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Abstract—One of the most critical aspects for the smooth
operation of power systems is short-term load forecasting. Fore-
cast accuracy has a significant impact on an electricity utility’s
economic viability and reliability. Thus, robust deep learning
methods, such as artificial neural networks, are implemented in
order to achieve higher accuracy load forecasting results. In this
paper, a new preprocessing method of the input data of a neural
network, which emphasizes on the importance of specific input
data, that show a higher Pearson’s correlation coefficient with the
output result, is proposed. This work implements the proposed
preprocessing technique and compares the results with those
derived from the classical min-max scaling methods. Numerical
results of next hour’s load forecasting, based on a multi-layer
perceptron with the implementation of the proposed data scaling
approach, show higher precision than the typical scaling method,
demonstrating the importance of our work.

Index Terms—short-term load forecasting, data preprocessing,
scaling techniques, multi-layer perceptron

I. INTRODUCTION

One of the most critical parts of effective power system
management is the ability to forecast electrical load con-
sumption. The accuracy of predictions has a direct impact
on the economic feasibility and dependability of electricity
systems. Short-Term Load Forecasting (STLF) covers a time
span of one hour to one week and it is utilized for day-to-day
power system operations, such as economic dispatch, demand
response, energy transaction scheduling, power flow analy-
sis, and power system reliability and stability research [1].
Short-term load forecasting has traditionally been performed
using approaches such as time series models, regression-
based algorithms, and Kalman filtering [2]. Recently, methods
based on artificial intelligence and deep learning algorithms
have been widely employed for power system optimization,
since they outperform conventional approaches in terms of
generalization and prediction [3]. Their primary applications
include optimum power system operation and management,
load forecasting and energy price forecasting.

In recent years, approaches based on Artificial Neural
Networks (ANNSs), as well as other computational intelligence
methodologies, have emerged as potentially robust methods for
short-term load forecasting. The increased availability of data
due mainly to the expanded installation of new power meters
and the breakthrough in the computational capability of current
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computers have contributed significantly to the recent success
of neural networks. STLF is mostly dependent on historical
load data, such as load data from prior days, weeks or yeas,
as well as temperature and humidity data. The availability
of load data per minute utilized by different types of neural
networks achieves impressive performance as it brings even
greater accuracy in the forecast results [4]. However, the data
entered into the neural networks are not used in raw format,
but they undergo into various types of preprocessing, such
as eliminating outliers, handling missing values and feature
scaling, so that they can be used properly and increase the
efficiency of the forecasting model. Min-Max, z-score, stan-
dard and max absolute normalization are the most reputable
techniques for scaling input data. Despite their extensive use,
these strategies have certain drawbacks [5], which provides an
opportunity to develop novel scaling techniques that increase
the predictive abilities of ANNS.

This paper presents a unique data preprocessing technique
that differs from earlier work in that it highlights the sig-
nificance of specific input data by using neural networks to
forecast next hour’s load. The proposed technique focuses on
the importance of certain neural network’s input variables in
relation to output variables, resulting in improved prediction
outputs than usual preprocessing methods. This approach is
applied to data from the Greek Power System and is utilized
by a Multi-Layer Perceptron (MLP) for short-term load fore-
casting.

Our paper is developed as follows. In Section 2, the preva-
lent and most widely used preprocessing techniques of neural
network’s input data are presented. Section 3 presents precisely
the analysis of the enhanced scaling method we propose as
well as the improvement in accuracy that results in the short-
term load forecasting under consideration, while Section 4
concludes the paper.

II. PREPROCESSING TECHNIQUES OF NEURAL
NETWORK’S INPUT DATA

Data preprocessing aims at making the raw data at hand
more amenable to neural networks. This includes vector-
ization, normalization, handling missing values, and feature
extraction [6].
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A. Feature Selection

Feature selection is one of the initial steps in studying
and understanding the dataset in order to construct a robust
prediction model. The selection of suitable variables as input
data for the neural network, in order to boost the accuracy
of the prediction outcomes, is referred to as feature selec-
tion. Pearson’s r correlation coefficient between each pair
of variables is used to select features as input data. The
Pearson correlation coefficient is a metric for determining
the strength of a linear relationship between two variables
of the dataset taking numbers between -1 and 1. When it
is near to one, it indicates a significant positive association.
When the coefficient is near to -1, it indicates a significant
negative association. Finally, coefficients close to O indicate
that no linear association exists. The Pearson correlation
coefficient ignores whether a variable is considered dependent
or independent, evaluating all variables identically. Pearson’s
correlation coefficient is given by (1):

ey = cov(X,Y) 0
ox 0y
where cov(X,Y) is the covariance, ox is the standard devi-
ation of X and oy is the standard deviation of Y.

Therefore, feature extraction and identification are one of
the most important steps in the field of energy forecasting,
including short term load forecasting [7]. The variables in the
dataset that exhibit the strongest linear correlation with the
load should be utilized in order to achieve higher accuracy
and reduce the complexity of load forecasting. It is necessary
to identify which characteristics selected from dataset are
containing the most relevant information helping to provide
accurate predictions. This crucial step is also applicable in
the field of Energy where artificial intelligence algorithms are
widely used [8]. In our work, the features with the highest
Pearson’s correlation with the output variable of the proposed
MLP are selected as neural network’s inputs.

B. Data Scaling

Data scaling is one of the most critical operations that
should performed on the input data. Machine Learning (ML)
methods, with a few exceptions, do not perform well when
the input numerical characteristics have extremely varied
scales [9]. In general, neural networks do not accept relatively
big values or input data that are heterogeneous, i.e., there are
substantial differences in the order of magnitude. As a result,
to boost the neural network’s performance, input data should
contain values inside a closed interval.

Differences in the magnitude of scaling across input vari-
ables may increase the difficulty of the problem being ap-
proached. A model with large scale values is frequently un-
stable, which means it may perform poorly during learning and
be sensitive to input values, resulting in larger generalization
error. A basic linear rescaling of the input variables is one
of the most prevalent types of preprocessing. In [10], the
authors highlight that input data normalization can enhance
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neural networks’ overperformance by reducing effectively the
estimation errors and the computational time needed.

In forecasting approaches based on time series data, the
most common normalizing methods are min-max, decimal
scaling, z-score, median, and sigmoid normalization. A com-
parative study of these standard normalization techniques on
the time series forecasting is presented in [11]. The authors
use deep recurrent neural networks to predict the Bombay and
New York stock exchanges by normalizing the input data using
the methods described above and analysing the outcomes to
determine which methodology is preferred. Meanwhile, Oga-
sawara et al. [12] propose an adaptive normalization technique
for normalizing non-stationary time series. This innovative
approach is used along a feed-forward neural network in
order to predict numerous economic factors, producing greater
results than the traditional normalization methods. Further-
more, in [13], the authors study the effectiveness of batch
normalization technique in different types of convolutional
neural networks concluding that the implementation of a
normalization approach to the input data is inevitable.

The issue of data scaling has also influenced researchers’
efforts for STLF, as it applies directly to the various types
of ANNSs used in the literature. Specifically, Che et al. [14]
examine various machine learning algorithms in the STLF
issue. In their work, the authors propose a fusion load fore-
casting model based on Support Vector Machines (SVM),
Random Forests (RF), Long Short-Term Memory (LSTM)
neural networks along with the Ensemble Empirical Mode
Decomposition algorithm for dealing with the abnormal data.
Their approach was tested on 15-min interval data yielding
Mean Absolute Percentage Error (MAPE) lower than 3%.
Furthermore, Yi et al. [15] propose a Multi-Temporal-spatial-
scale Convolutional Network (MTCN) in order to reduce the
data noise error, improve the time series features and enhance
the prediction accuracy. The input data used in this model
have been normalized via the standard min-max normalization
method. The model has been tested using load data from
Chinese power system producing better results in compare to
the traditional ANN models used in the STLF issue. In [16],
Kwon et al. study the impact of minimum-maximum, z-
score and decimal normalization approaches to the input data
of a MLP for the prediction of the load for 24 hours on
weekdays. Using load and temperature data of the past two
days of the Korean power system, came to the conclusion that
the conventional min-max scaling outperforms the other two
methods as it produces MAPE of 1,97%.

Most papers in the existing literature suggest that datasets
should be subjected to a global normalization technique.
In [17], Passalis et al. present some global normalization
methods for the STLF issue. In contrast with the existing
literature, this paper proposes that only some of the input
variables should be normalized based on their impact on
the predicted results. The proposed data scaling is done by
multiplying certain input data with importance coefficient
in order to obtain an order of magnitude that appropriately
determines their influence in the result of the forecast.
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ITII. ANALYSIS OF THE PROPOSED SCALING METHOD

Following a thorough review of the literature, an innova-
tive data processing technique is suggested and applied to
certain specific data depending on the Pearson’s correlation
coefficient. An MLP neural network, which is used to predict
the value of the next hour’s load using historical temperature
and load data from previous days and the previous hour, is
presented in detail in this section. The data used, containing
hourly load values, derives from the Greek national power
system for the years 2013-2017, from which 80% is chosen
as training set, while the remaining 20% consists the test set.
Our proposed MLP neural network consist of three layers; an
input layer, a hidden layer, and an output layer, as depicted
in Fig. 1. Historical load data, meteorological data such as
temperature, wind speed and direction, and data relating to
the seasonality of the load, such as hour, day, month, etc., are
included in the dataset. In order to reduce the complexity of
the suggested forecasting model, only data with a high Pearson
correlation coefficient related to the load variable are chosen
as input variables. The input variables used for next hour’s
load forecasting are the following:

o Hour: The time of day for which the load forecast is
made.

o Week Day: A characteristic coding to denote the day of
the week.

o Holiday: Binary values are used to indicate whether a
day is a holiday, which includes Greek state holidays,
religious holidays and the weekends, or a normal working
day

o Temperature: The hourly value (in Celsius) of the tem-
perature of the day for which the load is forecast.

e D-7 Load: The value of the load at the corresponding
time on the same day of the previous week.

e D-1 Load: The load value of the day preceding the one
for which prediction is made, at the corresponding time.

o H-1 Load: The value of the previous hour’s load on which
the forecast is based.
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Fig. 1. Proposed MLP architecture for STLE.
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Pearson’s correlation coefficient of the input data is then
calculated and compared to the neural network output, i.e., the
load for the following hour. Data with a coefficient r near to
+1 have a stronger impact on the outcome of the forecast and
should thus be considered more important. The variables with
higher r values compared to the output variable are D-1Load,
D-7Load, H-1Load. As a result, in order to improve the
predicting results, these variables with r approaching +1 in
respect to the load variable are subjected to an improved
scaling technique. The main benefit of this particular scaling
for variables that have a strong correlation with the load
variable is that they are given greater significance, allowing
the neural network to use this knowledge and improve the
forecasting accuracy. Fig. 2 summarizes the autocorrelation
coefficient calculation results.
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Fig. 2. Calculation of Pearson’s correlation coefficient for input variables.

As previously stated, in order to produce more accurate
prediction outcomes using neural networks, the input data
should be scaled appropriately. Initially, the variables Hour,
WeekDay and Holiday serve as labels for the day on which
the prediction is created and are not susceptible to scaling. The
Temperature variable is subjected to the standard min-max
scaling approach. Because of the large value of the coefficient
r, the variables D-1Load, D-7Load and H-1Load are sub-
ject to both the standard min-max scaling approach and the
modified min-max scaling method in (2). This paper proposes
an enhanced min-max data preprocessing technique for STLF,
that alters the order of magnitude of the variables D-1Load,
D-7Load, H-1Load giving them the appropriate weight, and
compares the forecasing results with those obtained from the
conventional implementation of the min-max method.

LT Imin  pCoef f
Tmax — Tmin

where ImpCoef f is an integer that appropriately identifies

the significance of the data for the forecast result by allocating

the input data within the closed interval [0, ImpCoeff].

y= (2)

A. Calculation of Importance Coefficient for the Enhanced
Min-Max Scaling Method

The I'mpCoef f coefficient, which correctly attributes the
significance of these variables, must be determined before
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applying the suggested scaling method to the input data.
ImpCoef f is defined by the accuracy of the neural network
prediction by calculating the resultant MAPE value through a
trial-and-error procedure. At first, the coefficient accepts inte-
ger values in the range [1,100]. It is underlined that when the
coefficient equals 1, the suggested method is associated with
the traditional min-max scaling methodology. Fig. 3 depicts
the MAPE values obtained by implementing the suggested
MLP for the STLF at various ImpCoef f values.
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Fig. 3. MAPE calculation for the various ImpCoeff values.

Then it is discovered that for coefficient values in the
interval [7,12], MAPE obtains the lowest values. Fig. 4 depicts
the thorough computation of ImpCoeff in this interval,
stressing that when I'mpCoef f equals 10, MAPE yields the
smallest feasible value. As a result, with ImpCoef f equal to
10, our suggested scaling approach is obtained from (2).

B. Numerical Results

Before entering the proposed MLP neural network to es-
timate the following day’s load, input data with the highest
coefficient r value is exposed to both scaling strategies. Table
I summarizes and compares the outcomes of both procedures.
As predicted, the technique with the lowest MAPE is deemed
to be more efficient.

TABLE I
MAPE CALCULATION FOR THE TWO SCALING TECHNIQUES OF INPUT
DATA
Scaling Method MAPE
Classic Min-Max Scaling 2.34%
Enhanced Min-Max Scaling 1.80%

It turns out that our enhanced Min-Max Scaling technique
yields a lower MAPE value in the forecast. Despite its
simplicity, this technique appropriately emphasizes the weight
and importance of the input variables D-1Load, D-7Load and
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Fig. 4. Computation of optimum value for ImpCoef f.

H-1Load in terms of MLP performance. When the proposed
preprocessing technique is applied to the input data of a MLP
neural network, the resulting value of MAPE decreases below
to 2%, resulting in one of the lowest prediction value in the
literature, based on data of the Greek interconnected power
system. Fig. 5 and Fig. 6 provide a graphical comparison
of prediction outcomes in 2017 using the proposed MLP for
estimating next hour’s load. In comparison to the usual scaling
strategy, it is clear that the suggested method’s outputs closely
match the real load curve.
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Fig. 5. Load curves for the year 2017.

IV. CONCLUSION

The increased use of neural networks in short-term load
forecasting necessitates the development of novel data prepa-
ration approaches to increase the forecasting model’s accu-
racy. In this paper, an enhanced preprocessing technique is
presented that is applied to the input data of an MLP neural
network to predict the value of the load in the following
hour. This approach is based on the precise determination of
a coefficient that assigns the proper importance to particular
input data that demonstrate a high degree of correlation with
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Fig. 6. Comparison of load prediction.

the proposed MLP’s forecast output. Despite its simplicity,
the findings of short-term load forecasting are more accurate
when compared to other results in the literature that use data
from the Greek interconnected system, as indicated by the low
MAPE value, which is around 1.80%.
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