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Abstract—The detection of epileptic seizures plays a major role in
patient safety and therapy. Although several research projects on
mobile seizure detection have already been conducted, there are
still no approaches that are able to reliably detect different seizure
types in the home environment. The challenge lies in the variety of
symptoms of certain seizure types. The present research describes
the project EPItect, which aims to detect epileptic seizures with
the help of an In-Ear sensor and to set up a networking
infrastructure to exchange medical data between relevant actors.
We contribute a machine learning framework for the detection
of epileptic seizures and exemplify the application using the
example of detection of Generalized Tonic-Clonic Seizures using
acceleration data from the In-Ear sensor.
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I. INTRODUCTION

Epilepsies are among the most common neurological dis-
eases worldwide. Depending on the degree of severity, affected
persons can live a life with great restrictions on their autonomy.
Characteristic symptoms are recurring epileptic seizures, which
can be very stressful for the affected persons, relatives and
carers due to the unpredictability of the time at which seizures
occur, as well as the impairment of consciousness and the
loss of control over different body functions. Among other
things, the mortality of people with epilepsy is increased by a
factor of 2-3 due to severe epileptic seizures (e.g., failure of the
respiratory center) and seizure consequences (e.g., accidents,
suffocation) [1][2]. The early detection of seizures can possibly
help to take of appropriate safety measures for the person
concerned and to reduce sudden unexpected death in epilepsy
(SUDEP). By using technical solutions for better supervision
(e.g., video cameras, pulse oximeters) or rooming-in of rel-
atives the SUDEP incidence in an epilepsy center shows a
decreasing trend between 1981 and 2016 [3]. In addition to
such early detection, an accurate recording of the seizures
also helps in the individual planning of the therapy. In order
to reduce seizure frequency or, at best, to achieve complete
seizure control, a central component of medical treatment is the
suppression of seizures by medication. Proper documentation
of epileptic seizures by patients or relatives plays an important
role in coordinating therapy. The documentation can be done
on paper or web-based seizure calendars (e.g., EPI-Vista®)
[4]. However, previous studies show that approximately 50% of
seizures are not documented and approximately two-thirds of
patients provide incorrect data [5][6]. The main reasons for the
faulty seizure documentation are, for example, the disturbed
perception of one’s own seizures, amnesia for seizure or later
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forgetting of the seizure that has taken place. The seizure
documentation by relatives or caregivers is also prone to failure
as relatives do not notice symptom-poor epileptic seizures [7].

In this paper we propose and validate a ML Framework
using the example of acceleration data of long-term wearable
devices. The paper is organized as follows: Section 2 presets a
brief literature review about epileptic seizure detection. Section
3 describes the project EPItect including the components of
the technical solution. Section 4 describes briefly the data set
of the In-Ear sensor employed in our research. This section
presets information regarding the methods used in this study.
You can find, also, information related to the performance eval-
uation criteria employed. Section 5 provides the assessment
procedures used and the experimental results obtained. Finally,
Section 6 describes the conclusion derived from the study and
some thoughts with regard to future work.

II. RELATED WORK

Recently, various models have been proposed for the
detection of epileptic seizures. Continuous electroencephalo-
graphic (EEG) monitoring is the current gold-standard for
seizure diagnosis. Algorithms for the automatic detection of
EEG-based seizures have been developed in various research
projects [8][9]. However, EEG monitoring is expensive, time
consuming and needs professional installation and observation.
For the detection of epileptic seizures in the home environment
mobile sensors are needed. The knowledge about the symp-
tomatology of epileptic seizures can help to select the fittest
seizure detection device for each seizure type.

Ulate-Campos et al. [10] literature study showed the effec-
tiveness of various seizure detection devices for certain seizure
types. Generalized Tonic-Clonic Seizures (GTCS) produces
bilateral, convulsive tonic contraction followed by generalized
clonic muscle contractions. They also manifest with a loss of
consciousness and marked autonomic distribances. The main
findings for GTCS are movements and physiological signals
like heart or respiratory rate [10]. By using accelerometry
or electromyography, generalized tonic-clonic seizures can
usually be easily identified as epileptic seizures based on
their characteristic movement patterns and differentiated from
everyday movements. To detect motor phenomena, accelerom-
eters (wrist-worn or body-mounted instruments that measure
changes in speed or acceleration) and electromyography de-
vices (for example, mounted on the chest, measure electrical
muscle activity) are used [11][12].

The following sections show some study results using var-
ious medical devices and sensors. Sensitivity for the detection
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of clonic, tonic, hypermotoric and generalized tonic-clonic
seizures was between 80 —90% in several studies [13][14][15].
In [16], Lin et al. developed a small headband for epilepsy pa-
tients. The headband is connected to a smartphone and records
EEG signals to detect seizures in real-time. Once a seizure is
detected, the headband will trigger the apps on the smartphone
to locate the patient. Sixteen features indexes (entropy and
the powers of 15 frequency bands from OHz and 15Hz) were
input into the classifier to verify the seizures occurrences. They
used the linear classifier called Linear Discriminant Analysis
(LDA). The LDA is often used to reduce the dimension by
separating the data into different classes and minimizing the
data distribution of the same class in the feature space [16]. In
another study, Arends et al. [17] employed epileptic nocturnal
seizure detection by combining heart rate and movement. The
sensor system is a bracelet that was fixed around the upper
arm on the side where the seizures were known to start.
The algorithm determined the heart rate. Simultaneously, a
signal quality index was calculated for each heart rate value.
If the signal quality index is > 80%, seizure detection starts.
Otherwise, the accelerometer is used to detect seizures. They
obtained a signal quality of 94 % for the heart rate and up
to 100% for accelerometry. This study demonstrated that it
was possible to reliably detect major motor seizures using
a combination of heart rate and accelerometer. In [18], an
automatic seizure detection algorithm based on EEG, EMG
and ECG with an overall detection sensitivity of 86% was
developed. The average sensitivity of the developed algorithm
depends on the seizure type an the diagnosis. The best result
was achieved for the detection of focal seizures evolving to
bilateral tonic-clonic. The described work involves small num-
bers of patients in the evaluation and is predominantly carried
out in an experimental environment. A home environment was
used in [17]. However, a limitation of seizure detection on
nocturnal seizures was made.

The main contribution of this work is the Machine Learning
Framework (ML-Framework) for detecting epileptic seizures in
experimental and real term environments. Using the example of
the acceleration data of the In-Ear sensor, the ML-Framework
was initially applied unimodally. Current research is testing the
application of multimodal approaches for seizure detection.

III. EPITECT

The focus of the project EPItect is to develop a non-
invasive sensor system, which reliably detects those bio signals
that enable automated detection of epileptic seizures. The sen-
sor is placed in the external auditory canal (similar to a classic
hearing aid). The data are made available to selected persons
via mobile devices. In this way, the personal environment can
also be included if necessary. This specially developed in-the-
ear sensor technology and a networking infrastructure based
on (inter-)national communication standards (e.g., Integrating
the Healthcare Enterprise, Elektronische Fallakte 2.0, HL7 Fast
Healthcare Interoperability Resources) are the basis for several
IT applications, which are also integrated into the existing
medical-nursing processes. In addition, the signals of the In-
Ear sensor and the recorded data such as context information
about seizures can give scientist much more reliable data to
make better diagnosis, because the frequency and severity of
seizures can be recorded better. The anonymization and cross-
patient aggregation of the data also enables clinical research,
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for example regarding the drug that reduces the seizures
most effectively or different context parameters, which trigger
epileptic seizures.
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Figure 1. EPItect architecture.

The components of the technological solution are shown in
Figure 1: the In-Ear sensor (EPISENS), the mobile application
(myEPI), the portal (EPICASE Portal) and the networking in-
frastructure (EPICASE Infrastructure). EPISENS (1) includes
sensors to optimize seizure detection and seizure counting.
It sends vital data, raw data and alarm events via Bluetooth
Low Energy to the myEPI App. myEPI App (2) is a mobile
companion for the patient. The app includes an alarm module.
Upon receipt of alarm events, selected persons (e.g., parents or
partners of an affected person) should be informed. The patient
can use a simple action on the smartphone to confirm the
seizure event or classify it as a false alarm. This information
is used in the next step to optimize the specificity of the
algorithms developed. In the app, the patient also has the op-
portunity to collect additional data (contextual information on
seizure events, mood, medication administration, side effects).
He can selectively release data for doctors or relatives. The
data is transmitted securely via the EPICASE infrastructure
(4) and can be viewed by relevant actors via the EPICASE
portal (3). The EPICASE portal is a case based communica-
tion portal for patients as well for professional and informal
caregivers. It enables exchange of treatment-relevant data (e.g,.
medication order, medication administration, seizure documen-
tation, diagnosis). The EPICASE infrastructure connects the IT
applications. It is based on international standards and fully
complies with data protection and data security requirements.
The project EPItect also provides a research infrastructure
() for pseudonymization, data capturing and integrating and
storage of case based generated data. The integrated data is
the basis for our machine learning framework (6).

The consortium of the project EPItect coordinated by the
epileptologists of the University Hospital Bonn consists of five
institutions and two associated partners in Germany: Depart-
ment of Epileptology at the University Hospital Bonn, Fraun-
hofer Institute for Software and Systems Technology ISST,
Department of Neuropediatrics of the University Kiel (UKSH),
the North German Epilepsy Center in Schwentinental-Raisdorf,
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Cosinuss GmbH Munich, the University for Healthcare Profes-
sions in Bochum, and the Epilepsy Bundes-Elternverband e.V.
[National Epilepsy Parents Network] in Wuppertal.

IV. METHODS

This section first introduces the sensor platform and clinical
study. Afterwards an overview of our ML Framework will be
given. Then the framework will be applied to the example of
acceleration data using the k-NN classification method.

A. Sensor Platform

The sensor system is based on a sensor concept called
“earconnect” which was developed by cosinuss®. The sensor
elements are integrated into a silicone screen, which is placed
in the ear canal similar to a sports headphone. Behind the pinna
sit microcontroller, power supply and the radio connection.
There, the analog signals are digitized and then extracted by
means of various filters and algorithms, the required vital
data. A wearable sensor platform is designed in the EPItect
project, which contains 3D accelerometer, PPG, and vital signs
(heartrate, temperature). Acceleration data is suitable in order
to detect tonic-clonic seizures that are characterized by severe
motor symptoms [19]. The entire platform is fixed in the ear
at the test subject (see Figure 2).

B. Study

For the evaluation of the technologies, clinical studies are
carried out at the participating specialist clinics. The University
Hospital Bonn and the Department of Neuropediatrics of the
University Kiel have initiated a study with several patients.
In the first phase, 170 patients have been recruited to test
the biosensors. For these patients, EEG, ECG and In-Ear
sensor data were collected over an average period of four
days. On the basis of the EEG data, physicians have recorded
seizures occurring (period, type of seizure). More than 490
seizures were recorded by January 2019. The data are used
to identify relevant biosignals and biosignal patterns and to
develop algorithms. Subsequently, the algorithms are validated
with test data. This work focuses on tonic-clonic seizures.

Figure 2. The In-Ear sensor (C)cosinuss®.

C. ML-Framework

We would argue that the use of a structured experimental
approach to the problem of seizure detection is useful to obtain
the best possible results with all given data sets. In this section,
an intelligent architecture for seizure detection based on the
CRISP-DM [20] is presented. Figure 3 gives an overview in
the steps of our EPItect ML-Framework. The ML-framework
covers both the Experimental Environment and the Real Term
Environment.
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1) Experimental Environment: The Experimental Environ-
ment is used to develop and optimize seizure detection models
using controlled conditions for the duration of the study. The
main steps are: domain and data understanding, data prepro-
cessing, feature extraction, model selection and evaluation.
Domain understanding includes understanding the problem
and the goal of the modelling. This means for example the
understanding of the symptoms of an epileptic seizure. The
understanding is obtained by literature review and by involving
neurological experts and also affected persons in the project. A
main step is to understand the data, which plays a major role.
A detailed analysis of the data and the understanding of the
goal would help to avoid later problems. The project integrates
a variety of data sources: ECG, EEG, PPG, vital data (heart
rate, temperature), seizure labeling and classification, patient
meta data (gender, age). The data preparation includes tasks
like selecting, cleaning, integrating and formatting data. The
data integration and formatting are critical tasks for multimodal
approaches. The feature extraction depends on the data and
the objective of the model. A feature set can be selected
by experts opinion or feature selection algorithms. We test
several different feature selection approaches considering their
selected classification models. The next step is the modelling
process. To select models for the experimentation, a literature
review and the identification of similar research activities that
have previously been successful are required. Each selected
model can be trained on according features and feature sets.
A continual evaluation and adjusting of features and models
will identify the best model. It is important to preserve the
order of the training data for the seizure detection problem,
so that upcoming classification are based on previous results.
From this we get a new classification model. To evaluate the
trained model, one would classify match results into seizure
and non-seizure and then determine sensitivity, specificity,
positive and negative predictive value. The implementation of
a seizure detection system must be valid. The representation is
performed using the confusion matrix to estimate the perfor-
mance of learning algorithms and the generated classifiers. The
confusion matrix records the correct and misclassifed features
for each class. A comprehensive rating can be obtained from
the Receiver-Operating-Characteristic curve. The ROC curve
can be used to find the best possible value of a parameter [21]
and to assess the trade-off between sensitivity and specificity
[22]. The ROC analysis allows the rating of the classifier
performance to be independent and complete rather than just
accuracy.

2) Real Term Environment: Once a trained model is ac-
cepted, it is made available for use (Real Term Environ-
ment). For our project, this means deploying the models to
mobile devices and sensors. Further training of the models,
for example to take into account individual circumstances
of the patient, is possible if the mobile devices and sensors
provide good computing power and sufficient memory. Unlike
the Experimental Environment, the verification of the model
is done by the patients’ labeling of alarm events which are
triggered by the trained model. In order for the trained model
to be accepted by the user, it is important that there is no
high amount of false alarms. In a survey of patients and care
environment (n = 305), we have found that on average a
maximum of 2/10 false alarms are accepted. The activities
in everyday life (for example: sports, activities that trigger
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emotional states such as excitement) have a great influence
on the signals and possibly on the applicability of the trained
model. Further training of the model is therefore an important
task and will be addressed in a second study.

D. Seizure Classification

For data analysis, Weka toolkit was used. The Weka toolkit
is a machine learning toolbox with many existing algorithms. It
also allows to evaluate the algorithms for a particular dataset
using cross validation. From the accelerometer data was the
three vector component obtained as measurement variables.

1) Data Preprocessing: All observation data that does not
involve tonic-clonic seizures are filtered.

2) Feature Extraction: Features were extracted from the
raw accelerometer data using a window size of 128 and 50%
overlapping between consecutive windows. At a sampling fre-
quency of 50Hz, each window represents 3 seconds. For each
measurement variable, the following quantities were derived
in time and frequency space: (1) arithmetic mean [23], (2)
median [24], (3) variance [23], (4) maximum, minimum and
range [23] and (5) skewness and curtosis [25].

3) Classification: For our intended goal of embedded sys-
tem classification we focused on classifiers that could be
implemented in computationally efficient manner. There are a
large set of classifiers. Our choice was to classify the data with
the k-NN algorithm. The k-NN is an instance-based classifier
based on majority voting of its neighbors: The k-NN algorithm
finds a close group of k objects in the training dataset with
the target object in the training data and predicts the class of
closest objects to the target object [26].

4) Evaluation Metrics: The results can be evaluate by sen-
sitivity (SEN), specificity (SPE), positive (PPV) and negative
predictive value (NPV):

TN
EN = —— PE = —— 1
SEN TP + FN S TN + FP M
TP TN
PPV = ——— NPV = —— ()
TP + FP TN + FN

where TP, TN, FP, and FN denote true positives, true negatives,
false positives, false negatives, respectively [27].

5) Computation time and memory requirements: Compu-
tational time and memory requirements are essential for the
decision if an algorithm is suitable for a particular purpose.
The software cannot work efficiently if they are too high.

V. RESULTS

The experimental results of the k-NN algorithm with differ-
ent k values of {1,2,3,5,10} are summarized in Table 1. With
k =1 with the full feature set a sensitivity 65.1% is obtained.
It has been shown that the k-NN algorithm has the potential to

TABLE I. k-NN ALGORITHM RESULTS.

sens [%]
65.1
52.4
60.6
54.4
0 45.9

= otWw N =

recognize tonic-clonic seizures. While some seizures are well
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classified, distinguishing different types of seizures is more
challenging and leads to lower classification performance. With
the reduced sensor set, classification performance worsens as
expected. The number of detected seizures are quite low. For
a better classification performance it is required to combine
different sensors to get a higher classification rate.

Specific memory and runtime tests must be performed to
determine if k-NN is possible on the EPItect sensor.

VI. CONCLUSION AND FUTURE WORK

With the use of acceleration data we detect tonic-clonic
seizures with a sensitivity of 65.1% for K = 1 and 60.6%
(k = 3). Following improvements will increase the classifi-
cation performance: With a reduced feature set, classification
performance worsens as expected. Using more features can
improve the seizure detection. For this reason, many more fea-
tures should be generated. From the large amount of features,
feature selection methods can be used to reduce the optimal
number of features to avoid the “curse of dimensionality”
[28]. Die length of the clonic-tonic seizures vary from one
to another. The fixed window size can be the reason for
the misclassification. Therefore, the window size should be
adjusted dynamically.

The optimization of the developed model is continued
using the following steps feature extraction, model selection,
classification and evaluation of the ML Frameworks to obtain
a better trained model.

A. Combination of bio signals

In summary, the studies to date, despite their rather good
sensitivity, do not yet show sufficient specificity for the correct
recognition of non-epileptic events in order to make mean-
ingful use of these methods for automated seizure counting.
In addition, seizures with dominant motor phenomena were
predominantly investigated. Given the variety of seizure symp-
toms, multimodal synchronous measurement and analysis of
various body signals (e.g., simultaneous measurement of heart
rate, skin resistance, and acceleration of limb movements)
appears to be most promising to achieve high sensitivity and
specificity in seizure detection.

Our current work addresses the implementation of mul-
timodal approaches using the ML Framework. An important
task is the combination of different data sources (e.g., ECG
and PPG) for the development of models. We use PPG and
ECG data to determine the pulse transit time and evaluate
whether the pulse transit time has an impact on the model
for the detection of epileptic seizures. The PTT is related to
the blood pressure. It describes the time that a pulse wave
needs to arrive [29]. The time of the heart contraction and
the beginning of the pulse waves are needed to determine the
blood pressure. In future work, we will analyze the PTT-data
to identify epileptic seizures.

B. Clinical study under everyday conditions

In a subsequent clinical study (from January 2019), the
technological solutions will be tested for everyday suitability.
For this, 30 affected children and adolescents and 30 affected
adults each receive an ear sensor and the mobile companion
solution for one week each. The informal carers of the patient
(e.g., parents), as well as the professional nurses received
access to the EPICASE portal and can participate in the data
exchange process. The study addresses the following subgoals.
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Figure 3. The ML-Framework.
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1) Validation of the algorithms in everyday situations:
It is to be examined whether the developed algorithms are
applicable to everyday situations. Since the data was collected
during the first phase while lying down or sitting, it is to be
expected that the algorithm must be adjusted iteratively.

2) Effects of the technologies: The aim is to examine the
impact of all technologies (sensor, app, portal) on automated
and manual seizure records, quality of life and care processes.
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