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Abstract—Non-Intrusive Load Monitoring (NILM) algorithms are
actively being researched to disaggregate the electricity usage of
a whole household into the contribution of individual appliances.
While understanding the usage patterns of individual appliances
can be beneficial for flattening the peak demand, reducing the
electricity bill, and improving the energy usage efficiency, NILM
algorithms raise privacy concerns. Residential energy storage
could be used to relieve such concerns by modifying the monitored
electricity profile. However, residential energy storage systems
are yet costly, and hence assessing the financial overhead of
privacy protection techniques is important. In this paper, we
provide motivational examples and early results on how much
residential energy storage would be required to fool a state-of-
the-art NILM algorithm. Our preliminary results on the trade-
off between NILM accuracy and privacy protection indicate that
some intuitive approaches that require a significant amount of
battery capacity are not necessarily the most effective in reducing
the disaggregation accuracy.

Keywords–Privacy; Non-Intrusive Load Monitoring; smart me-
ter; energy storage.

I. INTRODUCTION

Smart meters are becoming an essential component in
smart grids because they allow high-resolution, real-time mon-
itoring of electricity generation/consumption and communica-
tion of the pricing information [1]. Smart meter information is
key for utility companies to provide information for the design
and implementation of demand side management strategies and
better cope with fluctuating electricity demands [2]. This re-
sults in more effective matching of the electricity demand and
generation. In addition, smart meter information is expected
to also bring benefits to electricity consumers, as it provides
them with more transparent billing information and enables a
better control over their electricity usage [3].

Motivated by the need to provide demand management
programs with better understanding, models, and forecasts of
electricity demand with high spatial and temporal resolution,
there have been recent rapid advances in the development
of Non-Intrusive Load Monitoring (NILM) algorithms. NILM
algorithms allow automatic decomposition of the aggregated
electric load measured by a smart meter at the household
level into the electricity usage patterns of individual appliances
(e.g., fridge, air conditioning system, etc.) [4]. One digital
AC monitor, i.e., a smart meter, measuring the single-phase

power into a household instead of individual sensors for each
appliance, suffices to provide a low cost and non-intrusive
solution. The information on electricity demand obtained via
NILM algorithms can be used to support consumption-based
feedback programs and customer segmentation for demand
management, flatten the peak demand, identify faulty appli-
ances, and provide hints on the effectiveness of demand side
management programs [5].

However, NILM algorithms inherently generate privacy
concerns. Besides detailed information on electricity usage
behaviors, sensitive private information such as how many
people are present in a home at a given time, absence of
a resident, or even gender and age information could be
potentially estimated using NILM algorithms [6][7]. What is
even more of a concern is that, from the user side, it would be
impossible to detect whether or not a NILM algorithm is being
used by the utility provider or a third-party unless explicitly
communicated. Resolving the existing trade-off between the
expected benefits of coupled smart metering-NILM systems
and the privacy challenges that they include is thus key
to facilitate the development of privacy-aware smart meter
deployments.

A potentially effective way of alleviating the privacy con-
cerns is to physically modify the electricity profile seen by
the smart meters [8]. This can be achieved by the use of a
residential energy storage. Existing commercial products, such
as Tesla Powerwall [9] or Encharge from Enphase [10], are
primarily designed for the purpose of compensating the fluc-
tuating power generation of the rooftop solar arrays. However,
their marketability is still being carefully evaluated as it is
highly dependent on the battery purchase cost, depreciation
cost due to aging as well as the local electricity cost. Hence,
using a residential energy storage for privacy protection could
harm the return-on-investment unless it is properly sized and
utilized.

In this paper, we investigate the cost-effectiveness of the
potential usage of a residential energy storage for privacy
protection against NILM algorithms. We first perturb the
electricity signal seen by the single-point smart meter of
a sample household to simulate different privacy protection
scenarios. These scenarios include the superimposition of
simple Gaussian noise on the smart meter signal, or a flattened
signal due to the usage of residential energy storage (i.e.,
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batteries) of different size and cost. We then investigate the
trade-off between privacy protection and NILM capabilities by
analyzing how the performance of a state-of-the-art NILM al-
gorithm changes in scenarios determined by increasing privacy
protection. The contributions of this paper can be summarized
as follows.

• We analyze the accuracy and effectiveness of the
NILM algorithm over modified household consump-
tion profiles using residential energy storage (i.e.,
batteries).

• We analyze the trade-off between different privacy
protection schemes and the battery size needed to
implement them.

• We provide recommendations on how to effectively
use residential energy storage to protect the privacy
of electricity users against NILM algorithms.

The ultimate goal of this paper is not to condemn the detailed
investigation of household energy demand at the end use level,
which can be very important to provide demand management
programs, or also coordinated water-energy conservation/peak
shifting programs. Rather, we aim to foster the conversation
about the privacy implications of NILM and to set the basis for
a wider discussion about the conflicting trade-off of demand
management programs in terms of technical feasibility, overall
economic and environmental benefits and social acceptance.

The rest of the paper is organized as follows. Section II
summarizes the related works on the usage of an energy stor-
age in the residential sector and NILM. Section III describes
the system setup and experimental settings for the NILM
algorithm used in this study. Section V analyzes some early
experimental results. Section VI concludes the paper.

II. RELATED WORKS

The development of smart energy grids and the uptake of
smart metering devices have fostered many recent research
efforts in two potentially conflicting directions, i.e., (i) elec-
tricity demand modeling at the end use level, and (ii) privacy
protection.

On the one hand, the increased availability of smart me-
ter data at the household level and recorded with sub-daily
sampling resolution has fostered the development of NILM
algorithms for electricity demand modelling at the end use
level, following the 1992 seminal study by Hart [11]. NILM
algorithms thus aim at estimating the electricity consumption
(or consumption pattern) of each appliance contributing to the
aggregate electricity profile recorded by a single-point smart
meter, installed at the household level. Given the aggregate
household electricity consumption Yt caused by N appliances
and recorded by the single-point smart meter at time t, NILM
algorithms estimate the non-metered consumption yit of each
individual appliance i, where

Yt =

N∑
i=1

yit + et (1)

and et is the measurement noise. This process is non-intrusive,
as the installation of multiple sensors at the appliance level is
avoided. In the last two decades, several NILM algorithms have
been proposed in the literature: optimization-based methods
(e.g., integer or sparse optimization [12]); pattern recognition

methods, which model the temporal structure of electricity
signals (e.g., methods based on Markov Models [13]); hybrid
methods [14]; and unsupervised algorithms [15]. More recent
approaches primarily exploited deep neural networks (e.g., [4])
and explored the potential of transfer learning to generalize
and transfer NILM algorithms among different domains [16].
The above methods have been extensively tested and cross-
compared on benchmark data sets [17][18] and with widely
adopted performance metrics [19].

On the other hand, the state-of-the-art literature includes
approaches for privacy protection that use a residential energy
storage to modify the usage pattern of appliances and human
activities [8][20]. These studies often target flattening out,
i.e., water-filling, the household electricity profile for privacy
protection. However, this usually results in an extensive use of
the storage requiring a large capacity and leads to accelerated
aging, thus rendering the solution impractical. An alternative
approach to privacy protection consists of randomizing the
household electricity profile by adding, for instance, Gaussian
noise [21]. However, the lack of a precise definition of privacy
has limited so far the possibility to come up with a cost
effective and general solution. Most previous works made use
of the concept of signal “flatness” to quantify the privacy level
of a modified electricity signal, and formulate it by proxy
indicators, including the sum of Root Mean Square (RMS)
error, the mutual information [22], or the entropy [23] between
the original and the modified profile. However, such metrics
are only weakly linked to the people’s perception of privacy as
it is hard to grasp the feeling of how much private information
can be extracted by just flattening the electricity profile.

In this paper, we aim neither at introducing a comprehen-
sive definition of privacy in the residential electricity sector,
nor at proposing new NILM algorithms. Rather, here, we
explore the influence of different privacy schemes on the
accuracy of state-of-the-art NILM algorithms. The different
privacy schemes are generated by perturbation of the house-
hold electricity signal as caused by operation of a residential
energy storage device. Thus, we measure privacy protection as
the ability of a residential energy storage to alter the household
electricity signal seen by the smart meter and hamper accurate
identification of end use electricity consumption via NILM
algorithms. Such an approach entails that trade-offs between
the privacy scheme defined by the usage (and thus size and
cost) of the residential energy storage and the accuracy may
emerge. The ultimate goal of this paper is, thus, to analyze
this trade-off and come up with recommendations to foster the
identification of cost-effective solutions for privacy protection
in the residential electricity sector, as well as contributing
to the overall discussion on the benefits and challenges of
the advanced metering and analytics tools characterizing the
ongoing digitalization of the utility and house sectors.

III. MATERIAL AND METHODS

A. Residential Electricity System
Figure 1 shows the system setup of the sample household

considered in this study. A smart meter monitors the whole
household energy consumption and communicates the value
to the utility provider. The utility provider makes use of the
smart meter information for demand side management. The
utility provider could run NILM algorithms with the consent
of the residents or there could be a third-party acting on its own
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initiative, potentially malicious, running NILM algorithms. In
the household, there are a number of electricity appliances,
such as washing machines, TVs, ovens, heat pumps, HVAC,
dryers, etc. Optionally, the house includes a battery storage
at home connected to the low-voltage AC network through a
bidirectional DC/AC converter. The storage resembles products
like Powerwall from Tesla (13.5 kWh) [9] or Encharge from
Enphase (3.5 kWh and 10.5 kWh) [10]. There could be
multiple purposes of installing the storage such as leveraging
the electricity price difference over time, stabilizing the local
low distribution grid by participating as a primary control
reserve, etc. In this work, we exploit the presence of a battery
storage for its additional function of privacy protection, as it
can be used to modify the electricity signal seen by the smart
meter, thus hiding the actual electricity usage of individual
appliances.

Battery 
storage

DC/AC

Low-voltage
distribution

Smart 
meter

Household 
appliance 1

Household 
appliance 2

…

Utility provider

3rd party
NILM

Figure 1. Electricity system setup for the sample household.

B. Sparse NILM algorithm
In this paper, we rely on state-of-the-art NILM algorithms

to explore the influence of different privacy schemes via
residential energy storage on NILM capabilities.

Specifically, we adapt the open source NILM algorithm
proposed by [13], a computationally efficient algorithm for
online real-time NILM based on a super-state Hidden Markov
Model (HMM) and a modified Viterbi algorithm that efficiently
manages the sparsity in HMM matrices (the original code used
in [13] is available on GitHub at [24]). In short, the algorithm
follows the following sequential process. First, the data sub-
metered at the level of individual appliance are analyzed to cre-
ate probability mass functions for each appliance and identify
its load states. Second, a super-state HMM is created by com-
bining the individual load states identified in the previous step.
This builds the actual NILM model. Finally, the super-state
HMM model is combined with a sparse Viterbi algorithm to
perform NILM and disaggregate the observed aggregate smart
meter load into the estimated contribution of each appliance.
The Viterbi algorithm is a dynamic programming algorithm
that is usually used to estimate the most likely sequence of
hidden states associated with a measured output of a process
modelled with HMM. The modified Viterbi algorithm proposed
in [13] exploits the high rate of zero-probability terms in the
HMM matrices, thus avoiding unnecessary computations and
efficiently returning a solution. The resulting sparsity-based
NILM algorithm has been demonstrated to outperform other
state-of-the-art NILM algorithms. Moreover, it can handle
disaggregation with data sampled with low-frequency (e.g., 1
min), while many other algorithms require higher frequencies,
and is scalable, i.e., can handle a large number of super-
states [13].

We assess the NILM performance of the sparsity-based
NILM algorithm under different privacy-protection scenarios

according to two performance metrics, i.e., (i) the Finite-State
F-score (FS-fscore) and (ii) the Mean Absolute Percentage
Error (MAPE). The FS-fscore was first introduced in [19] as an
alternative to conventional F-score to account for inaccuracies
in non-binary classification and is formulated as follows:

FSi =
2× PCi ×RCi

PCi +RCi
(2)

where RCi and PCi are the recall and precision, respectively,
formulated for each appliance i in order to take into account
the classification inaccuracy RCi = TPi−inacci

TPi+FNi
and PCi =

TPi−inacci
TPi+FPi

. The inacc term can be defined, for each appliance
i, as:

inacc =

H∑
t=1

∣∣x̂i
t − xi

t

∣∣
Ki

(3)

where x̂i
t and xi

t are the estimated and observed states of
appliance i at time t, H is the considered time horizon, Ki is
the number of states of appliance i, TPi, FPi, and FNi are
the number of true positive, false positive, and false negative
events, respectively. Overall, the FS-fscore metric evaluates
how good a NILM algorithm is in classifying the operating
states of the considered appliances. MAPE is formulated as
follows, for appliance i:

MAPE =
1

H

H∑
t=1

∣∣∣∣yit − ŷit
yit

∣∣∣∣ (4)

where the notation is consistent with the variables previously
defined in this paper. After calculating the FS-fscore and
MAPE performance metrics for each appliance, we compute
their average value across appliances to assess how affected the
NILM performance is on average, for each privacy protection
scheme.

Figure 2. (Upper) Residential electricity profile example with usage of
individual appliances shown [17], (Lower) Battery State-Of-Charge (SOC)

for day-wise water-filling of a battery capacity of 15.04 kWh.

C. AMPds Dataset
To simulate the electricity consumption of the different

appliances included in the sample household of Figure 1 and
train the sparse NILM algorithm, we used the appliance-level
data included in the AMPds dataset [17]. The AMPds dataset
contains electricity, water, and natural gas measurements at
one minute intervals for 2 years of monitoring. The data
was collected at a house in Canada, where a family of three
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live. In this study, we considered the original version of the
dataset, which includes data for 19 appliances monitored over
a period of 1 year [25]. Electricity was measured with 1 Hz
frequency, and 21 loads including a furnace, a fridge, a heat
pump, a clothes dryer, TVs, a wall oven, etc., which makes
it suitable for developing and evaluating NILM algorithms. In
the trade-off analysis presented in this work, we considered an
increasing number of appliances in the AMPds - from 3 to 10
- selected based on their ascending total electricity usage over
the 1-year time series.

IV. PRIVACY PROTECTION SCHEMES

One way to protect privacy is to completely flatten out the
usage profile like water-filling strategy. However, water-filling
strategy could be prohibitive due to the high usage of battery.
For example, to completely filter out the whole house energy
consumption reported in the AMPds dataset shown in Figure 2
(top) over a year, a battery of usable capacity 15.04 kWh has
to be used. Assuming a battery system cost of 700 USD/kWh
including the pack and the electronic equipment, this would
result in more than 10,000 USD for purchasing the battery
system. Assuming a lifetime of 10 years, which is equivalent
to the warranty period of Tesla Powerwall, this would roughly
equate to 1,000 USD/year solely for protecting privacy. There
are other factors that add to cost, such as sub-optimal exploita-
tion of Time-Of-Use (TOU) tariffs and accelerated aging due
to repeated cycle charge/discharge. Such factors, however, will
be left as future works, and we focus on the required capacity
in this work. Next, we present various methods to modify the
original electricity consumption profile to protect the privacy
against the Sparse NILM algorithm presented in Section III-B.
M1: Add Gaussian noise to the whole duration of the
profile. The method is intended to make the profile hard to
analyze regardless of the time of use and appliance usage
patterns. We control the intensity of the noise to see the
impact. Larger noise leads to reduced accuracy of the NILM
algorithms. However, it also involves more usage of the battery
capacity. The upper graph in Figure 3 shows such an example.
We have introduced a Gaussian noise with a standard deviation
of 3 A. The mean of the noise over the long term is of course
zero, but temporary increase and decrease in cumulative energy
from the battery is inevitable, as can be seen from Figure 3.
We observe that a naive implementation of M1 requires an
unnecessarily large battery capacity, so we periodically reset
the SOC of the battery to a pre-defined level. The usage pattern
can still be modified while efficiently making use of the battery
capacity.
M2: Add Gaussian noise only when a particular appliance
of interest is used. For M2, we add noise only to time
slots where a particular appliance is being used. We test this
scheme in order to find out whether we can selectively hide the
usage profile of an appliance, which will be using less battery
capacity compared with M1.
M3: Water-filling for a particular appliance of interest.
For M3, we see whether hiding the usage pattern by flattening
out the appliance profile while it is being used is effective in
reducing the accuracy of the NILM algorithm. Figure 4 shows
how it modifies the profile. In the modified profile, the load
looks rectangular rather than preserving all the “shapes” of the
consumption. Because the load is averaged, the peak becomes
lower than the original profile.

Figure 3. Original (upper) and modified (middle) whole household electricity
consumption using privacy protection scheme M1, and the corresponding

battery energy level (lower) over two days.

Figure 4. Original (upper) and modified (middle) profile of the clothes dryer
using privacy protection scheme M3, and corresponding battery profile

(lower) over two days.

M4: Spread-out the electricity consumption of a particular
application. What can be seen from Figure 4 is that the
appliance, which draws significant current, is still very visible
to the human eye in the overall profile. Hence, we also attempt
to modify the peak value with the support of a battery in
varying degrees. Therefore, we explore M4, which reduces the
size of the peak and spreads out the electricity consumption
evenly among all time slots.

M5: Erase an appliance’s consumption. This is similar to
M4, but completely erases an appliance’s usage profile from
the whole household energy consumption by charging the
battery storage. An equivalent amount of energy is discharged
over the whole period of time just like M4.

M6: Day-wise water-filling for the whole electricity con-
sumption profile. Finally, M6 performs a water-filling tech-
nique, which results in a flat profile seen by the smart meter.
However, doing this for a whole year, i.e., flat profile for a year,
is prohibitive because of the seasonal variations in electricity
consumption, which mandates the use of an excessively large
capacity battery, i.e., tens of kWh of battery capacity over the
course of two years just for introducing the Gaussian noise
of 6 A standard deviation. Therefore, we investigate day-wise
water-filling, which means the smart meter will see a flat
profile within a day, but varying electricity profile among days.

We evaluate the reduction in disaggregation accuracy and
the required battery capacity, and hence the cost, for each
method to provide an insight into developing cost-effective
techniques.
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V. EXPERIMENTAL RESULTS

In this section, we present the FS-fscore and MAPE ob-
tained for NILM under the different privacy protection schemes
detailed in the previous section. The overall evaluation pro-
cedure is shown in Figure 5. For the sake of analysis, we
have preprocessed the AMPds dataset and prepared 8 sets
of the Whole Household Energy (WHE) consumption profile.
Each set reconstructs the WHE profile using the top 3, 4,
· · ·, 10 appliances, sorted by increasing contribution to the
whole household energy consumption. Generally speaking, the
disaggregation accuracy is expected to decrease when there are
more appliances to disaggregate. Hence, we varied the number
of appliances to assess the effectiveness of the NILM algorithm
in all cases. We build the NILM models from the preprocessed
WHE profiles. Then, the profile modification algorithms from
Section IV are applied to simulate different privacy protection
schemes. The modified profiles serve as inputs to the sparse
Viterbi algorithm, which estimates the most likely sequence
of hidden states (i.e., appliance states). Finally, the NILM
performance is assessed by FS-fscore and the MAPE metrics.

AMPds

#Appl.: 3

…

#Appl.: 4

#Appl.: 5

#Appl.: 10

Trained models
Preprocessing

SparseNILM

Sparse Viterbi 
algorithm

Input profiles

#Appl.: 3, M1

#Appl.: 3, M2
…

Modified profiles

#Appl.: 10, M6 FS-fscore, MAPE

Figure 5. Overall evaluation procedure of NILM under different privacy
protection schemes.

Figure 6 shows the FS-fscore and MAPE averaged across
all appliances versus the required battery capacity of the
modification algorithm. The required battery capacity varies

Figure 6. Mean FS-fscore (top) and MAPE (bottom) of the sparsity-based
NILM algorithm across all appliances, privacy protection schemes, and their

required battery capacity.

Figure 7. FS-fscore (top) and MAPE (bottom) of the cloths dryer (appliance
of interest) vs required battery capacity of the profile modification methods.

The number of appliances is 5 for all the results. Marker color varies for
each profile modification method (M1-M6). Marker size is proportional to

the noise level of each method (the higher, the more noisy).

from 0 kWh to 12 kWh depending on the six modification
methods. M6 requires the most amount of battery capacity
as it aims at a completely flat profile. The sizes of markers
correspond to the number of appliances and the colors of
markers correspond to the privacy protection scheme. It can
be seen that, overall, a larger number of appliances leads
to slightly less accurate disaggregation within each method.
The privacy protection schemes M1 and M2 require the least
amount of battery capacity as Gaussian noise is relatively small
and averages out over a long period of time, as can be seen
from Figure 2. The most noticeable point is that both FS-
fscore and MAPE do not dramatically change for methods
M3 to M6.This might be due to the fact that the trained NILM
algorithm can still provide accurate estimates for the status of
most of those appliances that operate in a very limited range,
or that fall within the range seen by the smart meter, and thus
the average performance is still good in terms of FS-fscore.
However, the majority of MAPE values are between 0.5 and
1.2, indicating that the different privacy protection algorithms
can successfully hamper the identification of detailed appliance
profiles. Overall, the two most cost-effective methods to protect
privacy against the considered sparsity-based NILM algorithm
appear to be, in this specific sample case, M1 and M2. The
more battery capacity is utilized for M1 and M2, the worse
FS-fscore and MAPE become. The FS-fscore drops almost
to 0.4 when a battery capacity of around 2 kWh is used for
obfuscating the original profile. Other methods require much
more battery capacity, but they do not necessarily result in
a larger drop in NILM accuracy, as far as the FS-fscore is
concerned.

Figure 7 shows the FS-fscore and MAPE for a particular
appliance of interest, in this case, the clothes dryer, instead
of the mean of the metrics across all appliances. For the
sake of illustration, only the results obtained for the NILM
experiments including 5 appliances are reported. The marker
size corresponds to the magnitude of profile modifications, in
each privacy protection scheme. For M1 and M2, it is the
standard deviation of the Gaussian noise. For M4, it is the
amount of change in the mean of the appliance. For those
methods not requiring different profile modification magnitude,
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the marker sizes are depicted as the smallest. In this graph,
it is clearly visible that the disaggregation accuracy is lower
for larger Gaussian noise with M1. Surprisingly, M5 and M6,
which completely hide an appliance’s profile, do not have a
profound impact on the metrics of this appliance. This might
be due to the dominance of the clothes dryer profile over other
appliances. When Gaussian noise is imposed on the aggregate
signal, this specific profile becomes harder to identify, but,
in the other cases, a guess from the sparsity-based NILM
algorithm for this specific appliance is still accurate. Another
noticeable thing is that M2, which is dedicated to modifying
the appliance’s record, has nearly no impact on the metrics,
while M1 degrades the performance of the sparsity-based
NILM algorithm the most. Such an observation motivates
further systematic research on the topic, including a sensitivity
analysis on how these results change for different NILM
algorithms and with different performance metrics.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigated the effectiveness of a number
of heuristic algorithms making use of a residential battery
storage in preserving privacy against a NILM algorithm. Most
of the prior works are based on the water-filling technique,
i.e., flattening out the consumption profile as much as possible.
However, they require a significant amount of battery storage
while the amount of privacy protection is hard to quantify.
Therefore, we focus on the accuracy metrics of a NILM algo-
rithm and quantify the effectiveness of the profile modification
methods. Our preliminary results indicate that some intuitive
methods do not necessarily lead to a significant reduction
in the disaggregation performance of the NILM algorithm,
even though they require significant battery capacity. This
points towards further systematic research tailored to providing
protection against NILM algorithms while minimizing the
battery cost overhead.

Also, the cost analysis in this paper is restricted to battery
capacity. A holistic cost analysis incorporating the electricity
bills under flexible pricing policy, the interplay with the rooftop
solar arrays (when available), and the impacts of different
battery usage schemes on battery aging rates should be per-
formed. Finally, future research should look at better linking
the battery capacity to the specific appliance (or appliances)
that a customer would like to hide for privacy protection, if
some are more privacy-sensitive than others.
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