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Abstract— This paper proposes a combined model to predict 

the blood glucose level of people with diabetes. Our method 

consists of two efficient models found in literature and takes 

nutrition, applied insulin, and initial glucose level into account 

during the calculations. An extension has been made to these 

models using various model training methods. Our aim is to 

help diabetics calculate the insulin need with this efficient 

algorithm later implemented in a user-friendly software. The 

tests, that are based on real data, show a significant 

improvement in the results if model training methods such as 

Genetic Algorithm (GA) is used. On the other hand, the 

numbers reveal the weaknesses of our method, which has to be 

fixed in the future. During an all-day validation, the prediction 

error was smaller than 3 mmol/l in 83% of the cases while 

using GA. Compared to other tests found in literature our 

model seems to be a good start in predicting glycemia, but 

needs further improvements. 

Keywords—Glucose-level tracking; eHealth; Genetic 

algorithm; Glucose-Insulin system; Glucose absorption; Diabetes 

mellitus; Outpatient care 

I. INTRODUCTION 

Diabetes mellitus is a crucial problem in modern 
healthcare, since 8% of the population has diabetes in the 
target age (20-79), according to a recent survey [1]. 
Furthermore, the number of diabetics may increase by 50% 
within 2 decades [1]. These numbers remind us of the 
importance of treating diabetics. Our aim is to provide a tool 
for them with the help of modern technology and improved 
prediction algorithms. In case of success, our method can be 
easily implemented as an add-on to a mobile lifestyle 
logging application that can be used by many patients to 
calculate their insulin need. 

The basic motivation of our efforts is to create a tool that 
diabetics can use in everyday life to calculate their blood 
glucose levels. To accomplish this, a reliable method has to 
be developed to predict the glycemia based on the lifestyle 
and medication log of the outpatients. Our previous work 
[2][3] showed that the models we chose are capable of a 1-3 
hour prediction, but corrections are required to avoid 
excessive over- and under-estimations. As we reached 
slightly satisfactory results for the long term (4 or 6 hours) 
prediction, we started to focus on the model training methods 
to create better outcomes. There are a lot of methods to be 
investigated, such as: neural network, fuzzy logic, least 
square method and genetic algorithm. Some of these have 
already been applied to the problem of blood glucose 

prediction [4-12]. In the next subsection we give an overview 
of the current results. 

A. Literature Overview 

There are several models available for Blood Glucose 
Level (BGL) prediction. Most approaches are based on a 
combination of these models. We review those that include 
validation on realistic data. 

The system demonstrated by Stahl et al. [4] consists of 
three main parts: Glucose Sub-Model, Insulin Sub-Model 
and the Glucose/Insulin Interaction Model. These three parts 
are modeled separately using compartment models and linear 
black-box models [5][6].  During a 6 months period, input 
data was collected from a patient diagnosed with Type 1 
Diabetes (T1D). Meals, insulin injections and glucose 
measurements were logged. Researchers had difficulties 
reaching prediction error smaller than 1 mmol/l in 95% of 
the cases with 2-hour-ahead prediction. 

Robertson et al. [7] used Elman’s recurrent Artificial 
Neural Network (ANN), which predicts BGL based on the 
history of BGLs, meal intakes and insulin injections. BGL 
history came from the freeware mathematical diabetes 
simulator named AIDA (Automated Insulin Dosage 
Advisor). The data set consisted of 28 days and 2688 values. 
The ANN was trained using all available BGL data for short-
term prediction (up to 1 hour). For long-term prediction the 
ANN was trained with input vector events. Input vector 
events included 2 meals, 2 short-acting insulin doses, and 2 
long-acting insulin doses a day. The maximum error for 
blood glucose prediction was 0.27 mmol/l for short-term 
predictions (15, 30, 45 and 60 minutes), 0.2 mmol/l for the 8-
hour, and 0.36 mmol/l for the 10-hour predictions, 
respectively. These are impressive results, however, we must 
keep in mind that the validation base was a mathematical 
diabetes simulator data set. In contrast, we used real life 
measurements of humans.  

Shanthi et al. [8] carried out the prediction of blood 
glucose with a simple neural network model, which was 
trained with the assistance of extracted features.  They used a 
novel feature based prediction algorithm for forecasting the 
blood glucose values ahead of time. The data set was 
obtained from diabetic patients in a hospital setting with 
different insulin therapies using Medtronic Continues 
Glucose Monitoring System (CGMS). The average errors of 
this approach are 0.55 mmol/l for the 30 minutes prediction, 
0.83 mmol/l for 45, and 1.11 mmol/l for 60 minutes 
prediction, respectively. These results are promising, but the 
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validation data was highly controlled, and 50% of data was 
used for training. In contrast, we used 30% of data for model 
training with less controlled outpatient data. 

The sole aim of the Plis et al. [9] study is hypoglycemia 
prediction. To perform this, they used the Support Vector 
Regression (SVR) model with physiological features. Instead 
of tuning parameters, which differ among patients, they used 
state variables to create features for the SVR model that was 
individualized for each patient. An extended Kalman filter 
was run using the training/test points. Input data were 
collected from 5 T1D patients. The average errors for SVR 
are 1.25 mmol/l for 30 minutes and 1.99 mmol/l for 60 
minutes. This can be a good comparison base to our results. 

There are also other recent approaches not so close to the 
focus of this paper. Chuah et al. [10], used non-invasive, i.e., 
less reliable blood glucose concentration measurement 
including healthy volunteers. Seizaburou et al. [11] also used 
a realistic data set for validation and reached promising 
results, but without taking meals into account. Liszka [12] 
used the hybrid Artificial Intelligence technique, which 
combines the principal component method and the neural 
networks. However, the authors estimated blood glucose 
levels only two times a day, while we estimate every 5 
minutes. 

The rest of the paper introduces our model, the validation 
method, and the results. Section II includes a short overview 
of our model and presents the model training methods. 
Section III reviews our testing phases followed by the results 
and the discussion detailed in Section IV. Section V is a 
short overview of our software that is developed to support 
the test process. Finally, Section VI concludes the paper and 
outlines future works. 

II. METHOD 

A. Model 

We created a combined model which reflects the real 
process happening in our body. Following metabolism, we 
split the whole procedure in two parts. One of them is insulin 
absorption, which is simulated with differential equations: 

𝑑𝐺

𝑑𝑡
= −𝐾𝑥𝑔𝑖𝐺(𝑡)𝐼(𝑡) +

𝑇𝐺𝐻

𝑉𝐺

 (1) 
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= −
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The first equation calculates the blood glucose level (G), 
depending on insulin absorption (I), calculated by (2). This 
model includes two subcutaneous insulin depots (𝑆2 and 𝑆1) 
described by (3) and (4). These depots simulate 
subcutaneous insulin absorption. For further details of this 
model and the parameters see [13][14] and Table 1. 

The second part of our combined model describes the 
glucose absorption from meals [15]. It is a two-compartment 
model based on mass balance equations. As Figure 1 shows, 
it divides the digestion into two parts; stomach and intestine. 
The model takes protein, lipid, monosaccharide, fiber, and 
starch intake as input, with each one having its own effect 
during the absorption. This method can deal with mixed 
meals with components of different Glycemic Indices [16] 
and takes into account the effect of fiber. Moreover, 
digestion overlap between two consecutive meals is handled 
properly. For more details about the model and the 
parameters see [17]. 

 
Figure 1.  The process of absorption from mixed meals 

The combination of these two models can support 
diabetics, using subcutaneous insulin injections, no matter if 
they have Type 1 or Type 2 diabetes [18]. The algorithm 
properly handles insulin and meal absorption overlaps, as for 
a longer-time prediction (6-8 hours), the absorption of the 
insulin and the glucose from food could be in progress 
during the next meal. 

B. Parameter Identification Algorithms 

We chose models with large parameter sets, which 
simulate the real life process efficiently. In the current phase 
of work, the parameters of the glucose absorption model is 
generalized for all patients, but these parameters should be 
investigated later as well. On the other hand, the parameters 
for the glucose control system are different for each diabetic. 
Some of these parameters can be measured by an intravenous 
glucose tolerance test [19], but is too complicated to be made 
for each person in a realistic outpatient setting. This is the 
main reason why we need model training methods.  

TABLE I.  MODEL SENSIBILITY TEST (RESULTS IN DESCENDING 

SENSIBILITY ORDER) 

Parameter 

Change % in results with the 

given parameter change % Order 

5 % 50 % 200 % 

𝑉𝑖 (insulin distribution) 5.46 50.23 145.09 1. 

𝐾𝑥𝑔𝑖  (glucose uptake rate) 5.27 37.45 71.46 2. 

𝐾𝑥𝑖  (insulin disappearance) 2.25 22.38 82.57 3. 

𝑇𝑔ℎ (glucose uptake balance) 0.27 2.71 10.92 4. 

𝑉𝑔 (glucose distribution) 0.26 1.80 3.61 5. 

𝑇𝑖𝐺𝑚𝑎𝑥  (insulin release) 0.07 0.74 2.91 6. 

𝜏𝐺 (insulin release delay) 0.01 0.08 0.33 7. 
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The running time of the training algorithms depends on 
the number of the parameters to be trained. As the glucose 
control model has many variables, a model sensibility test 
was made to narrow the parameter set (Table I). This means 
that the training algorithm can run within the same time with 
fewer parameters to be trained and a wider search range. The 
results of this test showed that there are 3 parameters which 
have a significantly larger effect on the results than the 
others: 𝐾𝑥𝑖  (disappearance rate for insulin), 𝐾𝑥𝑔𝑖  (glucose 

uptake by insulin-dependent tissues), and 𝑉𝑖  (distribution 
volume for insulin). Thus we concentrated on these 3 
parameters in the current phase, and they were trained with 
the methods as described below. For the other parameters, 
we used an average value suggested by the literature [14]. 

Two parameter identification algorithms were used. The 
first one is the Brute Force Algorithm (BFA) [20], which 
means a full search of parameters in a specific range. BFA 
analyzes all possible parameter sets within a specific range 
with the given stepsize. It is not optimal as the stepsize can 
be decreased ad infinitum, but the returned parameter values 
are almost perfect. The advantage of this method is its 
completeness, the disadvantage is the long running time. 

The other method is the Genetic Algorithm (GA) [21].  
GA simulates the process of natural evolution, using the 
tools of genetics like mutation and crossover. We used an 
open source library called GAlib [22] in a simple genetic 
algorithm with one point crossover. The fitness function of 
the GA was the sum of the differences between measured 
and estimated blood glucose levels. 

These training methods themselves have several 
parameters, henceforth, we performed a test to find the best 
parameterization. We used 3 data sets including both Type 1 
and Type 2 patients. Tables II and III show the results. The 
best BFA setting was BFA 6, where the stepsize was 0.5, the 
finding range was 3, and the average running time was 35 
seconds. In GA’s case, we chose the GA 6 parameterization 
with the population size of 40, the generation number of 20, 
the mutation probability of 50%, and the crossover 
probability of 90%. The high chance of mutation means a 
more stochastic algorithm. GA 1 was also used during the 
tests, with the population and the generation of 10, the 
mutation of 1%, and the crossover of 90%. 

TABLE II.  BRUTE FORCE ALGORITHM PARAMETER TEST BASED ON 

TOTAL DIFFERENCE IN MMOL/L 

Data set Base BFA 1 BFA 2 BFA 3 BFA 4 BFA 5 BFA 6 

D1 13.51 9.545 9.33 13.32 10.82 11.68 9.33 

A1 177.94 171.65 161.80 155.41 155.41 159.09 146.26 

B1 799.94 417.78 372.76 459.49 375.46 375.29 375.29 

TABLE III.  GENETIC ALGORITHM PARAMETER TEST BASED ON 

TOTAL DIFFERENCE IN MMOL/L 

Data set Base GA 1 GA 2 GA 3 GA 4 GA 5 GA 6 

D2 13.97 10.19 9.65 9.67 9.32 9.28 9.18 

A2 552.90 430.37 430.99 419.86 417.71 415.57 415.66 

B2 600.34 197.84 210.49 208.38 200.37 198.29 196.41 

III. MODEL VALIDATION 

The purpose of the validation is to test the prediction 
power of our algorithm. Accordingly, we used real life data 
from both type 1 and type 2 diabetics. We expected a 
significant improvement due to model individualization 
compared to our previous test using literature parameters 
[14]. The following subsections review the input data and the 
validation method. 

A. Data Sets 

During the tests, we focused on outpatients treated with 
subcutaneous insulin injections, which means ca. 26% of 
diabetics [23]. We had 7 different data sets of 5 persons, 
each one including at least 3 days of logging and 12 meals. 
We had a total of 101 meals and 24 days of input data. As 
Table IV shows, there were 3 Type 1 (T1D) and 4 Type 2 
Diabetes (T2D) data sets. Four of the patients used the 
Medtronic CGMS and one of them (D) used an ordinary 
blood glucose meter. All 7 logs consist of insulin doses, 
meals, and blood glucose levels. A professional dietitian 
calculated the nutrient values for each meal using the hand 
written logs. Data sets A, B, and C are from the same patient 
in a controlled experiment, in which the meals were logged 
rigorously. This patient avoided any sport activities during 
the monitoring period. In contrast, for the Type 2 patients the 
meal log may contain inaccurate values as they were cured in 
hospital to adjust their inordinate glycemia and it was not 
possible to control if they consumed the same meals as 
offered in the menu. Moreover, sports were also compiled in 
their log, making the estimations more prone to error because 
currently the model can not handle this factor. 

TABLE IV.  INPUT DATAS 

Data set Type Age Insulin Measure Meals Days 

A T1D 21 Apidra CGMS 15 3 

B T1D 21 Apidra CGMS 14 3 

C T1D 21 Apidra CGMS 15 3 

D T2D 62 Humulin R ordinary 15 6 

E T2D 78 Humalog CGMS 14 3 

F T2D  61 Humulin R CGMS 12 3 

G T2D 65 Humulin R CGMS 16 3 

B. Validation Process 

The validation process consists of 3 phases. The first 
phase is the study of the model with parameters found in the 
literature [14]. We made meal wise tests, where the meals 
were treated as separate tests. This means zero startup blood 
insulin level and the model starts without any glucose 
absorption. In this phase, 2 hour, 4 hour, and 6 hour meal-
wise tests were made to measure the correctness of the 
model in short-term and in long-term as well. We also made 
daily tests; one without model restarting and one with model 
restarting. This means that the estimated blood glucose levels 
have been set back to the measured value before each meal. 
This approach is a transition between meal-wise and daily 
tests, because the insulin and glucose absorption calculations 
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are continuous, but the blood glucose levels are corrected to 
avoid stacked errors. 

In the second phase, we performed model training, i.e., 
parameter identification. We made whole day tests with 
restart using the brute force method and the genetic 
algorithm according to the model training parameter tests is 
Tables II and III. 

In the third phase, we restricted the training data used for 
the parameter identification to a single day of the log and we 
used the rest of the log to validate the model with the 
estimated parameters. We performed all tests mentioned 
above. Using only a part of the input data for training and the 
rest for validation avoids over-training and simulates the 
planned real application of the model in a lifestyle support 
software tool. 

IV. RESULTS 

The results were divided in two categories; all patients 
and controlled data sets. The first one is a simulation closer 
to reality, while the second highlights the changes in the 
model as it contains less false data. Test phase 1 (Table V) 
clearly shows these differences, because in the case of 
controlled data sets the results were ca. 20% better on 
average. This improvement for the good of the controlled 
measurement is caused by the more precise logging. We can 
also see that longer the time after the meals, the higher the 
error between measured and estimated blood glucose level. 
The all-day tests with restarts show a significant 
improvement in all of the results and the maximum error is 
also decreased by at least 3 mmol/l. Also, 62% of the errors 
were within a 3 mmol/l range, which is a promising result for 
a whole day measurement. This number is even higher 
(76%) in the case of controlled measurement. 

TABLE V.  TEST PHASE 1: DEFAULT PARAMETERS WITHOUT ANY 

MODEL TRAINING, AVERAGE VALUES IN MMOL/L (MM) 

All patients 
Meal wise Whole day 

2h 4h 6h No restart Restart 

Average error  5.05 7.92 9.28 4.2 3.3 

Max error  10.62 14.93 17.25 10.34 7.31 

Ratio of 

error 

< 1mM 34 % 24 % 21 % 22 % 32 % 

< 3mM 52 % 43 % 40 % 50 % 62 % 

Controlled (A,B,C) 
Meal wise Whole day 

2h 4h 6h No restart Restart 

Average error  4.26 5.26 5.45 2.5 1.88 

Max error  8.1 10.04 11.08 6.94 5.45 

Ratio of 

error 

< 1mM 34 % 26 % 23 % 29 % 37 % 

< 3mM 56 % 51 % 52 % 65 % 76 % 

The “Brute Force” caption in Table VI means the BFA 6 
parameterization, described in Section III. “Genetic 
Algorithm 1” means GA 6 and “Genetic Algorithm 2” means 
GA 1. With model training, the results show a nearly 25% 
improvement in average error, but the maximum error almost 
remained almost the same when model restarting was 

applied. With the brute force method, we could reach a ratio 
50% for the errors within 1 mmol/l. This means that during a 
whole day half of the estimated values were in the error 
range of the measurement devices, i.e., 1 mmol/l, so they can 
be stated as perfect predictions. 

TABLE VI.  TEST PHASE 2: WHOLE DAY TEST WITH RESTART USING 

MODEL TRAINING, AVERAGE VALUES IN MM 

All patients Brute Force 
Genetic 

Algorithm 1 

Genetic 

Algorithm 2 

Average error  1.81 2.18 2.54 

Max error  5.83 6.8 7.82 

Ratio of 

error 

< 1mM 48 % 42 % 40 % 

< 3mM 79 % 73 % 71 % 

Controlled (A,B,C) Brute Force 
Genetic 

Algorithm 1 

Genetic 

Algorithm 2 

Average error  1.51 1.64 1.68 

Max error  5.24 5.49 5.64 

Ratio of 

error 

< 1mM 49 % 44 % 43 % 

< 3mM 86 % 83 % 83 % 

The reason why model training on whole day tests have 
not been made is that we tried to create a real life simulation 
during test phase 3, where the calculated parameters were 
tested with the meal wise method. According to our 
proposal, the future software will make a parameter 
identification from a few days data flow and will estimate the 
blood glucose levels after each meal with the calculated 
parameters. To see how accurate this method is we used 
BFA 6 and GA 6 to estimate the parameters. Table VII 
shows the differences in the results to the default parameters. 
The improvement is not as significant as in Phase 2, but we 
can see 5% improvement in average error for GA 6 and an 
average of 10% for BFA 6. 

TABLE VII.  TEST PHASE 3: REAL USAGE VALIDATION FOR 

CONTROLLED TESTS, AVERAGE VALUES IN MM 

Meal wise test 

(1 h / 2 h / 4 h) 

Default 

parameters 
Brute Force 

Genetic 

Algorithm 1 

Average error  1.9 / 3.9 / 4.7 1.8 / 2.4 / 4.5 1.8 / 3.7 / 4.7 

Max error  4.7 / 7.4 / 8.8 4.2 / 5.1 / 8.3 4.4 / 7.3 / 8.6 

Ratio of 

error 

< 1mM 53 / 37 / 28 % 54 / 46 / 25 % 55 / 34 / 26 % 

< 3mM 79 / 58 / 51 % 80 / 71 / 53 % 80 / 58 / 52 % 

A. Discussion of Results 

The results almost fully confirm our expectations as the 
model training reached more than 20% improvement in the 
results. The improvement could be even higher with a longer 
training sample which was only one day in our current tests. 
We need more data logs for further tests. 

Our results are not far from the best results published in 
the literature. Many other researchers used the Medtronic 
Guardian CGM system, which indicates that this is a state-
of-art device to validate a blood glucose level prediction 
model. Likewise, in our validation, Stahl et al. [4] had the 
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same difficulties with the high peak values and they reached 
1 mmol/l error in 95% of the cases with 2-hour-ahead 
prediction. We reached 1 mmol/l error in 46% of the cases 
with a 2-hour-ahead prediction during controlled tests. We 
can still improve this result by handling long-term basal 
insulins, such as Lantus. We experienced that our model can 
not simulate these long-term insulins properly. The other 
remarkable result is by Shanthi et al. [8], where the average 
error was 1.11 mmol/l for 60 minutes prediction, while Plis 
et al. [9] reached 1.99 mmol/l for 60 minutes. Our best result 
is 1.8 mmol/l for this period of time with the parameter 
identification in the controlled measurement. 

 
Figure 2.  Average errors between measured and estimated values in time 

(solid line – default parameters, dotted line - GA 6 parameters, dashed line 

- BFA 6 parameters) 

As it can be seen on Figure 2, the error is rapidly 
increasing during the first 2 hours, but the increase slows 
down between 2 and 6 hours. This shows that the long term 

prediction is stable but the difference between the measured 
and the estimated values is still too large. The graph also 
shows that the improvements of the model training methods 
are significant only after the first hour. As we expected, the 
Brute Force Method gives the best result and the GA is 
between the BFA and the untrained results. 

V. SOFTWARE 

A software tool has been designed to support the 
validation process (Figure 3). The main idea was to provide a 
useful user interface, which helps us to run the calculations, 
collect, and process the information. All the data are stored 
in a relational database. To make the data access faster and 
consistent for each person participating in the research we 
chose the PostgreSQL open source database. The patients are 
organized into groups for the purpose of distinctness by 
medical experiments. 

For the implementation of the graphical user interface 
(GUI) we chose the Qt cross-platform application framework 
and the C++ programming language Exporting the results to 
PDF gives us the opportunity to share via e-mail or display 
on any other devices. 

With the GUI, the user can select the proper episode of 
the patient, the start time, and the stop time. The tool lists all 
the meals, insulins, and measured blood glucose levels. The 
parameters of each algorithm can be modified before the 
calculation. After the calculation, the results are shown on 
graphs and tables. The algorithms also provide the optimized 
values of the parameters. All result are saved in the database 
for further analysis. 

 

Figure 3.  GUI of the software tool: input datas, output graphs and calculated results 
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VI. CONCLUSION AND FUTURE WORK 

As for the difference between the controlled and all the 
data, we can state that a more precise logging is needed from 
the patients. To support this, we plan to create detailed 
manuals about the important events that should be precisely 
logged. A clinical study involving 20 diabetic patients will 
be made in the near future. Extending the 1 day model 
training period to at least 3 days should bring better results as 
well. 

To solve the problems presented in section IV, future 
research is needed for: 

 improving the currently used model training methods 

 training the model with other parameter identification 
algorithms 

 extending the model to support physical activity, 
stress, and weather changes. 

The final aim is to decrease the average error under 1 
mmol/l during the first hour and under 3 mmol/l during the 
first 4 hours.  If the model proves reliable in clinical trials, it 
will be integrated into the Lavinia lifestyle mirror mobile 
application [24] developed at University of Pannonia [25]. 
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