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Abstract—Agent systems have become almost ubiquitous in
smart grid research. Research can be roughly divided into carefully
designed (multi-) agent systems that can perform known tasks with
guarantees, and learning agents based on technologies, such as
Deep Reinforcment Learning (DRL), that promise real resilience
by learning to counter the unknown unknowns. However, the
latter cannot give guarantees regarding their behavior, while the
former are limited to the set of problems known at design time.
This paper presents a hybrid architecture that enables a learning
agent to give guarantees about its behavior, making it suitable
for usage in Critical National Infrastructures (CNIs), such as the
power grid.
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I. INTRODUCTION

Over the last years, agent systems and especially Multi-
Agent Systems (MASs) [1]–[4] have emerged as one of the
important tools to facilitate management of complex energy
systems. As swarm logic, they can handle numerous tasks,
such as maintaining real power equilibria, voltage control, or
automated energy trading [5]. The fact that MASs implement
proactive and reactive distributed heuristics allows to analyze
their behavior and give certain guarantees, a property that has
helped in their deployment.

However, modern energy systems have also become valuable
targets. Cyber-attacks have become more common [6], [7], and
establishing local energy markets, although being an attractive
concept of self-organization, can also be to manipulation, e. g.,
through artificially created congestion [8]. Attacks on power
grids are no longer carefully planned and executed, but also
learned by agents, such as market manipulation or voltage
band violations [9]. Thus, carefully designing software systems
that provide protection against a widening field of adversarial
scenarios have become a challenge, especially considering that
complex, inter-connected Cyber-Physical Systems (CPSs) are
inherently exploitable due to their complexity itself [10].

Learning agents, particularly those based on DRL, have
gained traction as a potential solution: If a system faces
unknown unknowns, a learning agent can devise strategies
against it. In the past, researchers have published using
DRL-based agents for numerous tasks related to power grid
operations—e. g., voltage control [11]—, but the approach
to use DRL for general resilient operation is relatively new
[12], [13]. DRL—the notion of an agent with sensors and
actuators that learns by “trial and error”—is at the core of
many noteworthy successes, such as MuZero [14], with modern

algorithms such as Twin-Delayed DDPG (TD3) [15], Proximal
Policy Gradient (PPO) [16], and Soft Actor Critic (SAC) [17]
having proved to be able to tackle complex tasks.

All modern DRL use deep Artificial Neural Networks
(ANNs) at least for the policy (or multiple, e. g., for the critic).
Actual parameter optimization is commonly done with gradient
descent algorithms. However, these ANNs’ architectures still
need to be provided by the user, in addition the hyperparameters
of the algorithm. No DRL agent is, therefore, a “deploy and
forget” approach; careful tuning is usually required for a
specific use case. Evolving these networks, or using genetic or
evolutionary algorithms as an alternative entirely, has gained
interest among scientist during the last years [18], [19].

However, these model-free algorithms themselves cannot
give guarantees with regard to their behavior, which is important
for deployment with high autonomy in any CNI. Safe DRL
algorithms target this research gap, but currently, they learn
inefficiently or explore insufficiently [20]. Moreover, Safe DRL
does not (yet) tackle changes in tasks or environment, the
problem of Online Learning [21].

In a very similar vein, learning agents for CNIs not only
need to give guarantees, but they must also offer introspection.
I. e., their strategies must be inspectable by humans. In the
context of CNIs, this allows audition or certification, or testing
and validation even at runtime. Finally, it is an important factor
for acceptance. This introspection is provided by techniques
of eXplainable Reinforcement Learning (XRL) [22]. However,
the most common techniques, such as saliency maps, give only
indirect interpretation and are useful for experts in the DRL
domain, but not for practitioners in CNIs. Recent approaches
to convert a DRL agent’s policy network into a rule-based
representation, e. g., as decision tree [23], will satisfy the
outlined requirements, but are not part of an DRL agent
architecture yet.

Therefore, we identify the following research gap: Learning
agents are necessary for modern, complex CNIs, such as the
power grid. In order to cope with the complexity of the power
grid, changing actor behavior and, thus, changing marginal
distributions, online learning must be explicitly considered. In
addition, such a learning agent must be inspectable and provide
guarantees. To this end, we propose a hybrid architecture in
the Adversarial Resilience Learning (ARL) agent. It combines
a learning agent with a rule-based agent. The learning agent’s
policy is constantly converted into rule sets, represented in
the Boolean domain, in order to enable the benefits of XRL.
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Figure 1. ARL Agent Architecture

However, the agent is also able to absorb obsolete rules when
a better strategy is (reliably) devised, in order to maintain
the agent’s adaptability. Through this cycle of rule extraction
(XRL) and rule consumption (online learning), the agent stays
inspectable and validatable, providing the necessary security
for deployment in CNIs, while still being able to learn and
counter the unknown unknowns.

The remainder of this work-in-progress paper is structured
as follows: Section II outlines the planned architecture and
gives the rationale for each module, as well as their interfaces.
In Section III, we outline our testing scenarios, which serve as
overall validation of the architecture. Finally, we outline the
next steps in Section IV.

II. AGENT ARCHITECTURE AND MODULES

The key design goal of the ARL agent architecture is to fuse
a learning component based on DRL with the analyzability
of a rules-based architecture. Therefore, an Adaptive Policy
based on DRL, as well as a Rule-based Policy, are employed
alongside each other. The DRL-based architecture will resort
to off-policy algorithms, such as TD3 [15] and SAC [17]. This
will simplify the extended usage of replay buffers, e. g., for
rehearsal or offline learning.

This design iteration of the architecture does not consider
MASs, therefore, the design follows more the premises of DRL-
based agents and eschews the usual message inbox, journal,
etc. that would normally be present for agents of a MAS. The
resulting component design is depicted in Figure 1.

The agent receives data from the environment using Senors,
which constitutes the agent’s world state at time t: st. A
sensor is a simple software interface that transfers sensor
readings according to a simple mathematical space definition
that allows for Boolean values, intervals of discrete numbers,
n-dimensional real-valued spaces, and more complex types
created as combinations thereof. We loosely follow the example
of OpenAI Gym [24] and use the definition that we introduced
in prior works [25].

Sensor readings are fed into the Rules-Policy Discriminator.
This module is responsible for choosing the agent’s actions,
which stem either from the adaptive policy or the rule-based one.

The discriminator gives precedence to behavior emitted from
the rules-based policy, thus ensuring well-defined behavior
whenever possible. If the rule-based policy cannot emit an
action given the current sensor readings, the discriminator
uses the action proposed by the adaptive policy. However,
even if a matching rule can be emitted from the rule-based
policy, the adaptive policy is still queried for an action. This
way, (st, at, r̂t) triplets can be fed to the replay buffer. The
adaptive policy’s action is preferred if it, checked against a
world model, provides a higher reward. The triplet of state
st—i. e., the current sensor readings—, the planned action at
of the agent, as well as the reward r̂t the agent expects, is an
agent’s Decision. The discriminator also propagates the actual
reward from the last action, rt−1, to the policies in order to
update their replay buffer or rules assessment (adaptive and
rule-based policy, respectively).

The rule-based policy uses a Rules Repository for storage.
The repository uses Ternary Vector Lists (TVLs) [26] for
efficient storage. TVLs represent systems of boolean equations
as lists of disjoint vectors, where each vector represents the
assignment of variables. In contrast to binary vectors, ternary
vectors provide efficient storage by introducing a third symbol,
such that a ternary value is defined as tv ∈ {0, 1,−}. The
dash expands to both 0 and 1, so that the ternary vector
[1,−]⊤ expands to two binary vectors, [1, 0]⊤ and [1, 1]⊤.
Set operations on TVLs are well-defined and expand to the
appropriate operations on Boolean values. The ARL agent
will expand the notion of TVLs fuzzy logic in order to allow
rules-based inference of actions based on sensor readings when
those readings will seldom provide the exact values in Rn that
are given in the (Boolean) rule sets.

A Rules Monitor supervises the repository: The agent still
needs to be adaptive and learn, i. e., develop new strategies
to situations unknown at design time. Therefore, the monitor
will feed rules of known sensor readings back to the DRL
policy’s replay buffer. Should the adaptive policy have devised
better rules, then this is merely the same problem off-policy
DRL algorithms solve with their replay buffer, which contains
triplets of (s, a1, r1), (s, a2, r2) : r1 < r2 and is a simple
optimization problem. In the case of catastrophic forgetting
[21] during online learning, the rules repository serves as a
rehearsal device [21].

The combination of rules repository and rules monitor serves
the training aspect of the agent: The adaptive policy will
be trained using Neuroevolution, i. e., the ANNs are evolved
during training, their architecture not provided beforehand.
Usually, employing neuroevolutionary strategies reduces the
sample efficiency considerably. However, the rules repository-
monitor modules are able to serve as extended replay buffer,
allowing for extended iteration over samples to use them during
neuroevolution.

The rules repository is the central piece that allows intro-
spection of the agent’s policy, i. e., behavior, and thus aids
its interpretability. It interfaces to the XRL Rules Extractor,
which takes care of generating rules from the adaptive policy.
This happens in two ways: First, given any (st, at, r̂t) triplets
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1: procedure ACT(st: List[SensorReading], rt−1)
2: UPDATEREWARD(rulePolicy , rt−1)
3: UPDATEREWARD(adaptivePolicy , rt−1)
4: decision

(rule)
t ← DECIDE(rulePolicy , st)

5: decision
(adaptive)
t ← DECIDE(adaptivePolicy , st)

6: if ¬decision(rule)
t then

7: at ← decision
(adaptive)
t .a

8: end if
9: if decision(rule)

t then
10: at ← decision

(rule)
t .a

11: if decision
(rule)
t .r < decision

(adaptive)
t .r ∧

decision
(rule)
t .a ≈ decision

(adaptive)
t .a then

12: STORE(replayBuffer , decision(rule)
t )

13: end if
14: if decision

(rule)
t .r < decision

(adaptive)
t .r ∧

decision
(rule)
t .a ̸= decision

(adaptive)
t .a then

15: at ← decision
(adaptive)
t .a

16: end if
17: end if
18: ONLINETRAINANDEVOLVE(adaptivePolicy)
19: rule ← TORULE(adaptivePolicy , decision

(adaptive)
t )

20: STORE(rulesRepo, rule)
21: return at
22: end procedure

Figure 2. Agent Act Routine

from the adaptive policy, a corresponding rule is created by
treating the adaptive policy as a black box. Furthermore, the
policy ANN is converted into a decision tree [23] and this
decision tree is examined for yet-uncovered rules. Thus, the
rules extractor constantly feeds rules to the repository, which
are ranked according to (s, a1, r1) > (s, a2, r2) : r1 > r2.

This completes a two-way interface between the adaptive
and the rule-based policy. The rule-based policy yields most
of the agent behavior in learned situations, allowing to give
guarantees with regards to the agent’s actions and strategy. The
adaptive policy learns to cope with yet unknown situations.
At the same time, behavior learned by the adaptive policy is
immediately converted into rules, allowing for introspection
and extending the behavior governed by guarantees. The rule-
based policy is then also able to solve behavioral conflicts.
Additionally, rules can be obsoleted by better strategies found
by the adaptive policy, which is why sensor readings are always
fed to both policies. The rule monitor identifies these obsoleted
rules and removes them from the rules repository.

Figure 2 cover the description in this section.

III. DISCUSSION

Obviously, the proposition of the ARL agent architecture is
a bold one. Therefore, careful experimentation with benchmark
scenarios must be conducted in order to verify the hypothesis
underlying the architecture.

Scenario 1 considers voltage regulation as a basic use case.
The agent should be able to learn to keep the voltage close
to 1.0 p u in a medium voltage grid, such as the CIGRÉ MV

grid. The proposition should hold under time series (i. e., time
series data for Photovoltaic (PV) and wind power feed-in, as
well as time-series-based customer consumption), as well as
under grid constraints (i. e., grid codes). In order to master
scenario 1, the ARL agent should be able to cope with the given
situations at least as well as, or better, than simple Volt/VAr
controllers, as well as simple DRL agents. We expect the rules
repository to contain rules similar to that of simple reactive
power controllers.

In Scenario 2, the agent must cope successfully with
changing marginal distributions, such as the introduction of
Virtual Power Plants (VPPs) or changing customer behavior.
This tests the online learning capabilities of the design. The
task is still keeping the voltage close to 1.0 p u . Again, the
rules repository will serve as an indicator for the quality of
strategies learned, accompanied by the usual DRL metrics,
such as reward, objective value, and entropy.

In Scenario 3, the ARL agent must succeed against a simple
attacker, such as the oscillating attacker by Ju et al. [27] or
other documented forms of attack. If the ARL agent really
constitutes a better concept than the pure DRL approach, then
it will not just be able to counter the attack, it will also succeed
against different attack strategies. In practice, this is not only
another test for the agent’s online learning capabilities, but
also a way to extract real resilience strategies.

In Scenario 4, the ARL agents compete against each other
(“attacker” versus “defender”). This is more than just the logical
extension of scenario 3: As documented, this forces the agents
to sample the extreme areas of the action distribution [12],
given a plethora of extractable strategies and documentation
of weaknesses of a grid design.

The test scenarios are intended to test the overall behavior
of the system: Its ability to adapt through learning, stay
interpretable, and give guarantees. Since the research gap
addressed by the ARL agent architecture is the combination
of learning agent and guaranteed behavior, these scenarios can
test the agent by formulating invariants based on expected
guarantees.

If successful, we expect the ARL agent to be viable for
introduction in grid operator control centers. An initial use case
will that of a support and recommender system that helps grid
operators to keep situational awareness in complex situations.
Later on, the agent can manage parts of the grid (e. g., LV
branches with a high number of prosumers) in order to redtce
the complexity of grid management. Furthermore, we design
the agent to act as a defender against actual cyber attacks.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an agent architecture that
fuses rule-based behavior with the learning capabilities of DRL.
We did so in order to provide a learning agent that can still
give guarantees about its behavior.

In the future, we will develop the respective modules and
provide benchmarks and test results, with a special focus on
the applicability in CNIs.
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