TABLE III. OD segmentation Dice comparison.

Author DRI RIM ONE

Zilly et al. [12] 0.97 -
Al-Bander [2] 0.95 0.90
Sevastopolsky [3] - 0.94
Shankaranarayana et al. [11] - 0.98
Drishti Trained 0.98 0.64
RIM Retrained 0.89 0.80

The most significant results in table III come after the
retrainning that is not performed in the other studies. The
results obtained when we do a quick retrain show that, in this
casem we get good prediction results for all the test images.
This demonstrates that it will not be feasible to create a service
using training data captured with a single acquisition device.

IV. CONCLUSIONS AND FUTURE WORK

We have shown that by performing a fast retrain when
adding data from a new dataset, and by preprocessing images
and performing static and dynamic data augmentation, we can
implement disc segmentation with an equivalent performance
to that reported by researchers who use a single dataset both
for evaluation and testing.

We also define a clinically significant parameter (Radii Ra-
tio parameter- RRP) that can be useful to estimate the quality
of the CDR estimations and thus, to give some confidence on
the quality of the system for glaucoma prediction.

This work shows the importance of retraining when adding
new image sources to the segmentation system. In a real
clinical segmentation service scenario, we would have to
start training the network with the initially available data
and retrain it when new images from different instruments
become available. The possibility of improving the network
architecture by the inclusion of residual blocks [18] or the
combination of a these blocks and a conventional U-Net [19]
has been shown effective in several medical segmentation
applications and could potentially improve the performance
of our segmentation process. The robustness of these networks
when analyzing images from many different instruments is still
an open issue for the future.
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