
The Risk of Cascading Failures in Electrical Grids
Triggered by Extreme Weather Events

Julian M. Stürmer
(1) Complexity Science department,

Potsdam Institute for
Climate Impact Research

Potsdam, Germany
(2) Institut für Theoretische Physik, TU Berlin

Berlin, Germany
email: Julian.Stuermer@pik-potsdam.de

Anton Plietzsch
(1) Complexity Science department,

Potsdam Institute for
Climate Impact Research

Potsdam, Germany
(2) Humboldt-Universität zu Berlin

Berlin, Germany
email: plietzsch@pik-potsdam.de

Mehrnaz Anvari
Complexity Science department,

Potsdam Institute for
Climate Impact Research

Potsdam, Germany
email: anvari@pik-potsdam.de

Abstract—One of the serious threats related to climate change
is an increase in the number and severity of extreme weather
events. A prominent example are hurricanes, which result from
rising coastal temperatures. Such extreme weather events can
cause extensive damages in infrastructure systems and, poten-
tially, destroy components in electricity transmission networks,
which in turn can lead to major blackouts. In our recent work,
we consider a quasi-static model to study the risk of hurricane-
induced cascading failures in power systems of the U.S. East
Coast using historical wind field data sets. For this purpose,
we model the destruction of overhead transmission lines during
hurricanes, where each failing line causes a rerouting of power
flow in the system. New power flows can overload additional
lines, which are then automatically deactivated and thereby cause
another rerouting of power flow and so on. Ultimately, a cascade
of failures can unfold that can black out large parts of the power
system.

Keywords—weather extreme events; power flow model; cas-
cading failure.

I. INTRODUCTION

Recent climate studies demonstrate that human-induced
climate change not only causes a rapid increase in global
temperature but also leads to more frequent and severe extreme
weather events, such as floods, heavy rainfall, winter storms
and hurricanes [1]. These events threaten the stability of social
facilities and services, as well as social network infrastruc-
tures, such as public health care, transportation, telecommu-
nication, and electrical grids. Due to the extensive economic
and social consequences that accompany disruptions in these
systems, fostering their resilience and thereby mitigating the
impact of extreme weather events represents an important
challenge for governments and societies.

It is worth mentioning that, due to the intertwined nature
of social infrastructure systems, a failure in one system can
easily spread into other systems. This especially applies to
failures in electrical grids, since they can lead to major black-
outs that impair the access to food, transportation, medical
treatment and so on. In recent years, reports demonstrated
that the increase in extreme weather events puts electrical grid
components at greater risk of failure in several parts of the
world. As an example, the authors in [2] discuss how the

probability of damages in the British transmission network
increases with more frequent winter storms. In addition, [3]
shows how transmission tower damages in Australia can be
attributed to localized downbursts, that become more often.

Furthermore, recent data recorded in the Atlantic Ocean [4],
[5] show an increase in coastal temperatures that promote more
frequent and intense hurricanes in coastal states of the U.S.
like Texas and Louisiana. For instance, hurricane Laura led
to major outages in Louisiana and other states in the days
following the August 27th, 2020 [6]. Since the restoration of
destroyed components in electrical grids can be very costly
for power transmission authorities (typically ranging from mil-
lions to billions of euros), identifying vulnerable components
and improving the resilience represent a promising way of
avoiding high costs and extensive outages.

In our ongoing research, we apply a quasi-static model
to investigate the risk of hurricane-induced blackouts in a
synthetic electrical grid for Texas. In Section II, we discuss
how power flows can be analyzed in the electrical grid. Next,
we establish a probabilistic approach in Section III to model
wind-induced failures of overhead transmission lines occurring
in the course of a traversing hurricane. Our work incorporates
the analysis of power flows that change after each failure and
the simulation of cascading failures by deactivating lines and
transformers as soon as they become overloaded. Preliminary
results of blackouts will be presented in Section IV.

II. ELECTRICAL GRID MODELING

To assess the impact of extreme weather events in realistic
scenarios, an elementary question arising is how and in what
detail the electrical grid should be modeled. Regarding to the
power system research, an electrical grid is a network with
N nodes, representing generators and loads, and E edges,
representing transmission lines and transformers. We will also
refer to nodes as buses and to edges as branches throughout
this paper.

In the context of cascading failures, both steady-state mod-
els, as well as dynamic models have been used for calculating
the power flow on branches and it is known that the final
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outcome of cascades can vary between different models [7].
It is therefore not certain how cascading failures should be
modeled in general in order to obtain the most realistic and
plausible results. Furthermore, the applicability of different
power flow models also depends on the availability of grid
parameters, such as inertia and damping coefficients in the
dynamic swing equation or reactive power injections in the
static AC power flow model. Data sets that provide these
parameters together with a realistic power grid topology are
generally rare because of confidentiality.

The application presented throughout this paper uses a
sophisticated synthetic electrical grid data set generated by
Birchfield et al. on the footprint of Texas [8]. The data set
is publicly available under the name “ACTIVSg2000” in a
test case repository hosted by the Texas A&M University [9].
It encompasses 2000 buses with geographic locations and an
extensive set of parameters, some of which will be introduced
in Section II-A.

The following sections will introduce the AC power flow
model and its DC approximation, both of which allow to
calculate power flows in the regarded electrical grid of Texas.
Using these models to determine the steady states of the power
grid enables a quasi-static description of cascading failures that
will be discussed in Section IV.

A. AC Power Flow

The AC power flow equations representing a set of 2N
nonlinear algebraic equations are solved to obtain the voltage
magnitudes |Vi| and voltage angles |θi| of all buses i ∈
{1, . . . , N}. These voltage variables characterize the steady
state of an AC power grid and enable the calculation of all
power flows. The AC power flow equations are given by

Pi =

N∑
j=1

|Vi||Vj |[Gij cos(θi − θj) +Bij sin(θi − θj)] , (1)

Qi =

N∑
j=1

|Vi||Vj |[Gij sin(θi − θj)−Bij cos(θi − θj)] , (2)

where Pi ∈ R and Qi ∈ R represent the active and reactive
power injections at each bus. The coefficients Gij ∈ R and
Bij ∈ R are, respectively, the real and imaginary part of the
nodal admittance matrix Yij = Gij+iBij ∈ C and incorporate
branch conductances and susceptances as well as additional
shunt contributions. All of these parameters are provided in
the “ACTIVSg2000” data set and their values are generally
given in the per-unit system (p.u.). In order to solve the AC
power flow equations (1) and (2), we draw upon the Julia
package PowerModels.jl [10].

B. DC Approximation

The DC approximation represents a linearized version of
the AC model introduced in Section II-A. Following three key
assumptions have to be made for DC power flow: (i) Neglect
ohmic losses resulting from resistances, i.e. Gij = 0p.u. for
all branches in the network; (ii) Fix the voltage magnitudes
to |Vi| = 1p.u. for all buses i ∈ {1, . . . , N}. This reduces

the number of unknown state variables by N and one can
therefore drop the N reactive power equations shown in (2);
(iii) Consider small voltage angle differences |θi − θj | along
all branches. This allows us to linearize the sine function in
(1) and, ultimately, leads to the N equations of DC power
flow.

Pi =

N∑
j=1

Bij(θi − θj) . (3)

These equations are also solved for the considered Texas grid
using PowerModels.jl. Due to the strong approximations made
in the DC model, the resulting power flows tend to differ
from the AC solution. A comparison of both solutions is
shown in Figure 1, where we plot the loading of branches in
the DC model versus their corresponding loading in the AC
model. As the ACTIVSg2000 test case for Texas only contains
high voltage levels of 115 kV and higher, ohmic losses can
be insignificant and, therefore, assumption (i) should not
lead to a major inaccuracy of the DC model. Nevertheless,
Figure 1 shows that various branches transport considerably
more power in the AC model. This can only stem from the fact
that reactive power flows, which also contribute to the loading
in the AC model, were neglected in the DC model according to
assumption (ii). In the context of cascading failures driven by
overloaded branches, this can lead to substantially different
cascades in both models. Last, assumption (iii) can result
in an overestimation of flows in the DC model, if voltage
angle differences are not small along all branches. Figure 1,
however, shows that this overestimation is not as drastic as the
negligence of reactive power flows.

Motivated by the discussed discrepancy between the initial
AC and DC solution, we are investigating how this may
affect cascading failures in both models in ongoing work. It
should be stressed that the DC model generally provides better
solvability and can be solved much faster than the AC model,
which makes it a popular choice for computing cascading
failures. Section IV presents preliminary results using the DC
model.

III. WIND-INDUCED DAMAGE

To demonstrate the impact of extreme weather events on
electrical grids, we here discuss the modeling of wind-induced
damages. In principle, as wind speeds exceed the design wind
speeds of structures in an electrical grid, damages can be
expected to occur in the course of an extreme event. However,
it is never certain in advance which components will indeed
fail. Hence, probabilistic approaches modeling the fragility of
structures with regard to weather-induced failures have been
developed throughout the years.

For the hurricane scenarios that we study, we adopt a
probabilistic description of the fragility of overhead trans-
mission lines first introduced by Winkler et al. in [11]. The
method is based on the standard wind force design equation
defined by the American Society of Civil Engineers (ASCE)
in [12] that allows to calculate the wind force Fwind acting
on transmission line segments. Line segments represent pairs
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Figure 1. Loading of branches in the DC model versus respective loading in
the AC model. Individual data points are colored according to the difference
in loading. The diagonal green line indicates the perfect match.

of transmission towers with conductor wires spanned between
them. In reality, all overhead transmission lines in the synthetic
electrical grid of Texas consist of a large number of line
segments. We therefore divide all overhead transmission lines
into Nseg individual segments using the average distance of
161m between transmission towers [13]. Motivated by [11],
we proceed by assigning failure probabilities to individual line
segments k according to

pk(v, l) = min

(
γ
Fwind,k(v, l)

Fbrk,k
, 1

)
, (4)

where v is the local 3-second gust wind speed assumed to
act perpendicular to the line direction, l is the obtained wire
span length of roughly 161m and Fbrk,k is the maximum
perpendicular force that the wire can endure, which is chosen
according to the grid data set. The coefficient γ is a scaling
parameter proposed in [11], that can be used to match the
average number of wind-induced line failures to historical
data. The impact of the scaling parameter will be discussed in
the last paragraph of this section. According to the wind force
Fwind defined in [12], the failure probabilities in (4) increase
with the square of the wind speed pk ∝ v2.

Given the wind speed data, v, for a specific hurricane, we
can generate uniform random numbers in [0, 1] for each line
segment and time step and compare them to the respective
probabilities (4). Once a random number falls below the failure
probability, we remove the corresponding transmission line
containing the destroyed segment. Ultimately, each scenario
of a hurricane traversing the grid represents a chronologi-
cal sequence of wind-induced line failures used to compute
cascading failures that may be triggered. As our model is
probabilistic, we can perform Monte Carlo simulations to
assess the expected damage of the grid for a specific wind
data set.

Ultimately, Figure 2 shows that the mean number of de-
stroyed overhead transmission lines increases monotonically

with the scaling parameter using the wind field of hurricane
Ike. Hurricane Ike will be discussed in more detail in Section
IV. As seen in the inset of Figure 2 for an exemplary value
of γ = 0.005, the corresponding probability densities of the
number of destroyed lines are narrow and centered around the
respective mean. That this observation holds for other values
of the scaling parameter is indicated by the rather small error
bars. Figure 2 suggests that it should indeed be possible to fit
the mean number of wind-induced line failures to historical
data. However, finding reliable sources that summarize such
data turned out to be a difficult task, since grid operators do
not report on structural damages in an uniform format.

IV. CASCADING FAILURES

In this section, we explore cascading failures that unfold
during specific hurricane scenarios described in section III. For
this purpose, the power flow models introduced in Section II
are used to recalculate power flows every time transmission
lines are destroyed by the traversing hurricane. We also
deactivate overloaded branches that may arise in new power
flow solutions and repeat this process until no more overloaded
branches persist. Afterwards, our simulations advance to the
next wind-induced line failure and so on. This approach can be
justified by the fact that cascading failures driven by overloads
typically happen on the time scale of seconds while significant
changes in the wind speeds typically occur in the course of
minutes to hours.

In order to prevent infeasible power flow problems dur-
ing our simulations, we implement additional control loops
that enclose the power flow calculation. This is especially
important in the AC model, whenever reactive power is no
longer generated in the direct neighborhood of loads. Since
refining these loops is still work in progress, we continue
by focusing on the simpler DC model. The latter merely
requires a single outer loop restoring active power balance

Figure 2. Influence of the scaling parameter introduced in (4) on the mean
number of overhead transmission lines destroyed by hurricane Ike. The
inset shows the probability density of the number of destroyed lines for an
exemplary value of γ = 0.005.
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Houston

Figure 3. Two different cascading failure scenarios triggered by hurricane Ike. (a) and (b) show two time steps in a worst case scenario. (c) and (d) show the
same time steps in a typical scenario. Houston which is extensively damaged in both worst and typical scenario has been annotated in (d).

after generators and/or loads were disconnected from the grid
or the system split into separated islands. Here, active power
balance means that the generators cover the total demand
in the grid. We have therefore established an algorithm that
restores balance motivated by primary frequency control in
real systems or deactivates connected components, if balance
cannot be restored within the capacity of generators.

Figure 3 shows two time steps in two scenarios of hurricane
Ike that passed over the eastern part of Texas in 2008.
The wind data was calculated using the CLIMADA Python
implementation [15] and the IBTrACS archive [16]. Both
scenarios were generated using a scaling factor of γ = 0.005
corresponding to an average number of 189 wind-induced
failures. Figure 3(a) and (b) show a worst case scenario that
was found by running 104 simulations. The cascading failures
triggered in this scenario lead to a final loss of ∼ 81% of
the initial active power supply in the grid. In contrast, in the
scenario shown in Figure 3(c) and (d) ∼ 33% of the initial
supply is lost, which seems to be the most probable outcome
judging from our 104 runs. It is worth mentioning that, even
though hurricane Ike merely hits the eastern part of the grid,
the majority of scenarios induce failures in the western part
of the grid due to the spreading of overloads. Figure 3 shows
that the outcome of different scenarios can vary drastically

and we are investigating what can trigger worst case scenarios
like the one discussed. It is worth to mention that Houston is
extensively damaged and faces a blackout in both the worst
case scenario as well as the typical scenario, see Figure 3(b)
and (d). Actually, this has been reported by references that
recap the real damages caused by hurricane Ike in 2008, such
as [14]. This proves the ability of our quasi-static model to
capture the impact of a hurricane on an electrical grid.

V. CONCLUSIONS

In this paper, we demonstrated that overhead transmission
lines destroyed by hurricane Ike trigger cascading failures in a
synthetic electrical grid for Texas (see Figure 3). As outlined in
Section IV, we combine a Monte Carlo-like method modeling
wind-induced failures (see Section III) with a DC power flow
model to assess the final power outage in different hurricane
scenarios.

As an example, we presented a worst case scenario of
hurricane Ike in Figure 3, in which more than 80% of the initial
power supply is lost, together with a most probable scenario,
in which around 30% is lost. In order to prevent the DC power
flow problem from becoming infeasible as the electrical grid
is destroyed, we applied a control loop enclosing the power
flow calculations that restores active power balance motivated
by primary frequency control.
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Apart from the DC model, we also touched on the more
accurate AC model that requires rather sophisticated control
strategies to remain feasible during cascading failures. We
show in Figure 1 that AC and DC power flows already
differ considerably in the stable initial state of the Texas grid.
Motivated by this fact we plan to study different hurricane
scenarios using the AC model and compare the final outages
to corresponding DC simulations. Here, we only considered an
electrical grid of Texas and wind data belonging to hurricane
Ike as a case study. Nevertheless, our approach can be applied
to electrical grids in other geographical regions, such as
South Carolina or Louisiana, and to other hurricanes as well.
Moreover, in our future work we will investigate the effect of
the electrical grid topology and transmission lines capacity in
order to minimize the number of consumers affected by power
outages during hurricanes.
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