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Abstract—The driving range of Battery Electric Vehicles (BEVs)
has been fairly extended during recent years, as a consequence
of improvements in energy density of lithium-based batteries. As
the scope of application of electric vehicles has expanded, electric
motors have been used in trucks and buses, as well as simple
passenger vehicles. There are several issues in electric buses for
the decision of daily route and finding the optimal battery size. In
this work, we propose and incorporate an electric bus powertrain
model into a range estimator that takes into account slope, speed
limits as well as traffic information. We introduce two case studies
as applications of the proposed range estimator: (i) the fast route
decision and (ii) the iteration-based bus battery sizing.
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I. INTRODUCTION

Although most of the recent Battery Electric Vehicle (BEV)
models have significantly extended the driving range (even less
costly EVs can reach the 200-250 miles autonomy), range
anxiety is still perceived as a major issue. This is due to
both the limited battery performance, which largely depends
on working and operating conditions, and the still lacking
installations of charging stations, especially in Europe [1].

All BEVs include some form of a real-time driving range
estimator based on battery State-of-Charge (SoC). Many re-
searchers have addressed the issue of improving the estimator
by accounting for all the possible factors contributing to energy
consumption: among others, road topology and grade, speed,
acceleration/deceleration, weather conditions, vehicle current
location, use of on-board electric devices (e.g., A/C), and
driving styles (e.g., normal vs. aggressive) [2][3].

As electric motors are used in various types of gasoline
vehicles, electric buses have also been introduced on the mar-
ket [4]. The bus is a good candidate for converting the gasoline
powertrain system into an electric power system because of the
motor’s characteristics, such as being emission free, having
low noise, having small vibration, being easy to maintain, etc.
However, there are several issues with using electric buses
in the public transportation system. We should know which
route is more efficiency for the electric bus considering the
road slope and the traffic. Also, for a given bus route, optimal
battery sizing is another issue. Performing driving tests with
different battery sizes is the most obvious way to find the
optimal battery size, however, this is very time consuming.

In this work, we propose an electric bus powertrain mod-
eling and simulation framework. We first implement several
parameters and component models for a complex vehicle
simulation system. Then, we implement an equation-form
powertrain model to reduce runtime for energy simulation by

extracting coefficients from complex simulation results. The
powertrain model is incorporated in a range estimator that
updates EV power consumption along with a given driving
cycle characteristics including road slope, speed limit and
traffic conditions.

The proposed fast electric bus powertrain model and range
estimator are useful for runtime decision making and off-line
battery sizing. We introduce two case studies as applications
of the proposed range estimator: (i) the fast route decision and
(ii) the iteration-based bus battery sizing.

The paper is organized as follows: Section II reports the
related work; Section III describes the system models (i.e.,
powertrain, battery and route models) and the powertrain
modeling process. Section IV reports simulation results and
case studies. Finally, Section V draws some conclusions.

II. BACKGROUND AND RELATED WORK

As a consequence of the worldwide increase in the num-
ber of BEVs, the automotive industry is facing some new
challenges related to battery pack volume, weight, lifetime
and cost. Furthermore, nowadays charging stations are not
widespread in all geographical areas, and charging time is still
too long with respect to the traditional refueling [5].

While driving range estimation is not a significant issue
for Internal Combustion Engine Vehicles (ICEVs), it is more
challenging for BEVs because some parameters largely affect
the lithium-based battery pack energy at each charge/discharge
cycle: current rate, temperature, and even driving style [6][7].
Despite the progress made in producing battery cells with
similar energy yield at different discharge currents, depleting
a battery at different rates generally leads to different total
capacity (Ah) [8]. On top of that, the maximum battery energy
decreases over time, even in case of non-connection to a load,
as a consequence of deteriorating chemical processes [9].

There are many published papers addressing the issue of
energy analysis and optimization in EVs. Most of these works
leverage upon linear battery models [10]–[12] and, therefore,
they do not include some important non-linear characteristics,
such as the real dependency of battery voltage, current and
efficiency to SoC. This non-linearity is sometimes just approx-
imated [13] or described by a rather simplified mathematical
model as in [14], where the authors proposed a steady-
state (i.e., resistive) equivalent circuit. Three energy prediction
methods are presented in [15]; however, the related frame-
work should be simplified in order to have a more practical
application. Recently, some papers suggest non-linear battery
simulation working with EV driving simulation [16][17].

50Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-788-7

ENERGY 2020 : The Tenth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies



III. SYSTEM MODEL AND ESTIMATION

A. Powertrain Model

The power consumption of an EV depends on body shape
including facial area, curb weight, road slope and types of tires
as well as on the speed and acceleration of the EV. Figure 1
shows the dynamic power by a motor rotating with torque T
and angular velocity ω. Four resistances are acting on a vehicle,
where FR, FG, FI , and FA are the rolling, gradient, inertia
and aerodynamic resistances, respectively.

Figure 1. Forces on an EV.

The power consumption at the EV powertrain is the fol-
lowing [16][17]:

Pdyna = Tω = F
ds

dt
= Fv = (FR + FG + FI + FA)v

FR ∝ CrrW, FG ∝Wsinθ, FI ∝ ma, FA ∝
1

2
ρCdAv

2

Pdyna ≈ (α+ βsinθ + γa+ δv2)mv
(1)

where Crr, W , θ, m, v, a, Cd, A are the rolling coefficient,
weight, road slope, vehicle mass, vehicle speed, acceleration,
drag coefficient, and vehicle facial area, respectively. This
relation is simplified as a function of four coefficients α, β, γ
and δ.

The powertrain efficiency of the electric motor and driv-
etrain is less than 100%. The efficiency depends on the
operating RPM (revolutions per minute) and torque when the
EV drives. On top of that, the drivetrain mechanical movement
causes a power loss while delivering power to the wheels. The
following EV specific power model considers power losses by
the motor and drivetrain [17]:

PEV = Pdyna + C0 + C1v + C2v
2 + C3T

2 (2)

where C0, C1, C2, and C3 are the coefficients for constant
loss, iron and friction losses, drivetrain loss, and copper loss,
respectively.

Unlike ICEVs, the electric motor works like a power
generator when EV reduces its speed. This is done by a
regenerative braking system, which converts the kinetic energy
on the wheel into electric energy and sends it to the battery.
The power generation by regenerative braking is modeled by
a function of the negative motor torque and vehicle speed, as
follows:

Pregen = εTv + ζ (3)

where ε and ζ are regenerative braking coefficients.

B. Powertrain Modeling Process
There are several powertrain simulators in academia and

industry. ADvanced VehIcle SimulatOR (ADVISOR) is one
of well-organized vehicle simulators that takes into account
various factors of vehicles including engines, electric traction
motors, types of drivetrains, shape of chassis, etc. [18]. It is
possible to implement a certain type of vehicle in ADVISOR
by setting powertain parameters and simulating various vehicle
driving environments by changing its powertrain or driving
profile. Power consumption, battery state of charge and emis-
sion over time are simulated for a given driving cycle and
vehicle setup.

ADVISOR, however, is not suitable to simulate power
consumption in a live manner because of its relatively long
runtime. ADVISOR considers overall vehicle dynamics and
energy flow from torque on the wheels to the engine or battery
pack. Overall vehicle simulation results show energy flow in
detail, and this is important for energy analysis. However, it
is not efficient to estimate the current load from the battery
point of view and make a decision to find the optimal route
or vehicle velocity.

Based on the arguments above, instead of using ADVISOR
itself, we adopt the vehicle powertrain models from (1) to (3)
and use ADVISOR for the extraction of model coefficients.
Figure 2 shows the overall process for the electric bus charac-
terization. The process consists of three phases: i) parameter
extraction phase, ii) modeling phase and iii) simulation phase.

1) Parameter extraction phase: First, we choose a vehicle
for the ADVISOR simulation. ADVISOR requires several
parameters and models for the simulation (e.g. motor model,
vehicle chassis model and battery model). Vehicle manufac-
turers officially unveil their vehicle specifications on their
website, such as the maximum motor power and torque and
the time to reach 100 km/h. This information is used to
implement detailed parameters and models for ADVISOR.
In this parameter extraction phase, we implement an electric
motor model and a drivetrain efficiency model, and a battery
model for the ADVISOR simulation. We implement a motor
torque map from the maximum motor torque/RPM, the time to
reach 100 km/h and vehicle curb weight. We then implement
a motor efficiency map using the torque map, battery size and
driving range. The drivetrain efficiency model is obtained from
the driving range and resistances acting on a vehicle where
we calculate resistances using the vehicle body shape and the
type of tires. The battery model is easily obtained from battery
architecture and the battery cell specification. These models are
imported into the ADVISOR system and used to simulate the
complex energy flow.

2) Modeling phase: ADVISOR simulates energy flow with
an electric vehicle model obtained from Section III-B1 and
a driving cycle. We perform simulations to obtain plentiful
driving data with various vehicle speeds and road slopes. The
simulation results include power consumption by vehicle speed
and road slope over time. The driving cycles include driving
on flat road with various vehicle speeds and accelerations on
various road slopes. Test driving on various road slopes is also
performed. We use a multi-variable linear regression method
to extract coefficients of the powertrain models from (1) to
(3) [17].

3) Simulation phase: The equation form powertrain
model from (1) to (3) is used to extract the power consumption
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Figure 2. Overall process for the electric bus characterization.

by a given driving cycle promptly. We use the obtained power
consumption to simulate the battery charging/discharging op-
eration. The following Section III-C describes the details of
battery SoC estimation.

C. Battery Pack Model
The EV battery pack typically includes a large number of

Lithium battery cells. For example, a Tesla Model 3 battery
pack consists of 444 Panasonic NCR18650B cells of 3,400
mAh nominal capacity with 74p6s arrangement. Hence, to
model a pack, we need to model each individual cell, taking the
load current and SoC variations of the usable battery capacity
into account. This can be done with a circuit-equivalent model
accounting for the capacity dependency on current magnitude
and dynamics [19][20], as represented in Figure 3. The left-
hand part of the circuit models the battery lifetime, with a
capacitor C representing the battery storage capacity (Ah)

R(SOC)

Voc(SOC)

Ibatt

+

SOC

Ibatt

+

CS(SOC) CL(SOC)

+
Vlost(Ibatt)

+

Vlost(fload)

C

RS(SOC) RL(SOC)

Vbatt

Figure 3. Circuit-equivalent model for battery cell [19].

and a current generator Ibatt representing the battery current
requested by the load. As the available capacity of the battery
is affected by the load current values distribution, there are two
voltage generators on the left part representing the dependency
of the battery capacity (i.e., energy) on current values and the
dependency on load current frequency, respectively. Both gen-
erators decrease the voltage at the SoC node (which represents
the SoC) when either the current magnitudes or frequencies
increase.

Starting from this model, we built a pack model by simply
scaling parameters based on series/parallel connection. Besides
its simplicity (e.g., cell mismatches are not considered) this is
still a more realistic model than a linear one neglecting state-
dependent information. Consideration of battery temperature
is also a very important issue of battery SoC estimation.
However, we leave the topic as a future work and focus on
the state-dependent SoC estimation in this paper.

D. Driving Cycle Model

We extract a driving cycle, which represents a vehicle
driving in a city. The driving cycle includes vehicle speed
and road slope over time. We first extract a route to a
destination and use related traffic information or rules and
altitude information. We use speed limit and road traffic to
synthesize the vehicle speed, whereas the altitude profile along
the route is converted into road slopes. Figure 4 shows the road
traffic and altitude of an example route from Google Maps [21]
on the upper and lower subplots, respectively. Each color on
the route means different levels of traffic: red means heavy
traffic, orange means medium traffic, and blue means no traffic,
respectively. We easily obtain the road slope from the change
of altitude per distance unit.
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Figure 4. An example route on Google Maps [21] and its related altitude
data.
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We do not consider the acceleration/deceleration occurring
in correspondence to speed changes. Such approximation is
not critical however, because the acceleration energy is small
compared with the total energy consumption of each segment:
acceleration/deceleration seldom last more than a few seconds.

IV. SIMULATION RESULTS

We implemented a powertrain model of a BYD K9
bus from the vehicle specification and experiment re-
sults [4][22][23]. The gross vehicle weight of BYD K9 is
18,000 kg and the facial area of K9 is 2.55 by 3.36 m. K9
includes two electric motors whose maximum motor torque
and power are 350 Nm and 90 kW, respectively. The motor
type is in-wheel BYD-TYC90A Brushless Permanent Magnet
Synchronous Motor. The maximum RPM is 7,500 and the gear
box ratio is 17.7:1. The manufacturers unveiled the driving
range of K9 as being an average 250 km, based on their
experience. Battery size is 320 kWh and the maximum road
slope to climb is 15%.

A. Vehicle Parameter Extraction
We used [24] to set the parameters of the electric motor

that Larson transportation institute tested on the BYD electric
bus more than eight months (from August 29, 2013 to May
13, 2014). The institute reported the maximum acceleration of
the bus from stop: 4.8 s to 10 mph, 9.0 s to 20 mph, 16.2 s
to 30 mph, 32.4 s to 40 mph and 47 s top speed (43 mph),
respectively. We extracted (a) the maximum motor torque map
and (b) the maximum motor power by RPM, with repeataed
ADVISOR simulations, as shown in Figure 5.

MC PM 100kW motor in Advisor library
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Figure 5. Motor parameter extraction results. (a) is the maximum motor
torque map and (b) is maximum power map.

We specified the detailed vehicle parameters as indicated
in Figure 6; this figure also shows the ADVISOR user inter-
face for parameter extraction. The motor, together with the
efficiency and battery models, are imported into ADVISOR,
and based on the simulation results, we set the parameters
so that the simulation results follow the experimental results.
Figure 7 shows the difference between experimental results and
simulation results of the driving range. We set the parameters
for drivetrain efficiency to follow the trend of driving range by
vehicle speed. There are about 200 km range difference be-
tween two lines respecting the experimental driving range and
the simulation driving range in Figure 7. However, the range
trend by the speed is similar enough. Also, the range difference
is resolved by updating the battery model, as explained in the
following section.

Figure 6. ADVISOR simulation setup.
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Figure 7. Driving range validation under efficiency parameter extraction.

B. Vehicle Powertrain Modeling

We extracted the coefficients of (1), (2) and (3) with a
number of ADVISOR simulations. Table I summarizes the
model coefficients of BYD K9. Figure 8 shows the difference
between the estimation of power consumption by the vehicle
simulator and the powertrain models; the normalized root-
mean-square error is 9.12%.

TABLE I. MODEL COEFFICIENTS FOR BYD K9.

α 0.098 β 9.7562 γ 1.2016 δ 0.0001
C0 1000.0 C1 1378.2 C2 0.00001 C3 0.000015
ε 0.4095 ζ 2178.5

C. Vehicle Simulation Setup

In our experiment, we followed the battery pack configura-
tion provided by BYD to build our battery model. The battery
is LiFePO4 (Lithium Iron Phosphate) with 540 V battery pack
voltage. The battery pack consists of three battery modules and
has 108 kWh capacity. We assumed that each battery cell in
the pack is ideally balanced in the following experiments, then
we built the battery pack model as indicated in Section III-A.
Concerning the regenerative braking phase, we assume that
charging efficiency is 20%, which means that 20% of the
kinetic energy is converted to electric energy and transferred
into the pack.
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Figure 9. Routes from home to TUM and vice versa.

TABLE II. A ROUTE INFORMATION.

Route Distance (km) Avg. slope (degree) Avg. speed (km/h)
Home to TUM 31.2 -0.1728 24.67
TUM to Home 26.2 0.2221 22.24

D. Case study 1: Fast Driving Energy Estimation

We extract a route going to Technische Universitat
Munchen (TUM) and another one returning from TUM, as
shown in Figure 9. Table II summarize the information of the
routes: distance, average slope along the route and average
vehicle speed.

The simulation results for the routes are shown in Fig-
ure 10. The first two graphs show the road altitude from
home to TUM and the speed profile that we obtained from
the road speed limit and the Google Maps traffic information.
The third graph shows the corresponding power and energy
consumption over time. The power consumption is low in the
first half compared with the second half because the degree of
negative slope along the road is high. Fourth and fifth graphs
show the road altitude and speed profile from TUM to home.
The sixth graph shows the power and energy consumption.
The road slope is positive in this case. Therefore, the energy
consumption is higher than the energy consumption to go to
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Figure 10. Simulation result from home to campus (first to third graphs) and
from the campus to home (fourth to sixth graphs).

TUM. The driving distance going to TUM is longer than the
route returning from TUM. However, the energy consumption
to go to TUM (27.4 kWh) is nearly 10% lower than the energy
consumption to return from TUM (30.8 kWh) because of the
road slope. The proposed equation-form energy model helps us
immediately estimate the energy consumption along the road,
taking slope and traffic into consideration, and to decide which
route is economic based on the fast simulation results.

E. Case Study 2: Battery Size Analysis
One important merit of the proposed power model is to

estimate energy consumption in a short time, which is useful
for iteration-based parameter sizing. For example, we can find
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the optimal battery size using iterative vehicle simulation.
A short simulation time is mandatory in this approach. We
perform the driving simulation on a flat 100 km distance with
different battery pack sizes. We assume that the vehicle speed
is 50 km/h, which is the average bus speed in the suburb of
the city. We assume that the battery pack voltage is the same,
and additional battery modules are attached in parallel. We
assume that the battery pack is ideally balanced during battery
charging and discharging.

We performed the vehicle simulations by changing the
battery size from 70% of nominal battery size of BYD K9
to to 130%. Figure 11 shows the simulation results. As
we increase battery size, the driving range also increases.
However, the driving efficiency (energy consumption per unit
distance) decreases because of the increase in battery weight.
The driving range increases nearly 28% if we increase the
battery size by 30%. On the other hand, the driving efficiency
decreases up to 21%. Therefore, we should carefully decide the
battery size with the consideration of cost of electricity per unit
distance (efficiency) and bus service time (driving range with
a fully charged battery).
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Figure 11. Simulation results by battery size.

V. CONCLUSION

We have proposed an improved EV range estimator incor-
porating (i) parameter extraction for complex EV simulation,
(ii) equation-form powertrain modeling by coefficient extrac-
tion and (iii) fast vehicle energy simulation with a traffic- and
altitude-aware driving cycle. We introduced two case studies
as application of the proposed range estimator: (i) fast energy
consumption estimation along the route information and (ii)
bus battery sizing considering driving efficiency and range.

The estimator can work either offline, by estimating the
range upfront without intermediate updates like a traditional
GPS navigator, or online, refining the estimate at the cost
of a route re-calculation. Our range estimator is meant as a
“plug-in” for traditional or traffic-aware (e.g., Google Maps)
GPS navigators, allowing route decisions besides traditional
information based on travel time and route distance.

ACKNOWLEDGMENT

This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korean government
(MSIT) (No. 2020R1F1A1074843).

REFERENCES
[1] European Automobile Manufacturers Association (ACEA), “Mak-

ing the transition to zero-emission mobility,” [Online]Available:
https://www.acea.be/publications, June 2018.

[2] J. Wang, I. Besselink, and H. Nijmeijer, “Battery electric vehicle
energy consumption prediction for a trip based on route information,”
Proceedings of the Institution of Mechanical Engineers, Part D: Journal
of Automobile Engineering, vol. 232, no. 11, 2017, pp. 1528–1542.

[3] Y. Zhang, W. Wang, Y. Kobayashi, and K. Shirai, “Remaining driving
range estimation of electric vehicle,” in 2012 IEEE International Electric
Vehicle Conference (IEVC). IEEE, 2012, pp. 1–7.

[4] “BYD Product,” BYD Europe Official Website, [Online] Available:
https://www.bydeurope.com [accessed: 2020-05-01].

[5] A. M. Andwari et al., “A review of battery electric vehicle technology
and readiness levels,” Renewable and Sustainable Energy Reviews,
vol. 78, 2017, pp. 414–430.

[6] R. Zhang et al., “State of the art of lithium-ion battery SOC estimation
for electrical vehicles.” Energies, vol. 11, no. 7, 2018, pp. 1–36.

[7] Y. Wang et al., “Research on driving range estimation for EVs based on
corrected battery model,” in SAE World Congress & Exhibition, 2015.

[8] A. Bocca, A. Macii, E. Macii, and M. Poncino, “Composable battery
model templates based on manufacturers’ data,” IEEE Design & Test,
vol. 35, no. 3, 2018, pp. 66–72.

[9] M. Uitz et al., “Aging of Tesla’s 18650 lithium-ion cells: Correlat-
ing solid-electrolyte-interphase evolution with fading in capacity and
power,” Journal of The Electrochemical Society, vol. 164, no. 14, 2017,
pp. A3503–A3510.

[10] S. Kachroudi, M. Grossard, and N. Abroug, “Predictive driving guid-
ance of full electric vehicles using particle swarm optimization,” IEEE
Trans. on Vehicular Technology, vol. 61, no. 9, 2012, pp. 3909–3919.

[11] K. Vatanparvar, J. Wan, and M. A. Al Faruque, “Battery-aware energy-
optimal electric vehicle driving management,” in International Sympo-
sium on Low Power Design (ISLPED), 2015, pp. 353–358.

[12] D. Baek and N. Chang, “Runtime power management of battery electric
vehicles for extended range with consideration of driving time,” IEEE
Trans. on Very Large Scale Integration System, 2019, pp. 549–559.

[13] X. Yuan, C. Zhang, G. Hong, X. Huang, and L. Li, “Method for evalu-
ating the real-world driving energy consumptions of electric vehicles,”
Energy, vol. 141, 2017, pp. 1955–1968.

[14] A. Gonzalez-Castellanos, D. Pozo, and A. Bischi, “A non-ideal linear
operation model for a li-ion battery,” arXiv:1901.04260, 2019.

[15] G. Liu, M. Ouyang, L. Lu, J. Li, and J. Hua, “A highly accurate
predictive-adaptive method for lithium-ion battery remaining discharge
energy prediction in electric vehicle applications,” Applied Energy, vol.
149, 2015, pp. 297–314.

[16] Y. Chen et al., “A systemc-ams framework for the design and simulation
of energy management in electric vehicles,” IEEE Access, vol. 7, 2019,
pp. 25 779–25 791.

[17] D. Baek et al., “Battery-aware operation range estimation for terrestrial
and aerial electric vehicles,” IEEE Transactions on Vehicular Technol-
ogy, 2019, pp. 5471–5482.

[18] T. Markel, A. Brooker, T. Hendricks, V. Johnson, and K. Kelly,
“Advisor: a systems analysis tool for advanced vehicle modeling,”
Journal of Power Sources, 2002.

[19] Y. Chen, E. Macii, and M. Poncino, “A circuit-equivalent battery model
accounting for the dependency on load frequency,” in Proceedings of
the Conference on Design, Automation & Test in Europe. European
Design and Automation Association, 2017, pp. 1177–1182.

[20] Y. Chen, D. J. Pagliari, E. Macii, and M. Poncino, “Battery-aware
design exploration of scheduling policies for multi-sensor devices,” in
ACM/IEEE Great Lakes symposium on VLSI (GLSVLSI), 2018.

[21] Google Maps, [Online] Available: https://www.google.com/maps [ac-
cessed: 2020-05-01].

[22] “BYD K9,” Land Transport Guru, [Online] Available: https://
landtransportguru.net/byd-k9/ [accessed: 2020-05-01].

[23] K. Norregaard, B. Johnsen, and C. H. Gravesen, “Battery Degradation
in Electric Buses,” Danish Technological Institute, Tech. Rep., 2016.

[24] “Federal Transit Bus Test,” The Larson Institute, Tech. Rep., 2014.

55Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-788-7

ENERGY 2020 : The Tenth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies


